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We numerically investigate energy relaxation in discrete nonlinear lattices in one and two spatial dimen-
sions. We find that energy relaxation follows a stretched exponential law, and we study its dependence on the
initial temperature. We attribute this behavior to hierarchies of discrete breathers that relax with different time
constants, leading to a hierarchy of relaxation time scales in the system. Using heuristic arguments, we derive
a nonlinear diffusion equation for the local energy density of the oscillators that results in similar relaxation
dynamics[S1063-651X98)14712-9

PACS numbdrs): 63.20.Ry, 63.20.Pw

Recent investigations in dynamical properties of extended N .
discrete nonlinear lattice systems have brought to the fore- sz [%uizj +%kx(ui+1,j—ui,j)2
ground a central concept, viz. that of a discrete breather (i.J)
[1-14). The latter, also referred to as an intrinsic localized +3ky(Uy a1 Ui V(U ], (1)

mode, is a space localized and principally time periodic lat-
tice solution that under certain conditions can be shown tQhere the indexes and j refer to thex andy direction

exist generically in nonlinear lattice systems. Breathers arlfespectively; =u;;(t) is the oscillator displacement at site
now known to have very interesting dynamical properties(i,j)' and V(u;;) is the on-site nonlinear potential in the
that participate in a unique way in determining several macsame |ocation. For the present work we used the following
roscopic properties of the extended system. In the presemb ee different on-site potentialx£€u;;):
Brief Report, we focus on one of these properties primarily )
related to nonequilibrium thermodynamic relaxation. This
aspect of any macroscopic system is of paramount impor- Vi(X)= = X2+ =x4 )
tance in processes involving thermal energy exchanges. The 2 4
work reported herein expands and quantifies earlier work,
where it was shown that breathers induce manifestly non- 1
equilibrium thermal properties in the nonlinear lattice in a V,(X)= E[l—efx]z, 3
generic fashio12]. Through extended numerical simula-
tions, we show herein that energy relaxation of such nonlin-
ear lattice systems is governed by stretched exponentials. 1 x2+ax?
We consider a two-dimensional nonlinear lattice consti- V3(X)
tuted typically of 44< 44 lattice sites. The nonlinear oscilla-
tors located at each site interact linearly with their nearest
neighbors through coupling constaktsandk, in the x and
y directions of a square lattice, respectively. The Hamil-The potentiald/;(x) andV,(x) are the “hard” ¢* and the
tonian of the systems is Morse potentials respectively, whiM;(x) was used exten-
sively in the work of Ref[13].
The investigation of the lattice energy relaxation closely
*Permanent address: LaboratoireoheBrillouin, CEA-CNRS, CE  follows the method of Ref.12]. We initially use a Metropo-
Saclay, 91191 Gif-sur-Yvette Cedex, France. lis algorithm in order to bring the system to a given initial
"Permanent address: Department of Physics, University of Cretteemperaturél. Subsequently, we bring the system in contact
and Foundation for Research and Technology—Hellas, P. O. Bowith a zero-temperature bath created through two layers of
2208, 71003 Heraklion, Crete, Greece. border oscillators that are damped. Due to the presence of the

= EW, a=0.2. (4)
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FIG. 1. Normalized energy relaxation as a function of time for potentiala)iN', , (b) V, and(c) V3 each at four different temperatures.
In (d) we plot the energy relaxation for potenthd] with initial temperaturelT =0.2, and show the presence of a pseudocharacteristic time
t*. In the inset we show energy relaxation fort*.

zero-temperature heat bath the nonlinear system relaxes to

equilibrium (at zero temperatuyefollowing the dynamical
equations of motion:

Uij = Kye(Uj 1= 2055 F Ui 1 ) Ky (Uj j 1= 205+ Uj 1)

=V (W) = Y8t 8 U ®)

whered denotes the Kronecker delta ape-1, 2, 43, and 44

are the border oscillators. The mass of the oscillators was set
to unity. The equations of motion are solved using a fourth
order Runge-Kutta method, and at each step we evaluate the
total lattice energy. Several initial configurations are used for
the averaged total energy relaxation as a function of time.
Results of the normalized total energy relaxation for all three
on site potentials at different lattice temperatures are shown
in Fig. 1. We note that, as in the one-dimensional cpk#, ; ;
there is astrong departure from an expected exponential re- dad i ¥
laxation at progresively higher initial temperatures. This oc- - g
curs due to the increased stability of the breather modes with
energy(temperaturg leading to longer and longer relaxation
time scales. The process of nonlinear lattice relaxation pro- X X
ceeds through a cascade of nested processes: at earlier times ¥ t=3200 | t=3500
linear (phonon mode transfer and dissipation occurs, while : .
energy nonlinear mode@dow energy breathers lying above B it
the energy gapg14]) also dissipate. Subsequently, as time s ol ;
passes, higher and higher energy modes relax and dissipate. HHy

The hierarchy of relaxation processes is manifested empiri- i \.
cally in a sequence of pseudocharacteristic tifies] t} < %

