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High energy tail in the velocity distribution of a granular gas

J. Javier Brey, D. Cubero, and M. J. Ruiz-Montero
Fı́sica Teo´rica, Universidad de Sevilla, Apartado de Correos 1065, E-41080 Sevilla, Spain

~Received 23 June 1998!

The Enskog-Boltzmann equation for a homogeneous freely evolving system of smooth hard disks colliding
inelastically is solved by means of the direct simulation Monte Carlo method. The distribution function shows
an exponential high velocity tail, while it is Gaussian for small velocities. The numerical results are compared
with recent predictions of approximate analytical theories and quite good agreement is found.
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PACS number~s!: 81.05.Rm, 05.20.Dd, 51.10.1y
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I. INTRODUCTION

The simplest realistic model for rapid granular flows is
system of smooth hard disks or spheres colliding inela
cally @1#. Energy loss in collisions is described by means
a constant coefficient of restitution 0,a<1, which mea-
sures the decrease in magnitude of the normal compone
the relative velocity of two colliding particles. It is trivial to
formally modify the standard kinetic equations for molecu
fluids, e.g., the Boltzmann and Enskog equations, adap
them to this dissipative dynamics. Of course, a different a
nontrivial question is whether and to what extent inelastic
affects the range of validity of the kinetic equations. In th
work it is assumed that the~inelastic! Enskog-Boltzmann
equation is an accurate tool to describe the time evolutio
a granular gas with an arbitrary value of the coefficient
restitution.

As a consequence of dissipation in collisions, there is
homogeneous steady state. The simplest possible state
granular fluid is homogeneous but with a monotonically d
creasing temperature@2#. This homogeneous cooling sta
~HCS! plays an essential role in any perturbative approac
the description of rapid granular flows@3–5#. The velocity
distribution function corresponding to the HCS is not know
exactly, although a Gaussian or Maxwell distribution~with a
time dependent temperature! provides a good approximatio
for the region of thermal velocities, i.e., velocities of th
order ofv0(t)5@2kBT(t)/m#1/2 @6#.

Deviations from Gaussian behavior in the HCS have b
considered recently through different quantities. Goldsht
and Shapiro@7# computed the fourth velocity moment of th
distribution function associated with the HCS from the
elastic Boltzmann equation and found a small correction
the Gaussian values. Although it is not an exact calcula
since it is based in the first Sonine approximation,
method leads to results that are in quite good agreement
numerical solutions of the Boltzmann equation to be d
cussed later on. Let us point out that the expression give
Ref. @7# contains a numerical error@8,6#. More direct and
qualitatively relevant evidence of non-Gaussianity has b
given by Esipov and Po¨schel @9#. They studied the
asymptotic behavior, in the large velocity region, of the s
lution to the Boltzmann equation for the HCS and obtain
that the decay of the distribution is not Gaussian but ex
nential. The aim of this paper is to present some numer
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results on the high energy tail of the solution of the Ensko
Boltzmann equation for the HCS and compare them with
theoretical predictions.

II. LARGE ENERGY TAILS

The nonlinear Enskog equation for the one-particle dis
bution functionf (v,t) of a homogeneous system of inelas
smooth hard spheres (d53) or disks (d52) is @7,10,11#

] t f ~v1 ,t !5ge~s!sd21E dv2 E dŝ Q~g•ŝ!~g•ŝ!

3@a22f ~v18 ,t ! f ~v28 ,t !2 f ~v1 ,t ! f ~v2 ,t !#. ~1!

Heres is the diameter of the particles,dŝ is the element of
the solid angle defined by the unit vectorŝ along the line of
centers of the colliding particles at contact,Q is the Heavi-
side step function, andg5v12v2. The primes on the veloci-
ties denote precollisional velocities yieldingv1 and v2 as
postcollisional ones. They are given by

v1,28 5v1,27
1

2
a21~11a!~ŝ•g!ŝ. ~2!

