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A vector difference calculus is developed for physical models defined on a general triangulating;graph
which may be a regular or an extremely irregular lattice, using discrete field quantities roughly analogous to
differential forms. The role of the spac¥® of p-forms at a point is taken on by the linear space generated at
a graph vertex by the geometrigalsimplices which contain it. The vector operations divergence, gradient, and
curl are developed using the boundargind coboundarg. Dot, cross, and scalar products are defined in such
a way that discrete analogs of the vector integral theorems, including theorems of Gauss-Ostrogradski, Stokes,
and Green, as well as most standard vector identities hold exactly, not as approximations to a continuum limit.
Physical conservation laws for the models become theorems satisfied by the discrete fields themselves. Three
discrete lattice models are constructed as examples, namely a discrete version of the Maxwell equations, the
Navier-Stokes equation for incompressible flow, and the Navier linearized model for a homogeneous, isotropic
elastic medium. Weight factors needed for obtaining quantitative agreement with continuum calculations are
derived for the special case of a regular triangular lattice. Green functions are developed using a generalized
Helmholtz decomposition of the fieldgsS1063-651X99)09801-3

PACS numbg(s): 02.70:—c, 02.40.Sf, 46.05:b

I. INTRODUCTION solution to the original problem are not known in certain
limits, and if one has reason to suppose the solutions of the
This paper concerns discrete representation of continuoudiscrete model will behave similarly. It is particularly attrac-
field quantities that appear, for example, in quantum metive when spatial boundary conditions are very complicated,
chanics, continuum mechanics, electromagnetism, or transs in the case for fluid motion inside the pore cavities of a
port theory. In particular, it presents an analog of vector dif-porous material or quantum-mechanical transport in a glassy
ferential calculus, not an approximation to it, which actsstructure.
directly on the discrete models. Although the paper is not Lattice models of this type are used routinely for scalar
primarily about numerical methods, the numerical treatmenfields obeying, e.g., the Schiimger equation or diffusion
of continuum problems forms a convenient logical startingequation on spatially complex structures. Vector or tensor
point, thus the first part of the Introduction is framed in thisfields can be treated in similar fashion with indices account-
context. ing for field components. However, the resulting formalism
For computing field quantities one may choose to divideis more complicated. Boundary conditions mix the field com-
space into cells and make some finite differefite?] or  ponents, and the mixing is worse when the equations are
finite element approximatiofi3]. This replaces the partial nonlinear and hence couple field components together at
differential equation§PDES9 governing the fields by matrix each point in space. The conceptual simplicity of matrix cal-
equations. Another way to accomplish this is to expand theulations erodes as the number of indices increases. The task
fields in a basis of localized functions. Usually, the mainof deriving properties of the discrete models becomes more
point of the matrix equations is that their solutions shouldand more daunting if at some point all the subscripts must be
approximate, in some well-defined sense, the solutions of thenpacked and all the details taken into account. One prefers
original PDEs. However, sometimes what is called for is ato keep as much conceptual simplicity as possible, even
simple lattice model that preserves qualitative features of thevhen addressing a high level of detail. For continuum calcu-
phenomenon, but which need not be an accurate numerickdtions, vector and tensor operations can often be performed
approximation to the original PDEs. This kind of model ap-without explicit reference to individual components. The use
proximation is most useful if the qualitative properties of theof differential forms[4,5], for example, makes this particu-
larly convenient. However, if the discrete models arise only
as approximations to the PDEs, one cannot do precise calcu-
*Present address: Dipartimento di Ingegneria Chimica Universitdations on the lattice using tools developed for the con-
di Cagliari, piazza d’Armi, 09123 Cagliari, Italy. tinuum.
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The current paper presents a lattice formulation of vectoized basis functions. For our purposes, a O-field or scalar
calculus with which one can rewrite systems of PDEs forfield will be a vector
physical phenomena as systems of difference equations on a
graph which serves as a quadrature grid. Some combinatorial b= 2 (i) i 1)
aspects of the theory of differential forms are adapted for use M '
on the graph with little mention of metric properties for the
time being. The treatment is topological in the sense that ith the space where the set of O-simplices forms a basis. The
derives from adjacency rather than detailed geometry, andariable¢; is as usual the strength of the fiefdat pointi,
algebraic or combinatorial rather than metric or measuré@nalogous to field strengt#(x) in continuous space. Like-
theoretic properties are of primary concern. Therefore, on&vise, 1-, 2- and 3-fields are vectors,
arrives at lattice models for a physical phenomenon which,
like the Ising model, attempt to capture its qualitative fea- azz (i) e
tures without including details that may or may not be im- fn
portant but which detract from conceptual simplicity. It is
possible to reintroduce the proper metric content by means of o
guadrature weights. This results in numerical methods re- B:[ijzk] (,5,K) Bijc » @)
lated to the popular finite differendg,2] (see Sec. VI, -
finite elemeng 3], or lattice gas method$].
Scalar and vector fields are placed on equal footing, one y= E (1, 5,kD Yijia
that does not depend on space outside the graph itself. Vector [i.ikl]
fields are defined with respect to an intrinsic local basis with
no reference to direction in the external space. This is nov . . ) . v
since a vector field assigns a vector to each point in spac ’pe_ct|vely, fo”‘.‘ a basis. The oriented 1-S|mple}qX IS a
and normally a vector is defined by its magnitude and direc= asis ve_ctor oriented a'°’?9 t_h_e bo_nd frpm vertdn V?”ex
tion. j. L'|keW|se the prdered tr|pIe|. (J.,k) is a.rlgh.t—hand oriented
Calculations take place on the simplicial complex definec? SImPIex, or triangle, containing verticesj, andk. One

by a graph. The graph is a triangulation, meaning that ican associate with it a basis vector normal to the triangle in

divides three-dimensional space into tetrahedral cells ofhe nght-handed d|rect|pn. Interchanglng vertices merely
changes sign, so that ® is a permutation,

3-simplices that can share triangular fac@simplices,
edgeq1-simplices, or vertices(0-simplices. Graph vertices . . _ -
or lattice sites are points in the discrete space. The graph (P(), (1), PK), ... PM)=sgr(P) - (L.].k ... ,n),(3)
with the set of all simplices is the simplicial complex. The
homology theory of simplicial complexef/—-9] can be  \where sgrp) is + 1 depending on whethd? is even or odd.
fchought of as a model a_pprommau_on that forestalls confrontgig|d components such as;, Bij, or v are therefore
ing some of the subtleties of manifol0]. Here we adopt  antisymmetric with respect to index permutation. The sum-
a Similar pOSi'[ion tOWard the I’elation betWeen discrete andnations inc'ude each simp'ex On|y once. Thus the Square
continuous physical models. bracket[---] denotes one representative of an equivalence
Continuum vector calculus makes use of a set of basig|ass related by exchange of indices.
vectors at each point. The basis vectors are in general differ- Renumbering the vertex set ¢f is a formal symmetry
ent at different points, such dsand # of polar coordinates. which cannot have physical consequences. Reversing the
In the lattice development, the role of the set of basis vectorsertex ordering changes the signmiimplices with oddp,
at a given point is taken on by the set of elementary geoso it changes the sign of the components fefields with
metrical simplices, i.e., bonds, triangles, and tetrahedra thgg=1 and 3. Thus by analogy with the parities of continuum
include a given site. For each valuepfrom 0 to 3, the set fields with respect to coordinate inversion, we classify the
of all p-simplices on the graph is a basis for the real vectobasic p-field quantities as O-field¢scalar$, 1-fields (polar
space we shall call the space pffields. Discretep-field  vectors, 2-fields (axial vectory, and 3-fields(pseudosca-
variables of four types are introduced, corresponding in théars). Evidently these discrete quantities bear some resem-
continuous case to differential 0-, 1-, 2-, and 3-forms.blance to the continuum fields, although simplified.
Roughly speaking, the discrete analogs to spatat a par- The theory is constructed in such a way that certain inte-
ticular point in the theory of differential formgs] are the gral theorems, particularly the generalized Stokes theorems,
vector spaces generated by the sep«implices containing and many of the standard vector identities hold true exactly
a particular graph vertex. As in the theory of differential in the discrete case. Since it is a topological theory, indepen-
forms, the field quantities of the discrete theory divide natu-dent of deformations, the difference operators on arbitrary,
rally into types corresponding to scalar, vector, pseudovecaonregular graphs need not correspond to particular differen-
tor, and pseudoscalar fields. The prefiseudoimplies a tial operators in the external space. Of course for regular
classification with respect to a graph parity operation to bedriangulations(e.g., triangular latticeone often finds such a
discussed presently. correspondence generated naturally by Taylor expansion.
Think of the set{(i)} of O-simplices, where indexes In any event, the discrete reformulation of the PDEs of
graph vertices or lattice sites, as a geometrical basis set fany continuum model results in a discrete model that is in
representing scalar fields. This is similar to the convention ofnany ways much simpler and corresponds at least topologi-
expanding scalar functions approximately in a set of localcally to the original physics. Often the interesting phenom-

p the spaces where the oriented 1-, 2-, or 3-simplices, re-
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ena induced by constrained geometry are topological in ori¢l,m)+(m,n) +(n,l). This is the usual, right-hand boundary

