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We numerically investigate energy relaxation in discrete nonlinear lattices in one and two spatial dimen-
sions. We find that energy relaxation follows a stretched exponential law, and we study its dependence on the
initial temperature. We attribute this behavior to hierarchies of discrete breathers that relax with different time
constants, leading to a hierarchy of relaxation time scales in the system. Using heuristic arguments, we derive
a nonlinear diffusion equation for the local energy density of the oscillators that results in similar relaxation
dynamics.@S1063-651X~98!14712-8#
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Recent investigations in dynamical properties of exten
discrete nonlinear lattice systems have brought to the f
ground a central concept, viz. that of a discrete brea
@1–14#. The latter, also referred to as an intrinsic localiz
mode, is a space localized and principally time periodic
tice solution that under certain conditions can be shown
exist generically in nonlinear lattice systems. Breathers
now known to have very interesting dynamical propert
that participate in a unique way in determining several m
roscopic properties of the extended system. In the pre
Brief Report, we focus on one of these properties prima
related to nonequilibrium thermodynamic relaxation. Th
aspect of any macroscopic system is of paramount imp
tance in processes involving thermal energy exchanges.
work reported herein expands and quantifies earlier wo
where it was shown that breathers induce manifestly n
equilibrium thermal properties in the nonlinear lattice in
generic fashion@12#. Through extended numerical simula
tions, we show herein that energy relaxation of such non
ear lattice systems is governed by stretched exponential

We consider a two-dimensional nonlinear lattice con
tuted typically of 44344 lattice sites. The nonlinear oscilla
tors located at each site interact linearly with their near
neighbors through coupling constantskx andky in the x and
y directions of a square lattice, respectively. The Ham
tonian of the systems is
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where the indexesi and j refer to thex and y direction,
respectively,ui j [ui j (t) is the oscillator displacement at sit
( i , j ), and V(ui j ) is the on-site nonlinear potential in th
same location. For the present work we used the follow
three different on-site potentials (x[ui j ):

V1~x!5
1

2
x21

1

4
x4, ~2!

V2~x!5
1

2
@12e2x#2, ~3!

V3~x!5
1

2

x21ax4

11x2
, a50.2. ~4!

The potentialsV1(x) andV2(x) are the ‘‘hard’’ f4 and the
Morse potentials respectively, whileV3(x) was used exten-
sively in the work of Ref.@13#.

The investigation of the lattice energy relaxation close
follows the method of Ref.@12#. We initially use a Metropo-
lis algorithm in order to bring the system to a given initi
temperatureT. Subsequently, we bring the system in conta
with a zero-temperature bath created through two layers
border oscillators that are damped. Due to the presence o

te
x
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FIG. 1. Normalized energy relaxation as a function of time for potentials in~a! V1 , ~b! V2 and~c! V3 each at four different temperature
In ~d! we plot the energy relaxation for potentialV1 with initial temperatureT50.2, and show the presence of a pseudocharacteristic
t* . In the inset we show energy relaxation fort.t* .
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zero-temperature heat bath the nonlinear system relaxe
equilibrium ~at zero temperature! following the dynamical
equations of motion:

üi j 5kx~ui 11,j22ui j 1ui 21,j !1ky~ui , j 1122ui j 1ui , j 21!

2V8~ui j !2g~d i ,m1d j ,m!u̇i , j , ~5!

whered denotes the Kronecker delta andm51, 2, 43, and 44
are the border oscillators. The mass of the oscillators was
to unity. The equations of motion are solved using a fou
order Runge-Kutta method, and at each step we evaluate
total lattice energy. Several initial configurations are used
the averaged total energy relaxation as a function of tim
Results of the normalized total energy relaxation for all th
on site potentials at different lattice temperatures are sh
in Fig. 1. We note that, as in the one-dimensional case,@12#,
there is astrong departure from an expected exponentia
laxation at progresively higher initial temperatures. This o
curs due to the increased stability of the breather modes
energy~temperature!, leading to longer and longer relaxatio
time scales. The process of nonlinear lattice relaxation p
ceeds through a cascade of nested processes: at earlier
linear ~phonon! mode transfer and dissipation occurs, wh
energy nonlinear modes~low energy breathers lying abov
the energy gap@14#! also dissipate. Subsequently, as tim
passes, higher and higher energy modes relax and dissi
The hierarchy of relaxation processes is manifested em
cally in a sequence of pseudocharacteristic times@15# t1*
,t2* ,•••, in between which the energy relaxation cur
can be approximated by exponentials of the formest, with
s5s(T), i.e., with a temperature dependent time consta
An example of such behavior is depicted in Fig. 1~d! for the
potential V1 at an initial temperatureT50.2. We observe
from Fig. 1~d! that at early times~in units of 100 periods of
the linearized potentials! phonon dissipation takes plac
while breather relaxation occurs much later. We also sh
to
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FIG. 2. Spatiotemporal breather energy landscape. We fol
the approach to equilibrium of a two-dimensional lattice with o
site potentialV1 and initial temperatureT50.2. We plot the sym-
metrized local energy density~darker spots designate higher loc
lattice energies! in two spatial dimensions, and note the persisten
of breathers to times much longer after the phonon dissipation.
arrow designates a breather whose time evolution is depicte
Fig. 3.
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FIG. 3. Time evolution of a spontaneously generated breather event~shown with an arrow in Fig. 2! in a two-dimensional lattice with
on-site potentialV1 and initial temperatureT50.2. We follow the central site as well as the eight sites around the dominant breather sit
coherence between the central site and the nearest neighbor sites is evident.
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the slow time evolution after the pseudocharacteristic timet*
@15#. The empirical study of the lattices of the three pote
tials V1 , V2 andV3 has demonstrated that in the case of
immobile breathers of the potentialV1 a single pseudochar
acteristic timet* suffices for the characterization of the r
laxation properties of the lattice~as in the case of Ref.@15#!
while for the mobile breathers of the softer potentialsV2 and
V3 the relaxation process is more complex, leading to a
quence of event times.