The only difference between Eq.~1! and the Boltzmann
equation for inelastic dilute gases is in the presence of
equilibrium pair correlation function at contactge . It is a
function of the density that takes into account the increas
the collision frequency due to the finite size of the particl
By properly scaling the time, the solutions of both the Bol
mann and the Enskog equations for the HCS are the sam

Goldshtein and Shapiro@7# noticed that the normal solu
tion to Eq.~1! describing the HCS has the form

f H~v,t !5nv0
2d~ t !fS v

v0~ t ! D . ~3!

Substitution of this expression into the Boltzmann equat
provides a differential equation for the functionf(c), which
becomes closed if the evolution equation for the tempera
is used. The equation has not been solved exactly up to
and only approximate solutions are known. Here we are
terested in the high energy tail of the velocity distributio
which is determined by the asymptotic behavior off(c) for
1256 ©1999 The American Physical Society
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largec. Esipov and Po¨schel@9# realized that for large veloci
ties the gain term in the Boltzmann equation is negligi
compared to the loss term. Thus

f~c!;A exp~2Ac!, ~4!

is easily obtained forc→`, whereA is an undetermined
integration constant andA is another constant introduce
when solving the differential equation by separation of va
ables. The behavior in Eq.~4! represents an enhanced pop
lation for large energies compared to the usual Gaussian
van Noije and Ernst@8# have obtained an approximated val
for A by solving the Enskog-Boltzmann equation in the fi
Sonine approximation. The result is

A21~a!5

GS d11

2 D ~12a2!S 11
3

16
a2D

A2GS d

2Dd

, ~5!

wherea2 is a quantity related with the fourth moment off
and therefore with the fourth velocity moment of the o
particle distributionf H . In the first Sonine approximation
and neglecting contributions to the velocity moments that
nonlinear ina2 it is found that@7,8#

a25
16~12a!~122a2!

9124d18ad241a130~12a!a2
. ~6!

The above expression fora2 has been compared with resul
obtained by means of the direct simulation Monte Ca
method and excellent agreement has been found@6#. This
comparison is extended in the following to Eqs.~4! and~5!.

The direct simulation Monte Carlo method was intr
duced as an efficient way of obtaining numerical solutions
the nonlinear Boltzmann equation@12#. The only modifica-
tions needed to apply it to the case of inelastic collisions
the expressions of the postcollision velocities. We refer
the literature for details of the method and only specific
formation about our simulations will be given here. The fi
point to be stressed is that we have solved thehomogeneous
Boltzmann equation, as given in Eq.~1!. In the technical
language of the direct simulation method, we have con
ered a single cell since positions of the particles do not
pear in the equation and therefore there is no need to c
pute and store them. For the same reason, no boun
conditions are needed. Of course, this implies that the po
bility of spontaneous formation of spatial inhomogeneities
eliminated in the simulation. In fact, it is the capacity of t
method for forcing the system to stay in the HCS, even
small values of the coefficient of restitution, that renders
feasible to identify and measure the high velocity tails.

In our simulations we have considered a two-dimensio
system of 106 particles. In addition, the results have be
averaged over a number of different trajectories, going fr
700 for a50.1 up to 2500 fora50.7 and 0.9.

First, let us consider the casea50.1. In Fig. 1 we presen
the simulation results for the scaled distribution functionf
as a function of the scaled velocityc5v/v0(t). Here and in
the following the velocityc has been discretized in interva
Dc50.05. It is observed that lnf(c) shows a linear profile
-
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for c*2, indicating an exponential velocity tail, as predict
by Eq. ~4!. Also plotted for comparison is the GaussianfM
5p21exp(2c2). The discrepancy between both functions
clear in the exponential region off. Similar behaviors have
been observed fora50.2, 0.4, and 0.6. The main differenc
is that as the value ofa increases the velocity range fo
which the exponential behavior shows up moves towa
larger velocities. Thus the relative population correspond
to the asymptotic velocity tail decreases and the simula
noise increases, rendering it very hard to detect the expo
tial decay law.