gin. In such cases the formalism provides finite differenceorientation. Note, however, that the boundarylafl (m,n) is

models that satisfy the proper integral constraints or consewriented such that (m,n) is positive outward, butk|l,m) is

vation rules exactly, not only in the continuum limit. These oriented positive inward, i.e., toward vertex When the

conservation laws ensure the models must exhibit certairank p is clear from the context, the subscript @f will be

qualitatively correct behaviors. In some cases, they also presuppressed and we speak loosely of the boundary énap

vent what would otherwise be numerically unstable behavioSometimes, however, it is best to keep careful track.of

of solution methods. The action ofg on a field is found from linearity by dis-
The current paper is organized in the following way. Sec-ributing and letting it act on each basis simplex. For ex-

tion Il is a review of the properties of the boundatyand  ample, if 8 is the generic 2-field presented above,

coboundaryd. The discrete analogs of the generalized

Stokes theorems, including Stokes’ theorem, the divergence 8= E B d(l.min)

theorem, and the fundamental theorem of calculus, are de- [ L

rived in Sec. lll from the duality betwees andd. These

theorems motivate the definitions of divergence, gradient, _

and curl given in Sec. I\(see Fig. 1 In Sec. V, the scalar _[,%n] Bimal (M.0) = (1) (1, m) ], ®)

and vector products of combinations pffields are defined

in such a way as to permit derivation of a reasonably comwhere of course) means in this casé,. Notice that the

plete set of vector identities f-fields, each of which has a boundaryd is defined without explicit reference to the struc-

precise continuum analog. Nonassociativity arising fromture of G, i.e., without reference tél.

nonlocality of products is discussed. Three examples of dis- The coboundaryl,, is a linear map fron€, to C, 4. Itis

crete lattice models are developed in Sec. VI. These are thadjoint tod, in a certain sense to be discussed in Sec. lIl. In

lattice versions of Maxwell's electrodynamic equations, thecontrast to the case af,, the definition of the coboundary

Navier-Stokes equation for incompressible flow, and thg8] d, refers toG explicitly. Applying d,, to a p-simplex o

Navier linearized model for a homogeneous, isotropic elasti¢esults in a sum of{+ 1)-simplices, the boundary of each

medium. Section VII shows how to determine the quadratur@f which contains+o. The sign is important. When the

weights necessary for obtaining quantitative agreement witdgontext makesp unambiguous, the subscript can be sup-

the continuum calculations. These weights are evaluated fqiressed, and we speak of the coboundary thagshorthand

the special case of the triangular lattice. The Helmholtz denotation similar to the use of for boundary. When the

composition of a general-field is treated in some detail in  subscripts are suppressed in an expression contairongl,

Sec. VIl in connection with the orthogonal pair of operatorsthe most general value gf consistent with the rest of the

dd anddd. Section IX is a summary discussion of the main expression can be assumed. Thus let

results.

Il. BOUNDARY AND COBOUNDARY dkil, ... 'm):j@[k;__,m] (Kl om), (6

The vector difference models of interest are defined O here the sum is over verticgsadjacent to each vertex in

the simplicial complex of grapt using the fields described [k,I m]. Such vertices are characterized by
above. Two verticea andm appear in a 1-simplexng,n) if H‘,k|,'|‘|: H _ 1
ik jm™ &

they are adjacent i, which we denotn@m. Similarly, As with g, the action ofd on a field is induced by its

.(I :m.n) or (k| ,r_n,n) are 2-_or 3-simplices if _the vertices .action on the simplex bases. Thusfifis a generic O-field or
involved are adjacent in pairs. The graph adjacency mat”)écalar then

H, with entryH,,=1 if n@m and 0 otherwise, determines
the entire simplicial complex of.
The boundary8] d,, is a linear map from the spack of dp=2 ¢nd(nN)=2, ¢y > (mn)
p-simplices toC,_;. Its action on a simplex, which corre- ] [}~ m@n
sponds to taking the oriented boundary, is defined by
=2 (¢n—¢m(mn).  (7)

ao(n)zoa [m,n]
a,(m,n)=(n)—(m), If (m,n) is a unit vector directed along the bond framto
4) n, the 1-fieldd¢ is a difference gradient ap.
a5(1,m,n)=(m,n)—(1,n)+(1,m), The divergence of a 1-field is obtained withOne has

The rule is to drop each vertex successively and let the sign

+ depend on whether the position of the deleted vertex is =S () 2 o )
odd or even. The result in each case is an oriented boundary. ol men

If (m,n) is the directed bond frorm to n, its boundary is

the final minus the initial point, and ifi (m,n) is an oriented The coefficient of fn) is minusthe difference divergence of
triangle, its boundary is the sequence of oriented bondw at pointm, since it is the Kirchhoff sum of currents flow-
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ing into the vertexm. Thus wheng¢ is a O-field, d¢

=grad¢, and whena is a 1-field, da=—diva. Putting c= > . (m,n). (10

these together gives the Laplacian operator for scalar fields, (m.n)e

V2¢=div(grad ¢)=—ad¢, or The analog of a contour integral of the 1-fields
~06=-3 (V3T (= b=V (O (@C)= 2 amn v

where the left-hand side is the inner product, defined by
This intrinsic definition of the Laplacian for a discrete scalar{(k,1),(m,n))= SxmSin— SknSim, Of @ with C.
field is identical to the one motivated physically by diffusion ~ Now considerd¢,C), where¢ is any scalar field,
in the following way[11]. First the gradient is defined in
relation to Fick's law. Thus the flux of material diffusing _ . o
along a bond is assumed proportional to the differesge <d¢,C)—(m%Ec (¢n= ¢m) = o~ ba- (12
— ¢, in concentration between the two ends. Then Kirch- o ] ] ]
hoff's current sum applied to verter defines divergence as Because of the Qeflnltlon af, thg amplitudes cancel in pairs,
current out minus current in. The difference operatércon- ~ €xcept for the first and last. Siné€=(b) —(a), one sees
structed for the diffusion equation can be transplanted to ang}“at
other discrete scalar equation, such as the Siithger equa-
tion [12]. Therefore, evgn for an irregular graph on wf?ich the (de,C)=(¢,dC), (13

discrete operators do not correspond by Taylor expansion tQnere the inner produdis, ) of two O-fields indicated on

the continuum case, they can have topological meaning likg, o right-hand side is defined ym),(n))= dyn.

that given by.dlffu5|on to the scalar LapIaC|_an. The result(d¢,C)=(,dC) is analogous to the funda-
An essential property shared byandd is that, when s theorem of calculus, which is a special case of the

applied t2W|ce to any2 fieldy, they anmhlla_te it. In other generalized Stokes theorefuy, Q) = (1,dQ), whereQ is a

words, d°§=0 and 9°¢=0 for any ¢, which means of , -pain expressing contefite., the oriented length, area, or

course that ify is any p-field, d,_19p¢=0 anddy.1dpd  \o1ume of some portion ofg, and ¢ is a (p— 1)-field. The

=0. These equalities are obtained from direct computationsisyes theorem is actually a special case of a more general

applied to a basis simplex. They are essential for the analogyyisint relation[8] deriving from the definitions of andd,
to the continuum vector calculus since, as will develop be-

low, they force the curl of a gradient or the divergence of anamely
curl to vanish. (AN, m)y=(\,du), (14)
To arrive at a differencé&/? for vector quantities, one
needs an intrinsic notion of curl. It is convenient to developfor any p-field A and (p+ 1)-field x. To develop the Stokes
this in relation to a generalized Stokes theorem, which is théheorem based on this general relation we begin with the
subject of the following section. case where) is a 1-field and) is a 2-chain representing an
oriented surface. The discrete anal®gf an oriented surface
is a contiguous set of triangles sharing edges and oriented so
lll. STOKES THEOREMS that internal boundaries cancel. Of courgeneed not be

Definitions of other vector operators are motivated by thePlanar. It could as well be any surfacegnThe oriented area
generalized Stokes theorems, which include Green’s thedS represented b$ and the corresponding boundary bS.
rem, the Gauss-Ostrogradski divergence theorem, angherefore the surface is tiled with oriented triangular facets.
Stokes' theorem in three dimensions. Divergence and cufPefine
are defined heuristically in the continuous case using the
divergence theprem and.Stokes' theorem applieq to a region S= >  (I,mn). (15)
of diametere, in the limit e—0. Our approach is not to (I,mn)es
approximate the continuous case, but to construct discret

analogs to the integral theorems. As a byproduct, these ré?_)ne sees thatS corresponds to the usual oriented boundary

duce to the usual integral theorems in the limit of smallSUTve- Likewise !f the °”“(Vafd oriented volume or 3-simplex
lattice spacing for sufficiently regular lattices. But the dis-content of a regior/ of G is

crete theorems hold exactly for ay without regard to a

limit. The strategy is to use the discrete Stokes theorems to V= E (k,I,m,n) (16)
construct vector difference operators. (klmn)ey