The relative participation of linear and nonlinear modes
energy relaxation for the hardV1 potential is seen clearly in
Fig. 2, while in Fig. 3 we focus on a specific lattice neig
borhood occupied by a localized breather mode and and
low its time developement. We notice the relative robustn
of the breather mode once formed, and the very slow di
pation of the adjacent sites.

Extensive numerical simulations with all three potenti
and use ofx2 fitting has shown that the following stretche
exponential form fits the energy relaxation curves well,

E~ t !5E~0!e2atb, ~6!

where the coefficientsa and b are temperature dependen
The best fits fora5a(T) andb5b(T) for the three poten-
tials considered here are shown in Fig. 4 as a function of
initial temperatureT. We note that the fit for the hard-f4

potentialV1 was better (x1
2'1025) than the corresponding
-
e

e-

l-
s
i-

e

one for V2 (x2
2'1024). We found that both curvesa(T)

andb(T) are well fitted by the following function:

f ~T!5
c

11F T

T0
G p 1d, ~7!

wherex2'1024. While the exponentp as well as the pa-
rametersc, d, andT0 vary depending on the potential use
it is remarkable that a single functional expression fits w
both the temperature-dependent exponenentb(T) as well as
the prefactora(T).

An intuitive model for statistical energy relaxation in
breather infested system would have to take into account
observed fact that the energy transfer rate from a brea
site to adjacent sites diminishes with the energy dispa
between the sites. Considering for simplicity the on
dimensional case and denoting byrn the energy density at a
lattice siten, we can postulate a rate equation for the ene
randomization process as

ṙn5 f ~rn112rn!~rn112rn!1 f ~rn212rn!~rn212rn!,
~8!

where f (x) is an appropriate even function.



n

the

wn
lar
elf-
e
ne

on.
en-
een

al
e of

re-
cal
ded
tion
ear
eed
h a
ex,
lts
tis-
x-e

PRE 59 1237BRIEF REPORTS
FIG. 4. Numerical data and best fits for the stretched expon
tial parametersa ~left column! and b ~right column! for all three
potentialsV1 , V2 , and V3 ~from top to bottom! as a function of
temperatureT.
ie

.

Assuming as a first step a continuum limit wherern(t)
turns into r(x,t), Eq. ~8! becomes a nonlinear diffusio
equation of the form

r t5„f ~rx!rx…x , ~9!

where subscripts denote differentiations with respect to
corresponding variable, and the nonlinear functionf (rx)
should be a monotonously decreasing function. It is kno
that nonlinear diffusion equations of this type and simi
types result in algebraic time evolutions and posses s
similar solutions@16#. We thus find that the emerging pictur
of energy diffusion in extended nonlinear systems is o
involving nonstandard relaxation@17#, multiple time scales,
and multifractality, as also was seen from the simulati
These properties would possibly lead to unconventional
ergy scaling with the system size, a feature that have b
observed in lattices with long range interactions@18#.

Numerical experiments with one- and two-dimension
nonlinear lattice systems have shown that the presenc
breathers induces a stretched exponential lattice energy
laxation in the system. This law stems from the hierarchi
relaxation processes that occur in these complex exten
systems. The stretched nature of the exponential relaxa
signifies that the dynamical processes involving nonlin
localized modes have fractal or multifractal natures that n
to be explored. Furthermore, the heuristic connection wit
porous mediumlike relaxation corroborated the compl
multifractal nature of the processes involved. The resu
from numerical experiments presented here call for a sta
tical theory that will explain the specific temperature rela
ation laws of extended nonlinear lattice systems.
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