. : : .
<tz<---, N t_)etween which the energy relaxation CUVe  fiG. 2. Spatiotemporal breather energy landscape. We follow
can be ap'proxu‘r.]ated by exponentials of the fc_Hﬁt" with the approach to equilibrium of a two-dimensional lattice with on-
o=0(T), i.e., with a temperature dependent time constantsjie potentialv, and initial temperaturd=0.2. We plot the sym-

An example of such behavior is depicted in Figd)lfor the  metrized local energy densitylarker spots designate higher local
potential V; at an initial temperaturd =0.2. We observe |atice energiesin two spatial dimensions, and note the persistence
from Fig. 1(d) that at early timesin units of 100 periods of  of breathers to times much longer after the phonon dissipation. The
the linearized potentialsphonon dissipation takes place arrow designates a breather whose time evolution is depicted in
while breather relaxation occurs much later. We also showFig. 3.
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FIG. 3. Time evolution of a spontaneously generated breather éstemivn with an arrow in Fig.)2in a two-dimensional lattice with
on-site potential/; and initial temperatur@=0.2. We follow the central site as well as the eight sites around the dominant breather site. The
coherence between the central site and the nearest neighbor sites is evident.

the slow time evolution after the pseudocharacteristic titne one forV, (x3~10 %). We found that both curvea(T)
[15]. The empirical study of the lattices of the three poten-and 8(T) are well fitted by the following function:

tials V4, V, andV; has demonstrated that in the case of the

immobile breathers of the potentisll, a single pseudochar-

acteristic timet* suffices for the characterization of the re- f(T)= ¢ +d 7
laxation properties of the lattic@s in the case of Ref15]) 1+ l P
while for the mobile breathers of the softer potenthjsand To

V3 the relaxation process is more complex, leading to a se-

quence of event times. where xy2~10 4. While the exponenp as well as the pa-

The relative participation of linear and nonlinear modes in : .
: . -~ "rameter, d, andT, vary depending on the potential used,
energy relaxation for the haid, potential is seen clearly in ..~ ’ . . ,
it is remarkable that a single functional expression fits well

Fig. 2, while in Fig. 3 we focus on a specific lattice neigh-
borhood occupied by a localized breather mode and and fo oth the temperature-dependent exponei) as well as
he prefactora(T).

low its time developement. We notice the relative robustnes

f the reather mode once fomed, and the very sow disg 7, MAE ol o sttt enery reavaton n &
pation of the adjacent sites. y

Extensive numerical simulations with all three potentialsgil,z:e,[r(;/e;j dfggér:{]astit;ze d?r?w?r:?sﬁgsar\:\?iftﬁr trhaeteefr:g:n a d?sregmer
and use ofy? fitting has shown that the following stretched ) gy disparity

exponential form fits the energy relaxation curves well, b.etwee.” the sites. Consm!erlng for simplicity t_he one-
dimensional case and denoting py the energy density at a

—utf lattice siten, we can postulate a rate equation for the energy
E(t)=E(0)e ' (6) randomization process as

where the coefficientsx and 8 are temperature dependent.

The best fits fore= a(T) and 8= B(T) for the three poten-  Pn=F(Pnr1=Pn)(Pns1=pn) +f(pn_1=pn)(Pn-1—pn),
tials considered here are shown in Fig. 4 as a function of the ®
initial temperatureT. We note that the fit for the hard?

potential V; was better ¢2~10"°) than the corresponding wheref(x) is an appropriate even function.
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FIG. 4. Numerical data and best fits for the stretched expone
tial parametersy (left column and B (right column for all three
potentialsV,, V,, andV; (from top to bottom as a function of

temperatureT.
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Assuming as a first step a continuum limit whergt)
turns into p(x,t), Eq. (8) becomes a nonlinear diffusion
equation of the form

pr=(F(px) pxx» 9

where subscripts denote differentiations with respect to the
corresponding variable, and the nonlinear functifip,)
should be a monotonously decreasing function. It is known
that nonlinear diffusion equations of this type and similar
types result in algebraic time evolutions and posses self-
similar solutiond16]. We thus find that the emerging picture
of energy diffusion in extended nonlinear systems is one
involving nonstandard relaxatidrl 7], multiple time scales,
and multifractality, as also was seen from the simulation.
These properties would possibly lead to unconventional en-
ergy scaling with the system size, a feature that have been
observed in lattices with long range interactidas).

Numerical experiments with one- and two-dimensional
nonlinear lattice systems have shown that the presence of
breathers induces a stretched exponential lattice energy re-
laxation in the system. This law stems from the hierarchical
relaxation processes that occur in these complex extended
systems. The stretched nature of the exponential relaxation
signifies that the dynamical processes involving nonlinear
localized modes have fractal or multifractal natures that need
to be explored. Furthermore, the heuristic connection with a
porous mediumlike relaxation corroborated the complex,
multifractal nature of the processes involved. The results
from numerical experiments presented here call for a statis-
Mfical theory that will explain the specific temperature relax-
ation laws of extended nonlinear lattice systems.
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