The discrete analog of an oriented arc or contour feom v riented boundaryV and g is any 2-field, one finds

to b is an ordered sef of edges(1-simplices such that the (dB,V)=(B,dV), which is the divergence theorem. Thus,
first vertex of the first edge ia, the second vertex of the last combining every case, we have the Stokes theorem

edge isb, and the second vertex of each edge in between is

the first vertex of the next edge. In other words, it is an (dyr, Q) ={1,00Q). (17
oriented polygonal path. For simplicity, suppaseloes not

intersect itself, so it forms a self-avoiding walk. Associated The dual correspondence between points and volumes and
with C is the 1-field or 1-chairC defined by the sum between lines and planes plays a role quite similar to the
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Hodge star duality in the theory of differential forf. If G 0-field
is embedded in three dimensions, the cells or 3-simplices are (scalar)
associate(_:i pairwise py shared faces in. thg same way vertices 8y — —div /‘ \‘ dy = grad
are associated pairwise by the edges joining them. The dual
graph =G, the vertices of which are the 3-simplices @f 1-field (polar vector) 1-field (polar vector)
must be augmented by an external point to represent the
region external taj, and even after augmentatioG does %= CWIT *L = curl
not correspond to a triangulation. Although the duality be- 2-field (axial vector) 2-field (axial vector)
tweend andd can often be visualized easily in termsxg, 5 d;\ / b di
one should note that the simplices actually dealt with are 3 T pm
always those ofj. We use this duality to generalize Stokes 3-field
theorem somewhat further and arrive at a complete set of (pseudoscalar)
vector operators. _ _
The divergence theorem derived above for 2-fields makes FIG. 1. Correspondence between differential operators and
use of the 3-simplex conteit of a region) of G. But in  °°undary and coboundary maps.
view of duality one could as well fill with vertices and

consider the 1-simplex content which is dual to the fundamental theorem of calculus. Com-

bining results, we have the dual Stokes theorem:

*V=2 (n). (18) (94, % Q)= (4, dx Q). (25)
ney
Then the coboundary is IV. VECTOR OPERATORS
The relationfd«,S) =(«,dS) identifiesda as curkk when
dxV= E E (m,n). (19 a is a 1-field. There is a simple geometrical meaning. Sup-
ney m@n pose « contains the 1-simplexqg(r). The coboundanda

containsd(q,r) which is a sum over oriented triangles, the
normal vectors of which circulate aboutq,f) right-
handedly. The coefficient ofn§,n,p) in da is anpy+ apm

_ + amn, Which is the limiting form of the right-hand circula-
da,*V)y={(a,dxV). 20 . ~mn . . )
(Ga,xV)=(a,dxV) 20 tion of & around (n,n,p). The identityd?¢$=0 for an arbi-

This is the dual of the divergence theorem. Simbev is  trary O-field ¢ corresponds to curl(graf =0. o

oriented inward, one arrives once again-ata = diva. The identity (dB,V)=(B,dV) implies thatdg is div3
An oriented 1-chain content can be assigned likewise to #/hen B is a 2-field in the following way. First consider an

surfaceS by counting the oriented bonds or 1-simplices thatarbitrary 2-simplex g,q,r) in . For simplicity suppose it is

pierceS. In this caseS may be thought of not as a subset of in the interior ofG. The coboundaryi(p,q,r) contains ex-

G but as a curved surface passing throggh such a way as actly two oriented tetrahedran{,p,q,r) and (,p,q.r).

to sever all bonds attaching to the rest ofg. This is con- Both appear with positive sign id(p,q,r), so one of them,

sistent of course with our handling of the cobounddsy.  say (1,p.,q.r), is oriented positive outward and the other
Hence let (n,,p,q,r) inward. Thus the coefficient idB of an arbitrary

3-simplex (,p,q,r) oriented outward i$8,q,+ Brgnt Bnpr
+ Bqpn, Which is the sum of the 2-vector currents outward.
*S:(m%:es (m,n). (21 Divergence is the limiting form of the net outward flux. The

' identity d?a=0 for a a 1-field corresponds to div(cur)

So S is the sum over all bonds piercingjin a sense chosen =0. From the dual Stokes theorem one finds also thay
as positive. Thus, is the gradient of the 3-fielgtand, from Stokes theorem, that

dB is curlg for a 2-field.
The vector difference operators in terms ofndd are

Since (n,n) points fromm to n, the coboundary is directed
inward rather than outward. Hence,afis a 1-field,

d*sz(m%ag I@%,n] (I,m.n), (22) summarized schematically in Fig. 1. From the vector identity
_ _ curl(curlA) = grad(divd) —V?A, we find that the Laplacian
so that the right-hand side of for « either a 1- or a 2-field is
(9B, *S)=(B,dxS) (23 V2a=—(dd+dd)a. (26)

receives unbalanced contributions only when the curverhe Laplacian for 3-fields, which are pseudoscalard]3s

boundingS passes through a triangl if,n). This resultis = —dgy. In summary, the Laplacian operator for a general
the dual Stokes theorem in three dimensions for 2-fields. p-field is

In the same way, i C is the 3-simplex content of a curve
C defined by a string of oriented tetrahedra through wthiich V2= —(dd+ad). (27)

passes, ang is any 3-field, we have
We shall see in Sec. VIII that the two operatéxd anddd

(dy,xC)y=(y,d*C), (249 when acting on all ofG are each Hermitian with non-
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negative eigenvalues, so that the eigenvalueg?oére non- 1

positive. Addition of the quadrature weights needed to make ~ do(¢¥)= >, 5 (mT &n) (Y= ) (mM,N)

the combinatorial framework into &ona fide numerical [

method, as discussed in Sec. VI, introduces positive con- 1

stantsa andb so thatV?= — (add+bad), which has all the + > 5 (Ymt ) (= dm)(M,n). (39
same qualitative properties. [m.n]

V. VECTOR IDENTITIES Sincedyd=Z[m ni(Pn— dm)(M,n), the form of the gradient

The program of this section is to construct vector differ-0f ¢4 prompts the definition of O-field—1-field scalar multi-
ence identities as similar as possible to those of vector caplication,
culus. The way to do this is to make judicious choices for
definitions of the various scalar, dot, and cross products of 1
p-fields so as to force each identity, taking the identities in _ il
order of increasing complexity and the fields in order, gen- Pa [2 3 (dnt o) ame(M.N), (36)
erally, of increasingp. In many cases alternative identities
exist which provide an internal consistency check. In the
end, for identities involving products of three or more fields, which reducesly(¢) to
it is impossible to match all the continuum identities, be-
cause the nonlocality of thp-simplex basis makes these
products behave differently. This is seen to be a necessary do(Ph) = ¢(doh) + ¥(do ), (37)
consequence of the discrete formulation.

Applying d andd equivalents of divergence, gradient, and ' . . .
curl to properly chosen products leads directly to differencetﬂg géfg?afggmfgg of Eq28). This example illustrates

analogs of the familiar identities of vector calculus. The X . . . . .
products are expressible in terms of either the field compo];ro-rilhg"1 1'|f'?r|]d E%u“{glfhn; g;}_‘:ﬁt_lgsfglt)(/g%fﬁ9) is obtained
nents or products of basic simplices. The differential identi- pplyINg = dy it {9,

ties of vector calculus are

V(tg)=fVg+gVf, (28) —d1(pa)=—0d;

1
[;1] §(¢m+¢n)amn(myn)}- (39

V- (fA)=f(V-A)+A.-Vf, (29 . . . o
Carrying out the operation on the right-hand side yields
VX (fA)=f(VXA)—AXVT, (30)

(m)

—01(¢a)=2 ¢m[ 2 Xmn
[m] n@m

+AX(VXB)+BX(VXA), 31 1
(VXBFBx(VxA, G 43| S 2 (e bt (M), (39
[m] | n@m
V- (AXB)=B-(VXA)—A-(VXB), (32
oL Utilizing Eq. (34) for scalar-scalar multiplication and defin-
VX(AXB)=A(V-B)—B(V-A) ing the dot product for 1-fields as
+(B-V)A—(A-V)B. (33
Corresponding scalar and vector products, for both 1- and a-o=, E { > amnomn| (M) (40)
2-fields, are deduced systematically, starting from the differ- fm 2 |[n@m

ential identities, by substituting the difference representation
for each term and using the correspondence between the vec-
tor differential and difference operators. By isolating the re-feduces—d;(¢a) to
sidual terms in the difference expression, the definition re-
quired for each type of product is determined hierarchically.
We denote O-fields byp and ¢, 1-fields by @ and o, —di(pa)=¢(—dra)+a-dgd. (41)
2-fields by 8 and &, and 3-fields byy and \. The natural

finition f lar-scal Itiplication i . . . . .
definition for scalar-scalar multiplication is This is the 1-field equivalent of the vector identity Eg9).

