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High energy tail in the velocity distribution of a granular gas
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The Enskog-Boltzmann equation for a homogeneous freely evolving system of smooth hard disks colliding
inelastically is solved by means of the direct simulation Monte Carlo method. The distribution function shows
an exponential high velocity tail, while it is Gaussian for small velocities. The numerical results are compared
with recent predictions of approximate analytical theories and quite good agreement is found.
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[. INTRODUCTION results on the high energy tail of the solution of the Enskog-
Boltzmann equation for the HCS and compare them with the
The simplest realistic model for rapid granular flows is atheoretical predictions.
system of smooth hard disks or spheres colliding inelasti-
cally [1]. Energy loss in collisions is described by means of Il. LARGE ENERGY TAILS
a constant coefficient of restitution<Oax<1, which mea-
sures the decrease in magnitude of the normal component gf X ) - X
the relative velocity of two colliding particles. It is trivial to Pution functionf(v,t) of a homogeneous system of inelastic
formally modify the standard kinetic equations for molecularSM00th hard spheresi¢3) or disks =2) is[7,10,11
fluids, e.g., the Boltzmann and Enskog equations, adapting
them to this dissipative dynamics. Of course, a different.qn(jytf(vl,t):ge(g)adflj dv, f do 0(g- 0)(g- o)
nontrivial question is whether and to what extent inelasticity
affects the range of validity of the kinetic equations. In this —2¢ 00,1 roey
work it is assumed that thénelastio Enskog-Boltzmann XL (v, Of(vz, ) = (v, OF (v, 0] (D)
equation is an accurate tool to describe the time evolution 0|f—|ere is the di ter of th ticleder is the el t of
a granular gas with an arbitrary value of the coefficient of 0_ s the |am§ erotine par_|ce @15 the e em_en 0
restitution. the solid angle defined by the unit veci@ralong the line of
As a consequence of dissipation in collisions, there is n&enters of the colliding particles at conta€,is the Heavi-
homogeneous steady state. The simplest possible state ofigle step function, ang=v; —v,. The primes on the veloci-
granular fluid is homogeneous but with a monotonically deies denote precollisional velocities yielding and v, as
creasing temperaturg2]. This homogeneous cooling state Postcollisional ones. They are given by
(HCS) plays an essential role in any perturbative approach to
the description of rapid granular floW8-5]. The velocity
distribution function corresponding to the HCS is not known
exactly, although a Gaussian or Maxwell distributianth a
time dependent temperatiingrovides a good approximation The only difference between Edl) and the Boltzmann
for the region of thermal velocities, i.e., velocities of the equation for inelastic dilute gases is in the presence of the
order ofv(t)=[2kgT(t)/m]*?[6]. equilibrium pair correlation function at contagt. It is a
Deviations from Gaussian behavior in the HCS have beefunction of the density that takes into account the increase of
considered recently through different quantities. Goldshteirthe collision frequency due to the finite size of the particles.
and Shapird7] computed the fourth velocity moment of the By properly scaling the time, the solutions of both the Boltz-
distribution function associated with the HCS from the in-mann and the Enskog equations for the HCS are the same.
elastic Boltzmann equation and found a small correction to Goldshtein and Shapirr] noticed that the normal solu-
the Gaussian values. Although it is not an exact calculatioion to Eq.(1) describing the HCS has the form
since it is based in the first Sonine approximation, the
method leads to results that are in quite good agreement with
numerical solutions of the Boltzmann equation to be dis-
cussed later on. Let us point out that the expression given in
Ref. [7] contains a numerical errdB,6]. More direct and Substitution of this expression into the Boltzmann equation
gualitatively relevant evidence of non-Gaussianity has beeprovides a differential equation for the functi@r{c), which
given by Esipov and Bzhel [9]. They studied the becomes closed if the evolution equation for the temperature
asymptotic behavior, in the large velocity region, of the so-is used. The equation has not been solved exactly up to now
lution to the Boltzmann equation for the HCS and obtainedand only approximate solutions are known. Here we are in-
that the decay of the distribution is hot Gaussian but expoterested in the high energy tail of the velocity distribution,
nential. The aim of this paper is to present some numericalvhich is determined by the asymptotic behaviorggic) for