The highest value ofa for which we have been able t
obtain a relevant indication of exponential behavior isa
50.7. The results are shown in Fig. 2, where again
Gaussian has been included for reference. The quantita
deviation off from the Gaussian in the velocity range co
sidered is much smaller than in Fig. 1 and in fact it is qu
difficult to identify a linear region in the plot of lnf(c). In
order to get some additional information, we also present

FIG. 1. Scaled velocity distributionf as a function of the di-
mensionless velocityc5v/v0(t), wherev0(t) is the thermal veloc-
ity at time t. The coefficient of restitution isa50.1. The solid line
is from the Monte Carlo simulation and the dashed line is
GaussianfM5p21exp(2c2).

FIG. 2. Same as in Fig. 1 but fora50.7. Besides the numerica
sloped ln f/dc ~crosses! andd ln fM /dc ~dashed line! are shown in
the inset. The horizontal line is the theoretical prediction from E
~5! and ~6!.
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1258 PRE 59BRIEF REPORTS
values of the slope of lnf and the corresponding Gaussia
values. Although the error of the slope becomes very la
for c*4 due to the very small population for those velociti
for which f is of the order of 1028, a tendency towards a
constant value of the slope is clearly identified. Moreov
this value seems to be very close to the theoretical predic
of Eqs.~5! and ~6!, also indicated in the figure.

The fact that the beginning of the exponential regi
shifts towards higher velocities as the system becomes m
elastic is easy to understand since we know that the equ
rium velocity distribution is exactly Gaussian for all veloc
ties in the elastic limit. More quantitatively, the asympto
analysis carried out in Ref.@9# suggests that the exponenti
behavior requiresc@(12a2)21. For a.0.7 we could not
reach such a region, although in all cases the results w
compatible with an exponential tail, in the sense that a t
dency towards a constant slope of the logarithm of the
tribution as the velocity increases was observed.

In Fig. 3 we compare the simulation values for the exp
nentA(a) introduced in Eq.~4! with the theoretical results
given by Eqs.~5! and~6!. The former have been obtained b
fitting the numerical data for lnf in the velocity region
where a linear decay was found. In order to improve
statistics, each of the displayed points is the result of av

FIG. 3. Slope of the logarithm of the high energy tail of th
velocity distribution in the homogeneous cooling state. The cros
are from the Monte Carlo simulation of the Boltzmann equation a
the solid line is the theoretical prediction given by Eqs.~5! and~6!.
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aging over the value of the slope at ten different times,
that each trajectory has provided ten raw values ofA. The
arrow in the value corresponding toa50.7 indicates that it
is only a lower bound, as discussed above. The agreem
between theory and simulation is quite remarkable.

III. DISCUSSION

We have verified the exponential high energy tail of t
velocity distribution function of a granular gas described
the Enskog-Boltzmann equation in the homogeneous coo
state. Also the accuracy of Eqs.~5! and~6! for the constantA
has been verified. Although the exponential region in
velocity distribution has been clearly identified only fora
&0.7, the conclusions are expected to apply for all 0,a
<1 since no singular values ofa, aside from 0 and 1, ap
pear in the Boltzmann equation. In this context, let us n
that for a&0.7 the HCS is known to be highly unstab
against spatial perturbations@13#. For this reason, it is a very
difficult task to obtain the high energy tail from molecul
dynamics simulation techniques. The system becomes in
mogeneous and departs from the HCS very soon so that t
is no way of reaching a significant level of statistics. A
though the same comment is in principle true for the co
plete ~inhomogeneous! Boltzmann equation@6#, we have
taken advantage of the possibility of simulating and solv
numerically the homogeneous Boltzmann equation~1!, from
which the HCS is a stable solution for an arbitrary value
the coefficient of restitution.

A practical result following from the numerical resolutio
of the Boltzmann equation is that the transition from t
Gaussian behavior to the exponential one takes place
quite a narrow interval of thermal velocitiesc. In fact, an
accurate prediction of the velocity for which the exponent
tail is observed is obtained by equating the slopes of
Gaussian and the exponential distributions.
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