The dot product defined in E¢40) has the necessary sym-
¢¢=§m: Pmihm(M). (349 metry and linearity, together with the property thate =0
m if and only if a=0.
Applying the difference gradierd, yields Applying d; to ¢« results in
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1
di(pa)= 2 3(d1F bt do)(cmn— @it @im)(1m0)

,m,n

1
+ 2 50— 90+ (@n=lamn= (41— $m)+ (&0 dm)lay
+L(1= ¢n) + (b bo)aim}(1,m,0). (42

The first sum suggests taking the definition of O-field—2-field scalar multiplication as

1
6= 2 (&t dut $)Bim(l M), (43)

which continues the pattern in Eq84) and (36) of spreading the scalar amplitude out equally over the vector components.
Reorganizing the second sum on the right-hand side of4&2).and comparing to Eq.30) implies that the equivalent vector
product for 1-fields must be

1
aX UZ[IZ ! 6[(aln+ Am) Tmn— (&miT @mp) o1+ (an+ @pm) o1 (1,m,n). (44)
Then usingd; @ anddgy¢ simplifies Eq.(42) for di(¢a) to

di(¢a)=¢(dia) — aXdod, (45)

a form equivalent to that of the identity E¢B0). The cross product Eq44) of two 1-fields is antisymmetric and gives a
2-field, as required by parity.

Applying d, and d, separately to definition Eq43) for ¢8 induces difference identities equivalent to E(&9) and(30)
for 2-fields. Thusd, acting on¢g yields

1 1
do($p)= 2 7 (bt bt bt $0)(Bimn Bumnt Ban= Bam (Kl + 2 5[(d1+ bt ba= 310 i

[k,I,m,n

— (bt bt dn—301) Bumnt (Pt D1+ Pn—3dm) Buin— (Px+ d1+ Pm—3¢n) Biml(K,1,m,N). (46)

Using the component expressions 3B anddg¢ and defining 0-field—3-field scalar multiplication so as to spread the scalar
amplitudes out equally over the pseudoscalar tetrahedra,

1

¢y=_ 2 Z(dt i+ bt do) viamd(k.1.mn), (47)
[k,I,m,n]

suggests defining the 1-field—2-field dot product as

1
a-B= [k% . 1_2[(a’kl+ amt ain) Bimn— (@it @im+ @in) Bmnt (@mit &mit @mn) Biin

—(ankt ant anm) Baml(K,1,m,n), (48

which reduces,(48) to 1
I 9B)= 2, §<¢m+¢n>[l@%n) ﬁlmn}mn)

da($B) = ¢(d2B) + B- do . (49) + > %[ > (2¢|—¢m—¢n>ﬁ|mn}(m,n>.
[m,n] l@(m,n)
(50)

The latter is the 2-field equivalent of vector identity E29). o o
Thus the dot product of a 1- and a 2-field is a 3-field, whichThen recognizingl,3, do¢, and ¢a and defining
is consistent with the fact that a continuum vector dotted into

. 1
a pseudovector gives a pseudoscalar. axp= >, > (am+ an)Bimn
I )

a (m,n), (51)
Similarly, applyingd, to ¢ gives (mn 6 |1@mn
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one arrives at does represent a simplex. The formulas as listed handle the
sign changes due to vertex order, unless otherwise noted.
d2(pB)= h(,8) — BXdy, (52 Thus
which is equivalent to Eq(30).
From the formulas fod,a, aX o, anda- B, it is easily ((m),(n))=Smn, (57
seen that
5km 5kn
dy(aXo)=0c-dia—a-d;o, (53 ((k,1),(m,n))=de , (58
5Im 5In
a 1-field-1-field difference equivalent to E¢32) for the
divergence of a cross product. or in general
Finally, to obtain a discrete form oﬁ(ﬁ)u*, which ap-
pears in the convective derivativie/Dt=a/dt+5-V of a Skm *** Skn
vector, for example, it is convenient to begin by adding dif- (K, ...D,(m, ... m)=detl : . | (59
ferential identities Eqs(31) and(33). This gives
Sm ** O
V(A-B)+VX(AXB) The equivalent of scalar multiplicatiofy= =y dmim(m)
L can be rewritten, using the simplex basis set of the fields and
=2(B-V)A+AX(VXB)+BX(VXA) the inner product rule, as
+A(V-B)—B(V-A). (54)

[)(m),(n))= 8, 6mn={((1),(N)){(M),(n)). 60
Each term has a difference equivalent already determined, (M), ()= Bin = {(1). (M)((m). (M) (60
except B+ V)A. Thus, the equivalent difference formis  nus With =11 (1) and =Sy hn(mM)

- 1
(O'-V)aZE[o?z(aX o)+do(a-o)—axXd,o

(P, (M)=2 > dyifn(((m), ()
—oXdiata(do)—oa(dia)]. (55 (1 [m

A special case of interest is-(Vv)=(1/2)d(v-v)—v > D1 YmOin Omn= bnin (61
X (dv), which appears in the Navier-Stokes equation for the (7 [m
velocity 1-fieldv. If an explicit formula for components is

required, substitute the component expansion for each tergimilarly the productéa can be rewritten in terms of the
and simplify the summations using the adjacency mairix Simplex basis sets and inner product as

This gives

1
% [2] 2| ( Himl o mn@mi— Tmi @mnt amp)] (D1, (m,n))= 5 (it 61) (Skmdin~ SknSim)
FHinlomntni = i @mn= an)] = ; [((). () (), ()N, (m.n)).
1

+§ HimHin[ omi(2am— an) + oni(@mi— 2an) (62
_za-mn(am|+am)]](m'n)' (56) SO, W|th ¢:2[J]¢)J(J) anda=2[ky|]ak|(k,|),

where the summation ovércan extend over all 0-simplices _ ) ;

since the adjacency matrkt vanishes for nonadjacent index ($a(m,m) ; [kz,l] ek (mm). (63

pairs.

The rules equivalent to .scalar multiplication, scalar prOd'Substituting for the inner product and assuming, for purposes
gcts, and veqtor products mtr_oduced above can'be generatgd summation, that the paim{,n) represents a properly or-
in an alternative way by defining the corresponding productgjgred simplex

of basis simplices. This is simplified by introducing the inner

products. Note, however, that each of the following formulas 1

assumes that the ordered sets of indices listed do indeed rep- -

resent simplices of. Otherwise the inner product should be (fa(mm) =75 (nt dn)mn. 69
zero. To guarantee this, each ordepetuple can be multi-

plied by appropriate entries of the adjacency mattixThus, The products¢B and ¢y rewritten in terms of simplex
(k,I,m) can be replaced by, H Hmi(k,I,m) to ensure it basis and inner product are
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1
(DK, (mm))= = (), (1)) +((h), (7)) + (), (K)) K (T, k), (Fmin)), (65

1
((F)(g,his0), (kEm,n))y= 2 [((F), (@) +((F ), () +{(F ), (D)) +{(F ), (1)) (g, hi,j), (kl,m,n)). (66)

By applying the same treatment to the scalar and vector products, respectively, one obtains

1
(k- (hm),(n)= S [{(7), (M) +((K), (N K(J, k), (1,m)), (67)

<(h,i)><(j,k),(|,m,n)>=%{[((h),(j)>+<(i),(1)>]<(h,i,k),(l,m,n)>
=[{(h),(K))+{ (1), (k)Y I((h,i,j),(1,m,n))}, (68)
<(f.g)‘(h,i,j).(k,l,m,n)>=%Z{R(g),(h))ﬂ(g),(i)>+<(9),(J)>]<(f,h,i,i),(kyl,m,n)>—[<(f ), (M) +((f),(1))
H((F),(1))1{(g:h,i.)),(kI,mn));, (69
((h.i)X(j,k,l).(m,n»:%{K(h,i),(lJ))‘((h,i),(J,k))]<(k,|),(m,n)>+[<(h,i),(j,k)>—<(h,i),(k,|)>]<(|,j).(m.ﬂ)>
+(Ch, 1), (kD))= ((h,i),(1,1)) (. k), (m,n))}. (70)

The geometrical meaning of the dot and cross products adhdices and keeping track of the sign. Similarly, E@0)
1- and 2-fields is interesting. Equatid67) shows that the shows that the cross product of a 1-field with a 2-field gives
dot product of 1-simplices is purely local, in that a 1-field, as again is required by consideration of parity.
(j,k)-(I,m) is zero unless the two bonds coincide, and if As mentioned above, a product of three or more field
they do the result is=1 depending on relative sense. quantities is generally not analogous to the continuum coun-
The cross product of two 1-fields generated by @&8) is  terpart. This arises due to nonlocality of multiplication. Thus
slightly less local, sincel(i) < (I,m) is nonzero whenever the cyclical invariance of the scalar triple produg; (B
the two bonQS form two sides ofatriar)gle. If the orientgtionxé), does not hold, nor does the identifyx (Bx C)
of the two directed bonds is head to tail, then the result is the_ B(A-G)—G(A-B). For example, consider the triple prod-