The nonlinear Enskog equation for the one-particle distri-

1 - ,\
Vi’2=V1’21§a_l(l+a)(0'-g)a'. (2)

fH(v,t>=nvod<t>¢(v:W). @
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largec. Esipov and Pschel[9] realized that for large veloci- 10°
ties the gain term in the Boltzmann equation is negligible
compared to the loss term. Thus

¢(c)~Aexp(—Ac), (4)

)

10

is easily obtained foc—o, where A is an undetermined
integration constant and is another constant introduced 10
when solving the differential equation by separation of vari-

ables. The behavior in E¢4) represents an enhanced popu-

lation for large energies compared to the usual Gaussian law. 10
van Noije and Ernd8] have obtained an approximated value

for A by solving the Enskog-Boltzmann equation in the first
Sonine approximation. The result is 10

-6

3 C
1+ 1—6a2

d+1 ’
I'——/(1—a%) o . .
2 FIG. 1. Scaled velocity distributiogp as a function of the di-
d ’ ) mensionless velocitg=uv/vy(t), wherev(t) is the thermal veloc-
\/EF(E) d ity at timet. The coefficient of restitution i&=0.1. The solid line
is from the Monte Carlo simulation and the dashed line is the

Gaussiangy, = 7 exp(—cd).

A Ha)=

wherea, is a quantity related with the fourth moment ¢f
and therefore with the fourth velocity moment of the ON€tor c=2, indicating an exponential velocity tail, as predicted
particle distributionfy. In the first Sonine approximation o 9 P y tall, as p

and neglecting contributions to the velocity moments that ar(gy E,ql (). A(I;o plotte(_j for comparison is the Gauss'm .
nonlinear ina, it is found that[7,8] =7 “exp(—c). The discrepancy between both functions is

clear in the exponential region ¢f. Similar behaviors have

16(1— a)(1—2a?) been observed fax=0.2, 0.4, and 0.6. The main difference
,= . (6) is that as the value ofr increases the velocity range for
9+24d+8ad—41la+30(1- a)a? which the exponential behavior shows up moves towards

, ) larger velocities. Thus the relative population corresponding
The above expression fa, has been compared with results 4 the asymptotic velocity tail decreases and the simulation
obtained by means of the direct simulation Monte Carlopgise increases, rendering it very hard to detect the exponen-
method and excellent agreement has been fd@dThis g decay law.
comparison is extended in the following to E¢é) and(5). The highest value ofr for which we have been able to

The direct simulation Monte Carlo method was intro- gjyiain 4 relevant indication of exponential behaviorais

duced as an efficient way of obtaining numerical solutions of_ 4 7 The results are shown in Fig. 2, where again the
the nonlinear Boltzmann equatiga2]. The only modifica-  Gayssian has been included for reference. The quantitative
tions needed to apply it to the case of inelastic collisions argjeiation of ¢ from the Gaussian in the velocity range con-
the expressions of the postcoliision velocities. We refer tsigereq js much smaller than in Fig. 1 and in fact it is quite
the literature for details of the method and only specific in-yiticult to identify a linear region in the plot of I(c). In

formauon about our §|mulat|ons will be given here. The first gy qar 1o get some additional information, we also present the
point to be stressed is that we have solvedhbmogeneous

Boltzmann equation, as given in E@l). In the technical
language of the direct simulation method, we have consid-
ered a single cell since positions of the particles do not ap-
pear in the equation and therefore there is no need to com- "
pute and store them. For the same reason, no boundary
conditions are needed. Of course, this implies that the possi- o
bility of spontaneous formation of spatial inhomogeneities is B
eliminated in the simulation. In fact, it is the capacity of the 10
method for forcing the system to stay in the HCS, even for
small values of the coefficient of restitution, that renders it
feasible to identify and measure the high velocity tails. 10
In our simulations we have considered a two-dimensional
system of 10 particles. In addition, the results have been
averaged over a number of different trajectories, going from 10