completed 2-simplex oriented consistently with the bond di- P=(1,2)-[(2.3)X(3,4)], where(1,2,3,4 is an oriented
rections, or in other words the two bonds form part of theg_gimplex. The value of the triple product is well defined,
oriented boundary of the 2-simplex. On the other hand, if th%sing the rules derived above, and it is the simie2,3,4
two 1-simplices meet head to head or join tail to tail, then thetself. However, if the multiplicands are permuted in cyclic
right-hand rule applies. One can always reduce a nonzergrder, one has, for example, (2;8§3,4)x (1,2)], and this
product to a standard case by permuting indices and keepiqgoduct is strictly zero, since the bon@®,4) and (1,2 are
track of the sign. The nonlocality of the product is manifestdisjoint, representing skew edges of the tetrahedron. This
in the involvement in the product of an extra bond, the thirdfailure is due to nonlocality of the products. In continuous
leg of the 2-simplex triangle in the product. space one can translate vectors at different points, by means
As seen in Eq(69), the dot product of a 1-field with a of a connection recipe, and compare them at the same point.
2-field is a 3-field. This is necessary since the contraction ofn the discrete case the tangent spaces at adjacent points
a vector with a pseudovector must yield a pseudoscalar. lgverlap but not completely. This difference stemming from
the continuum formulation this is so because of parity withnonlocality is characteristic of a discrete formulation and is
respect to space inversion. In the discrete calculus it is reanavoidable in vector identities containing three or more
quired due to parity with respect to reversal of the vertexvectors. This has to be taken into account when using the
collating sequence. Nonlocality results again from the introvector difference formalism, although at this point it does not
duction of bonds for completion of the 3-simplex. When theappear to be a very serious drawback.
1-simplex (f,g) does not intersecth(i,j) the product is We note that the scalar, dot, and cross products-fiélds
zero. The product is also zero if the bonfld) lies com-  defined above must relate to the cap and cup products of
pletely on the boundary ofh(i,j), which is the discrete simplicial homology theory[8] The vector identities could
analog of orthogonality between 1- and 2-fields. Otherwisebe induced by representing the continuous fields as differen-
the product is+ (f,h,i,j) if the bond intersects the triangle tial forms[5] and then comparing the Leibnitz rule for exte-
atg=h, thus making an oriented polygonal path frérto h rior differentiation of the wedge product of differential forms
toi to j. Other cases can be computed by permuting theo the boundary formula for the cup product, as reflected in
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Egs.(41) and(52), and the coboundary formula for the cap time varying magnetic flux in space outside the graph
product, as in Eqs37), (45), (41), and(53). However, the through a handle of. If we exclude this possibility as well,
route we have chosen seems to us more natural and bette= — A—d . We refer to the dropping df andA as Helm-

motivated. ~ holtz conditions. The topic of fields such Bsand A will be
Thus we have been able to construct identities involvingaken up in detail in the following section.

0', 1', and 2-fields that are exact analogs for most of the One finds wave equations f& andB from the Maxwell
corresponding differential identities of vector calculus. In thegquations:
next section, we illustrate how to use them to construct

physical models. —(da+dd)E—E=J+dp, (76)

VI. PHYSICAL MODELS ON LATTICES —(dg+ad)B— B=dJ. (77

As examples of physical lattice models, we construct dif-

. These correspond to the usual wave equations with source
ference forms of the Maxwell electromagnetic theory, th

Cerms. Itis important to bear in mind, however, that they are

][}lawer—sdtolaes ﬁqu_at'oln for.so:;enmdak_a., lncfompr_ess:(bbe not approximations to continuum wave equations but follow
ow, and the Navier linearized equation of motion for an rigorously from the discrete model.

isotropic elastic medium. The first example is developed in With Helmholtz conditions one can derive coupled wave

more detail to show app!'ca“"'? O.f the d|ffgrenc§ calculus forequations for the gauge potentiaks,p). With the Lorentz
deriving model properties. Similar manipulations can be dition < —0th d | .
made for the other two models to obtain energy transportOndition#—JA=0 these decouple to give

expressions. The main point of each example is to illustrate

the use of the formalism for constructing a lattice model. —(do+ad)¢p—¢=—p, (78)
and
A. Lattice electromagnetism
As a first example we develop a discrete Maxwell elec- —(dd+ad)A—A=—J. (79)

tromagnetic theory on a general graph. Though austere, the i i , i

formulation shares interesting properties with the familiar, On€ obtains a discrete version of the Poynting theorem

PDEs of electromagnetism. from tht_a lattice field .equatlo_ns using the vector |de'nt|t|es
One can see the bonds @fas conducting wires. Thus we Proven in the pr.ecedmg.se.cthn. Tran_sfer from the field to

choose chargp to be a O-field on vertices acting as capaci-charged matter i€-J. Eliminating J using the inhomoge-

tors, and currend to be a 1-field associated with bonds act- heous equatiodB=J+E gives

ing as wires. Let tim& remain continuous, so that charge .

conservation results in an equation of continuity J-E=E-JB—-E-E. (80)

—3J+p=0, (71 In view of the vector identity for the boundary of a cross

product of a 1-fieldE and a 2-fieldB,
where the dot indicates time derivatigédt. The Maxwell

difference equations become —J(EXB)=B-dE—E-JB, (81
JE=—p, (72 one has
dB=0, (73 J-E=B-dE+J(EXB)—E-E. (82
dE+B=0, (74  Thenusing the lattice Maxwell equation for coboundar§eof

yields the discrete Poynting theorem

JB—E=J. (75 J.E=ds—U, (83
Evidently in this formulation the electric fiel& is a 1-field
and the magnetic fiel® is a 2-field.

One cannot conclude thatB=0 implies B=dA. For S—EXB (84)
generalg, B=dA+T', wherel has a vanishing coboundary,
so thatB consists of a curl and a globally circulating p&rt  andU is the field energy
with a vanishing local curl. This corresponds roughly tB a
field forming closed loops within the space such that field 1
lines thread around a handle. Thus, for exam@lepuld be U=35(E-E+B-B). (89
the space inside a toroidal solenoid. If we exclude this pos-

sibility, so thatB=dA, thend(E+A)=0 showsE=—A Interpretation ofS as electromagnetic energy flux, and in-
—d¢+ A, whereA with vanishing coboundary also repre- deed ofU as field energy in the model, would at first seem
sents a kind of global circulation. In other words,is a  more difficult than for continuum fields because of multiple
static electric field contribution with closed loops. It is not a connectedness. But this is not the case. Consider an arbitrary,
static solution of Maxwell's PDEs and would correspond to asimply connectecV in G. One has

whereS is the Poynting vector 1-field
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B. Incompressible Navier-Stokes equations

d
(ISxV)=(S,dxV)=(J-ExV) + dt (Uxv). (89 The point of this subsection is to construct a nonlinear

lattice model representing the flow of an incompressible

Because the coboundary ¥ is oriented inward, one would fluid. The model should exhibit physical behavior including
like to conclude, topological subtleties not withstanding, thatturbulence.
the inward Poynting fluXS,dxV) equals the rate of energy For incompressible flow, the Navier-Stokes equation for
transfer out of the field to the charged matterM, plus the the velocity field is
rate of increase of the integral &f within xV. WhenxV 95
includes all vertices i, then there is no coboundary and the v e, @ 2~
two volume integrals cancel. This helps identifywith the P o TpU-VU==Vpt pvio, (89)
field energy. Thus for an arbitram) one arrives at the usual ) ) ) . . ) )
interpretation of the surface integral 8fas electromagnetic Wherep is the fluid density and. is the viscosity, with the
energy flux. So in general one may surmise that for anyonstraint tha¥ -5 =0. Transcription of the nonlinear, iner-
orientable surface, not necessarily closed, the electromagial term into the lattice formulation is accomplished using
netic energy flux is given by a similar surface integral. Thethe vector identity v-Vv=31d(v-v)—v X (dv), derived
difficulty in making this identification rigorously, just as in apove for a 1-field, to obtain
the continuum case, is that the Poynting theorem only gives
the energy flux modulo quantities that always integrate to
zero over any closed surface, i.e., over @»V.

The discrete Poynting theorem is a good example of a
conservation theorem that holds exactly for the discretevith the constraint
model, not just as an approximation to the continuum result.

pir+ 5(v-v)~ po X (dv)=—dp-pidv, (90

It can be used to implement computational strategies or de- dv=0 (93)
rive further results. It is a constraint that will be satisfied o o ) ) )
exactly. expressing incompressibility. It is not convenient to integrate

Electromagnetic theory really requires all three spatial dithe lattice model forward in time as it stands, since the pres-
mensions. For fluid motion or some electrostatics problemssure is not known initially and because nonzero divergence
two dimensions is sufficient, so that the regular triangulardntroduced from any source is amplified in solving the equa-
lattice can be used. Unfortunately there is no regular triantions and tends to diverge. To overcome this problem, a vec-
gulation of three-dimensional space. However, any triangutor potentialy (corresponding to the stream functjanay be
lation will suffice. One can use a triangulation based on dntroduced so thab =d¢. In this way, Eq.(91) is satisfied
subdivision of the NaCl lattice structure. Thus lattice pointsidentically on the lattice. The stream functignis a 2-field.
are of two inequivalent types occupying interpenetrating fccSince ¢ is expanded in a basis of 2-simplices, the corre-
lattices. Bonds connect type 1 sites to each nearest type 1 ponding velocity 1-field consists of a sum of loop currents,
type 2 site, and type 2 sites to each neighboring type 1 sitahd hence has zero Kirchhoff divergence automatically at
only. The triangulation then consists of two types of tetrahe£ach point. In other words, the computation takes place in a
dra, one regular and one rectangular, and the lattice restrictly divergence-free subspace @f.
sembles the face centered hypercubic one used for lattice gas It is also convenient to introduce the 2-fieds=dv cor-
simulations[6]. responding to the curl of the velocity, thus defining the vor-