0

10

=

700 for a=0.1 up to 2500 forx=0.7 and 0.9. 0 1 2 3 4
First, let us consider the caae=0.1. In Fig. 1 we present ¢
the simulation results for the scaled distribution functipn FIG. 2. Same as in Fig. 1 but fer=0.7. Besides the numerical

as a functjon of the scgled velocity= v_/v o(t). Here _and i sloped In ¢/dc (crossesandd In ¢y, /dc (dashed lingare shown in
the following the velocityc has been discretized in intervals the inset. The horizontal line is the theoretical prediction from Egs.
Ac=0.05. It is observed that li(c) shows a linear profile (5) and(6).
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aging over the value of the slope at ten different times, so
that each trajectory has provided ten raw value®\ofThe
arrow in the value corresponding to=0.7 indicates that it

is only a lower bound, as discussed above. The agreement
between theory and simulation is quite remarkable.

Ill. DISCUSSION

We have verified the exponential high energy tail of the
2t 1 velocity distribution function of a granular gas described by
the Enskog-Boltzmann equation in the homogeneous cooling
state. Also the accuracy of Eq$) and(6) for the constanf

has been verified. Although the exponential region in the
velocity distribution has been clearly identified only far
=<0.7, the conclusions are expected to apply for aif &

FIG. 3. Slope of the logarithm of the high energy tail of the <1 since no singular values ef, aside from 0 and 1, ap-
velocity distribution in the homogeneous cooling state. The crossepear in the Boltzmann equation. In this context, let us note
are from the Monte Carlo simulation of the Boltzmann equation andthat for a=<0.7 the HCS is known to be highly unstable
the solid line is the theoretical prediction given by E@8.and(6).  against spatial perturbatiof$3]. For this reason, it is a very

difficult task to obtain the high energy tail from molecular
values of the slope of Ieh and the corresponding Gaussian dynamics simulation techniques. The system becomes inho-
values. Although the error of the slope becomes very largenogeneous and departs from the HCS very soon so that there
for c=4 due to the very small population for those velocitiesis no way of reaching a significant level of statistics. Al-
for which ¢ is of the order of 108, a tendency towards a though the same comment is in principle true for the com-
constant value of the slope is clearly identified. Moreover plete (inhomogeneouysBoltzmann equatior{6], we have
this value seems to be very close to the theoretical predictiotken advantage of the possibility of simulating and solving
of Egs.(5) and(6), also indicated in the figure. numerically the homogeneous Boltzmann equatibnfrom

The fact that the beginning of the exponential regionwhich the HCS is a stable solution for an arbitrary value of
shifts towards higher velocities as the system becomes motbe coefficient of restitution.
elastic is easy to understand since we know that the equilib- A practical result following from the numerical resolution
rium velocity distribution is exactly Gaussian for all veloci- of the Boltzmann equation is that the transition from the
ties in the elastic limit. More quantitatively, the asymptotic Gaussian behavior to the exponential one takes place over
analysis carried out in Ref9] suggests that the exponential quite a narrow interval of thermal velocities In fact, an
behavior requires>(1—«?) 1. For a>0.7 we could not accurate prediction of the velocity for which the exponential
reach such a region, although in all cases the results wetail is observed is obtained by equating the slopes of the
compatible with an exponential tail, in the sense that a tenGaussian and the exponential distributions.
dency towards a constant slope of the logarithm of the dis-
tribution as the velocity increases was observed.

In Fig. 3 we compare the simulation values for the expo-
nentA(«) introduced in Eq(4) with the theoretical results We are very grateful to Mathieu Ernst and T. P. C. van
given by Eqgs(5) and(6). The former have been obtained by Noije for providing us with results prior to publication. This
fitting the numerical data for lgh in the velocity region research was partially supported by Grant No. PB96-0534
where a linear decay was found. In order to improve thefrom the Direccim General de InvestigagioCientfica y
statistics, each of the displayed points is the result of averTecnica (Spain.
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