Consider any cluster subset of the lattice, perhaps a culdicity. Applying the coboundary map to E¢Q0) and taking
or perhaps a percolation cluster. Suppose the boundary of tiiBe constancy op into account, it follows that
cluster is a perfect conductor and inside is hollow, and that

one needs to know the electromagnetic modes inside. Call pdv —pd[v X (dv)]= — nddd, (92)
the clusterV, its conducting boundarg= ¢V, and its hollow
interior a. '

On the conductod, and p,, adjust to keepg,=0 and pio—pd(9PX )= — pdiw, (93)

B,=0. The 1- and 2-field&, andB,, are analogs oE, and
dB, Idt. In the cavity,J,=0 andp,=0. Thus for normal augmented by the equation expressings the Laplacian of

modes one has the stream function
[9d]..E.= 0°E, (87) o=ddy. (94)
and The solution of an incompressible flow problem on the lat-
tice implies the solution of the coupled systems of E§S)
[dd]aaEa=0, (88) and(94) for w and ¢ analogous to the continuous formula-

tion [13]. As in Sec. VI A above for the difference Maxwell
where the subscripts indicate that the matrices are first comequations, integral conservation theorems can be obtained
puted for the whole cluster and then projected omtoThe  readily from the discrete formulation of the field equations.
second equation ensures that no charge density appears in fher example, consider the case of an invid&dlerian flow
cavity. With E, one can compute both the magnetic fiBlg  for which x=0. In this case the vorticity equation simplifies
and the surface charge and current densjiigandJ,, etc.  to w=d(d¥ X w). By taking the coboundary it follows that
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dw=0. Therefore, itV is the oriented 3-simplex content of a formulation i.e., Eqs(97)—(99), delineates rather well the
region V of a graph G, it follows that (dw,V)=0 differences among the three types of cavity modes involving
=(w,dV), therefore{w,dV) is constant, which corresponds the scalar Helmholtz equation and electromagnetic and linear
to one consequence of the Kelvin theorem for inviscid flowselastic models. This difference stems from the different ad-
mixture in each of the operatoffs),dq].a,[ (2 +N)dgdy
C. Discrete model of elastic medium + pud2d1]aa,[3100]aa, Of the two distinct spectral contribu-
tions, one from the equivalent paifd,, dyd;, and the other
“from 4,d;, accounting also for the boundary conditions.
These spectral differences correlate with different van Hove
920 . R singularities in the case of regular periodic lattices, and may
p W=MV26+(M+)\)V(V~G)+f, (95 correlate with different qualitative behavi¢e.g., scaling be-
havion in the case of highly disordered structures such as
percolation clusters at the critical threshold.

From the Navier linearized model for an isotropic, homo
geneous elastic medium

whereu is the displacement fielg; is the density\ and u

are the Lameconstants, and is a body force density, fol-
lows the lattice representation VIl. COMMENT ON NUMERICS

pU=—[(2u+N\)dd+ udd]u+f. (96) The current formulation should not be considered a nu-
merical method, to be compared, for example, with finite
Although the continuum model is for a homogeneous isotroelement methods. Rather, it is a mathematical model of vec-
pic medium, the discrete model can be made very heterogder calculus itself, one in which there is a discrete counterpart
neous by choosing heterogeneous boundary conditions. THer each of the integral theorems and most vector identities.
discrete elastic model can be developed on an arbitrary triBy determination of quadrature weights appropriate to par-
angulating graph, such as a fattened percolation cluster. Theular lattice types, as illustrated in this section for the tri-
simplestu=0 conditions on the boundary surface represeneingular lattice, the formalism can accommodate a finite-
an elastic medium inside a cavity with fixed walls, similar to difference-like numerical method. It can be adapted for use
the boundary conditions for the electromagnetic cavities dewith other numerical methods as well.
scribed above. A practical numerical method requires a recipe for tran-
We consider briefly a comparison between cavity modescribing back and forth between discrete and continuous field
arising from the scalar Helmholtz equation and those arisingjuantities and between difference and differential operators.
from the electromagnetic or from the elastic vector model.The main ingredient is a set of weights chosen consistently
Either the electromagnetic or the elastic problems are somen the following sense. If one projects the continuum field
times modeled by a scalar Helmholtz equati@d]. Taking equations to get a difference system on the lattice and solves
zero field at the boundary for each case, the characteristitie difference system, the result should match the continuum

equations are solutions up to terms that vanish with the lattice spacing.
One can generate such a correspondence by projecting and
[0201]aaEa= 0’Eq (970 averaging over a suitably chosen cell centered on each vertex

) or lattice site. Consistency fixes the values of the weights

for the electromagnetic, that define two operators for each field type. In this section

we treat the two-dimensional triangular lattice for which

— .2
[(2pHN)dody + pz0; Jaalla= w7Ua 98 there are no 3-fields, and 2-fields take on the role of pseudo-
for the elastodynamic, and scalars. . . .
Let a be the distance between sites on the triangular lat-
[9100]a aPa= ©0°da (99)  tice. An averaging cell at vertexis a system of-simplices,

for p=0, 1, or 2 centered at equipped with each of the sets
for the scalar Helmholtz equation. Ignoring the projectionof information, S, £ and X(P, wherep pertains to
onto the cavity interiora, and taking into account the iso- the simplex typeSi(p) is the set ofp-simplices associated
morphism between the scalar fields and the gradientlike veGgith the cell ofi. £P={&P is a set of basis vectors and

tor fields, which is discussed in detail in Sec. VI, it would x{P is the set of baricentric coordinates associated with the

seem that the operatossl anddy of the elastodynamic case simplices ofS(P. The choice of these sets is to some extent

contribute electromagneticlike and scalar-Helmholtz-like_ , . . : S
. arbitrary, since averaging can be affected in different ways
character to the spectrum. The electromagnetic modes are

R . . : on the same lattice. We make it in such a way as to achieve
primarily torsional, while the scalar modes relate simply to

) o a site-independent correspondence between lattice and con-
the compressional modes of vibration. In the case of a per- : e
tinuum operators in the limia—0.

colation cluster, or in any case where the boundary effects . . L -
dominate, the se arationydoes not hold, sindeand d&ydo A suitable averaging cell is indicated in Figa The set
.’ P . ’ ; S contains only the sité which is associated with the
not remain orthogonal when projected oatoNotice that the ! X X ) ~(0) ) .
zero-dimensional basis vectéf”)=1 and baricentric coor-

physical range of the Lameonstants is limited by the re- < 0o o ) . M
quirements that botp and2 4+ \ be non-negative. Thus the dinatesXi™’=X;. The setS;™’ contains the six 1-simplices

elastodynamic model is essentially bounded away from puréi,j) with i@j, the basisc{*) contains six unit vectors{
Helmholtz behavior. Introduction of quadrature weights does= (cos(2ra/6),sin(2ra/6)), =0, ...,5 pointing toward
not remove this qualitative difference. The discrete latticeneighboring sites as illustrated, and thegé{) contains the
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of the discrete fields. The numerical factors are lattice depen-
dent, the values given being the ones for the triangular lat-

ot 5 tice. Thus, the first consistency condition is that
(T
u(%;) = A{P[IP[u]]+O(a), (102
e, for sufficiently well behaved continuum field(X) at each
vertexi.
(@) (b Vector difference operators divergence, gradient, and curl

_ ] ] _ defined in Sec. IV are linear mappingsC,— C,, while the
FIG. 2. (a) Averaging unit cell used for the triangular latti¢e)  scalar, dot, and cross products defined in Sec. V are linear
Generic 2-simplex belonging t5{>. mappings from the Cartesian produetC,x Cq—C; , for ap-
propriate choices of ranks, g, andr. The form ofiin each
six bond-center coordinaté$!) =%, +a&/2. S{? contains case is fixed by combinatorics. Ldt be the corresponding
the six 2-simplices built with neighboring sit¢sandk cho-  map defining a differential operator or product on continuous
sen to make i(j,k) right-hand oriented so the associatedfields. Its definition comes from standard vector calculus.
£@ contains six vectors of the form&®=2(&  Thus for consistency of operators
x &1 )/v3 andx(? is comprised of the triangle baricenters
a(2)_x +a(e(1)+e(1)1)/3 To simplify notation, lev;,, rep- qu)[w(u)]:ayiq,(u(ii))Jro(ayu), (103
resent the 1-field component; for & along the bond Ay
(i,j), and B;, represent the 2-field componeff;, for e(z)
oriented along the normal ofi (,k). Notice the averaging
cell is chosen symmetrically around siteso that, for this
regular lattice example, the sun&l=3 el}) and E(2)
=3 eMell) of vector components give 0 and3,,, respec-
tlver [6] The importance of these isotropy conditions will
become clear presently. 1
Discrete field quantities are obtained by projecting con- A g(ug,up)]= 1= W (Uy(Xi),ux(X)+O(a).
tinuous fields onto the lattice. Lep(X) and v(X) be con- v (104)
tinuum scalar and polar vector fields, respectively, and let
B(X)=B(X)Z be an axial vector field oriented normal to the ~ Consistency criteria Eq$102—(104) determine the pro-
surface. Components of the corresponding discrete fields aportionality constants for transferring continuum field equa-
tions into the discrete formulation.

wherey is the order of differentiation and the constantis
independent of the vertexand is characteristic of the lattice
and the operator. The discrete fieldn the left side is pro-
jected pointwisay; =I1{P[u] from the continuous fieldi(X)
on the right. Similarly for products

b= p(x\?). 69, With the averaging cell the usual operators and products
encountered in field theory are consistent. Table | lists the

vie=0(XDy. &1 (100  correspondences with associated scale factors. The technique
for computing these factors is to Taylor expand and truncate

52) to the relevant order. For the sake of completeness we derive

Bia=BX2)- &

some of the tabulated results.
where the first equation reduces do= ¢(%;). The general Consider the dot products of 1-fields. Valuable simplifi-

projection procedure s, = 1P[u]=u(x™). &P for any ~ Cation results from using the abbreviatiey for b 1t
p-field u. te ! « follows from the definition Eq(40) that

To compare respective products and operators it becomes 1
necessary to transport discrete vector field components, de- Ai(o)[v ‘wl= = 2 ViaWig
fined naturally on bonds or triangular plaquettes, back to the
lattices sites. This is done by averaging. In a limited sense

one can view it as comparing the discrete fields with con- L > vn(%i+a8,)W(X+aé,)e.meax
tinuous ones, as long as comparison takes place at a lattice 2 Gk
site. Thus one wants to compare the continuum scalar, polar- 1
vector, and axial-vector fieldé(%;), 7(X;), andB(X;) evalu- ~ > U (ROWK(X) D eaneaktO(a).
ated at vertex with the average values "2 h.k a
A(°>[¢>] b e(O) As a consequence of the isotropy conditions, it follows
that
,4“)[1;]:1 > Vi sy (100 © 3 e
: 3G e Aj [U‘W]:Ez Uh(Xi)Wh(X;) +0O(a)
2r g1= 3 .
APLB]= E Bia€Y, =5 0(%) - W(%)+O(a), (109
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TABLE |. Correspondence between lattice and continuum operators showing appropriate scale factors.

Operator Meaning Continuum quantity Scale factor
1 v-W scalar product of vectors U-W 2/3
2 vXW cross product of vectors UXW 4N3
3 vXpB cross product of planar and axial vectors lyx,é V3
4 doo gradient of a scalar field €¢ 1
5 —dv divergence of a vector field V.o 2/3
6 dqv curl of a vector field VXo 43
7 -8 curl of an axial vector VX B V3
8 —d1dg¢p  Laplacian of a scalar field V3¢ 2/3
9 do(v-v)  gradient of the square modulus VI|5|? 2/3
10 vXd cross product off and its curl IXVXT 4
11 —dgdv  gradient of the divergence V(V-7) 2/3
12 d,dqv curl-curl of a vector field VXVXs 4

and therefore the scaling factor equals 2/3.
The cross product of two 1-fields is a 2-field, the components of which are given b4igBy definition[see Fig. 2b)]

1
(vxw)iazgUia{wi,a+l+v_\7[)-()i+a(éa+éa+1)/2]'(éa+l € )} U[X +a(e +ea+1)/2] (eoH—l éa)[wia+wi,a+l]

1 1
+ g Ui,a+l{W[Xi+a(ea+ea+l)/2]'(ea+l_ea)_wia}: E (UiaWi,a+l_vi,a+lWia)+O(a)-

Therefore, by making use of E(¢L01),
1

1
AP0 X W= 35 20 vn(K)WK(X) 2 (€anar 1k~ € 1r€ak) +O(@)= 15 2 vn(X)W(X)QuictO(a), (108

where the tenso®;, = 3v3ey,, with ey, the Levi-Civita an-  Applying the second isotropy property, it follows that
tisymmetric symbol. Therefore AV d,p]=aV (%) +0(a?), so the scale factor is=1.
Similarly, for the lattice analog, of the divergence applied

2 v3i to a 1-fieldv one finds from the definition of the boundary
Aj [v><w]=zv(xi)><w(xi)+0(a). (107 that

By analogous calculation for the cross product of a 1-field A-“’)[— o= 2 vl = 2 3(%,+a8,l2)-&
and of a 2-fields defined by Eq(51), one obtains ! z ° a “ “«

1 _a &vj()?)
,4§1>[v><,3]=‘/—3 U(X%)XB(%)+0(a) (108 2% gy
and thus the corresponding scale facterv3. X ; €qi€akt O(a%), (110

Now consider the first-order differential operatdlimes
4-7 of Table ). If ¢ is a O-field, the local average df¢ on

the unit cell yields and therefore A ("] —d,0]1=(3a/2)V-5(%X)+O(a?). The

correspondence summarized in Table | between the other
1 lattice operators and continuum ones is obtained from the
(1) _ = = A\ g \1A same sort of elementary algebra and Taylor expansion. This
i [do¢]= E [$(Xi+ag) —hxi)]€ correspondence defines quantitatively the lattice analogs of a
given set of continuum field equations. For example, the lat-

dp(X) = 2 tice analog of the incompressible Navier-Stokes equation on

—2 > €,i6,+0(a?). . : . h : :

IX; ig @ a tnarygula_lr Iatt|c_e eq_wppe_d with the averaging recipe devel-

: oped in this section, including necessary proportionality con-

(109  stants, is given by
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o p 4p 1 4u parts, perhaps coupled by boundary conditions. Each part
pu+ 5 d(v-v)— —vXdv=——dp=_zddv. (11D  corresponds to an operator pajd,_ 1, d,_1d, for p from 1
to k. In physical terms, fok=2 (or k=3) the isomorphisms
The solution of this equation can thus be compared quantideveloped above imply tw¢or threg correspondences, one
tatively in the limita— 0 with the solution of the continuum between scalar potentials and gradient fie{ds between
Navier-Stokes equation. pseudoscalar potential and gradient pseudovector fiatuts
The analysis developed above connecting difference andne between solenoidal vector and solenoidal pseudovector
differential operators for the triangular lattice can be carriedfields. In the latter case, either one can be the vector potential
out with some modifications for nonuniform lattices. This for the other. Each of these is really the same sort of corre-
topic is outside the scope of the current paper and will b&pondence between the different field representations of es-

discussed elsewhere. sentially the same aspect of the problem, corresponding to
operators with the same spectrum. The correspondence is an
VIIl. OPERATORS AND HELMHOLTZ exact isomorphism betwegnfields and ¢—1)-fields rep-
REPRESENTATION resenting basically the same thing, and eittier 7 gives a

concrete representation for the isomorphism.

Some properties 6fd =, 1dp anddo=d, 7, pertain Consider now the remaining subspaceCgf the p-fields

to the Helmholtz representation of a general vector field as ith bound d bound th | f
the sum of a gradient plus a curl, or to topological propertie Ith zero boundary and zero coboundary, or he overiap o

of G. Both operators are Hermitian, sincéddu,v) the kgrnels Of&p.“dp gnd ‘;'pflﬁp.- .These have smp_le, to-
=(du,dv)=(u,adv) and{ddu,v)={(au,dv)=(u,ddv). In _pologlca! meaning. Sincé“=0, it is clear that the image
fact, the latter equations also show that the eigenvalues d8f1 dp+1 iS @ subspace of the null space kgr. The homol-
both gd anddd are non-negative, which proves, as promised®dy group,, for G with respect to the complex numbers is
in Sec. IlI, that the eigenvalues &2 are nonpositive. Op- the quotient kew,/im d, .4, or the null space of, modulo
eratorsdd and dd are orthogonal, meaning thagd)(dg)  the image space of,.,. Thus it represents the set of
= 9d29=0 and @d)(ad)=dg?d=0, and hence commute p-fields which have zero bounda_ry, but not because they are
fortiori. An orthonormal basis of simultaneous eigenvectordhemselves boundaries op { 1)-fields. For example, sup-
of ad andda generate€, . Choosing an arbitrary elemeat posgg is a rhomb0|d'c_1ll section of triangular lattice with pe-
of the basis, one sees from orthogonality of the operators thépdlc boundary conditions, i.e., the surface of a torus. Then
eithergde=0 or dgé=0 or both. it is clear that two closed polygonal paths, each traver§ing
The null space, or kernel, ofd has a simple physical in one of its two indgpendent periodic directions, .be-long to
meaning. Observe thalu=0 everywhere if and only if Hy. Sl_nce the coefficients are complex numbéﬁ_ng iso-
gdu=0 everywhere. To see this, considgwdu,uy  Morphic to the orthogonal complement of ip.; in
=(du,du). If the left-hand side is zero, thedu is zero  Kerdp. A properly chosen basis fdt,, for example, would
because its norm is zero. The reasoning in the other directiofPrrespond to the independent periods or circuitg.ifhe
is obvious. Note, however, that #du=0 only on some Pth Betti numberb, is the dimension of{,.
subspace of C,, one cannot conclude thatu=0 in €. If uis notinim ap+1_, th_en there is no in Cpfl such that
The relation holds only wheadu=0 on everyp-simplex of Ipr1v=U. Therefqre, in view of the isomorphism generated
G. Therefore, the null space @fid is the space op-fields ~PY dp betweenp-fields with nonzero coboundary ang (
with vanishing coboundary. Fgp=0, 1, or 2 this means +1)-fields with nonzero boundary,_lt f_olllows thag, ,d,u
fields with vanishing gradient, curl, or divergence, respec— 0 0ord,u=0, souekerd,. Hence ifu is in ker d, but not
tively. Similarly one can seenutatis mutandighat the null M dp+1, then bothgou=0 andd,u=0. The steps are re-

space ofld is the space of-fields with vanishing boundary. Versible, sa, is the space op-fields annihilated by boti
For p=1, 2, or 3 this means fields with vanishing diver- @ahdd. Thesep-fields correspond in the continuum formula-

gence, curl, or gradient, respectively. tion to the set fields of a given type with constant coefficients
The coboundaryd, generates an isomorphism betweenin an infinite, simply connected space with Cartesian coordi-

the spacep-fields with nonvanishing coboundary and the Nates. But they extend the concept, in a coordinate-free way,

space of p+ 1)-fields with nonvanishing boundary. Supposeto p-fields in the multiply connected case. One could refer to

adu=\u with A#0. Then them as constam-fields. The Betti numbeb,, is the number
of independent, qualitatively different constamfields, or
(dd)du=d(ad)u=\(du), (112  the dimension of the space pffields with both zero bound-

ary and zero coboundary. Ik=2 or 3 dimensions, the
so thatdu is an eigenvector oflg with the same eigenvalue physical meaning of the constant fields is clear. perl or

\. If u is normalized, then 2, the constant fields represent global circulations around
handles of the space. Fpe=0 or 3, they represent indepen-
(du,duy=(u,dduy=\N\. (113  dent stationary states of diffusion, hence the number of dis-

connected parts of. However, whereas fop=0 connect-
Thus the corresponding normalized eigenvectorddfis  edness is determined by or H, it is in the case ofp=3
du/\/\. The same isomorphism can be built in the otherdetermined by G with corresponding adjacency matriH
direction usingdp 1 - defined by the actiod,d; on G.
Quite often for linear problems ik dimensions the solu- Collecting results, we find that the general Helmholtz rep-
tion space separates naturally into at mkstundamental resentation of an arbitrang-field u is
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u=dg¢+adg+c, (114
whereu is any element of’,, and onceu is given,c is a
unique member of{,,, and ¢ and ¢ belonging toC,_, and
Cp+1, respectively, are potential fields. The potenijalis
free to vary byéspekerd and ¢ is free to vary bydy
eker g, butce H is fixed. To see this, consider

u=d(¢+86¢)+d(+ )+ (c+ c). (115

Thus
dép+ s+ 5c=0. (116

But d6¢=0 andddy=0 everywhere. Hencéc=0 andc
must be unique.
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Gyy(z)=[z—dd] ™", (124

Moreover, since dd)"=d(ad)" 19, one has
Ga, 10,= 71 2 dp-1Gsa, (2)p- (125

The latter equation applies the isomorphism generated by
d,— or d, to transfer from one equivalent space to another.
Green functions for boundary value problems pertaining to
the original equation are matrix entries®f(z). The bound-
ary conditions that we have not addressed so far can be in-
cluded by adding terms to correG;(z) at the boundary of
the region of interesi16,12.

Thus the solution to boundary value problems involving a

Consider an arbitrary linear operator which is a ratherrather broad class of linear operators can be solved using

general function ofd and ofdd. Examples appear in the three or fewer families of fundamental Green functions, each
lattice Helmholtz equation for arbitrarg, the electromag- corresponding to either of the two operatdB(z) or
netic model, the elastodynamic model and the lattice NavierGg,(2). These in turn can be computed once and for all for a
Stokes equation in the Stokes limit of low Reynolds numbergiven type of lattice, on in general for a given triangulating
where the inertial term is neglected, as well as the lineagraphg. Boundary conditions can be modified by making
Timoshenko equation and many other physical modelslocal modifications, and even in the case of nonlinear models
When the functiorf(dd,dd) can be defined by simultaneous the Green functions are useful for developing a systematic

diagonalization of the two matrices, so that, for exampleperturbation theory.

f(x,y) is not singular on the linesx(0) or (Oy) or for any
pair (x,y) of eigenvalues, then due to orthogonality df
anddgd,

f(od,dd)="f(od,0)+f(0,d3)—f(0,0). (117

This is a rather striking simplification sindgx,y) can be

IX. SUMMARY

We have shown that with the proper choice of definition
of the dot, cross, and scalar multiplication between pairs of
p-fields for different combinations op, it is possible to
make a discrete vector calculus, withandd acting as di-

quite general. For example, by expanding one sees tltht ( vergence, gradient, and curl, which has all the integral theo-

+dd+K)2=(9d+K)?+ (do+K)*>—K=.

rems and most of the vector identities of the vector differen-

As an application, we obtain Green functions for a lineartial calculus. Generalized Stokes theorems satisfied by

lattice model of the form
Du—f(od,dd)u=F, (118

whereD is polynomial in the time derivativd/dt andF is a

p-fields for eachp are derived in Sec. Ill from the duality
betweend and d. Interpretations of the boundawf) of a
region () of G and coboundaryg () of x{) are discussed
there in some detail. The correspondence deduced from these
integral theorems between the vector operators and the

general source term. Laplace or Fourier transforming leadﬁoundary and coboundary is summarized in Fig. 1. A set of

one to consider the resolvent or transfer matrix

Gi(2)=[z—f(ad,dd)]" %, (119
defined forz outside the spectrum. Thus
G1(2)=Ga(2) +Gp(2) — % (120
where
Ga(2)=[z—f(4d,0] 1, (121)
Gp(z)=[z—f(0dd)] L. (122

vector identities in the difference formulation is obtained in
Sec. V, together with the explicit formulas in terms of com-
ponents.

It is possible using this difference calculus to construct
systems of difference equations or differential difference
equations on a rather general lattice which is forced to have
many of the qualitative behaviors of the analogous system of
PDEs. Certain behaviors of the continuous and the corre-
sponding discrete models, whether linear or nonlinear, are
locked together topologically by the analogy in formal struc-
ture, i.e., they must satisfy analogous conservation laws ex-
actly. In principle one can analyze these models, formally
and numerically, on structures of arbitrary complexity. It is
possible to derive theoretical results without reference to in-

The latter two expressions are again defined in the usual wagividual field components or the explicit structure Gf

by the canonical, diagonal forms &fl anddd. Whenf(x,y)
is a rational function, we have showi5] how to obtain

Where the vector difference formalism comes into play is
in the process of manipulating and solving the discrete

them as closed formulas in terms of the fundamental resolmodel. It provides a discrete counterpart to each vector cal-

vents

Gu(z)=[z—0ad] ™1, (123

culus operation, and hence to every conserved quantity or
first integral, e.g., the Niberian invariants, and every solu-
tion strategy of the continuum model. These are exact, not
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approximations that hold in the continuum limit. Hence wemutual eigenbasis partitions into sets, corresponding to the
have seen discrete analogs to the Poynting vector and thiifferent p-field classes. The first is the set annihilateddsy
electromagnetic energy density in the case of the latticeut not byad, the second is the set annihilated dny but not
Maxwell equations, which satisfy exactly a discrete analog tajg, and the third is annihilated by both. This corresponds to
the Poynting theorem. For fluids we have seen a special cageHelmholtz representatiom=d ¢+ di+c, as discussed in

of the Kelvin circulation theorem. Similar integral relations gec. i1, where the terms in the expansion of gengréield

hold for other kinds of models. We consider this, rather thay, each belong to one of the three classes. Thus Green func-

numerical efficiency, to be the point of the difference calcu-tions for very general linear models can be found from the
lus. Existence of analogs to the conservation laws, etc., leadsssic |attice Green functions discussed in Sec. VI, and

one to expect that the behavior of the discrete models Willhese in turn can be found once and for all for a given
often be qualitatively similar to that of the continuous ones.

To show that the formalism can in fact be adapted to a
numerical method, we have derived the scale factors or
weights necessary to get quantitative correspondence be-
tween PDEs for continuous fields in two dimensions and a The authors acknowledge useful discussions with A.
set of difference equations on a triangular lattice. This illus-Adrover, particularly regarding incompressible fluid flow.
trates one of many possible numerical methods compatibl®ne authofW.S) expresses appreciation for hospitality and
with the difference calculus. support from the ltalian Interuniversity Center for Disorder

We have shown thai-fields for eactp partition naturally  and Fractal Systems in Chemical Engineering at the Univer-
into three classes related to the spectradfinddd, which  sity of Rome, where part of the research was carried out. The
share eigenvectors. These operators correspond to curl amebrk was supported in part by NATO Grant No. CRG
gradient divergence in different ways, dependingporiThe  941289.
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