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Class of Monte Carlo algorithms for dynamic problems leads to an adaptive method

Erwan Adam,* Luc Billard, and Fre´déric Lançon
Département de Recherche Fondamentale sur la Matie`re Condense´e, SP2M/NM, CEA-Grenoble, 38054 Grenoble Cedex 9, France

~Received 14 May 1998!

We introduce a class of Monte Carlo algorithms that solve a dynamic problem defined by the transition rates
and the initial state of a discrete system. This class contains the method of Bortz, Kalos, and Lebowitz~BKL !
@J. Comp. Phys.17, 10 ~1975!# as a limit. We show that introducing a constant time step in a Metropolis
algorithm leads to an approximation of the solution in which the system relaxation times are underestimated.
This can be corrected if the time step is an adequate stochastic variable. Thus, we are able to define kinetic
Metropolis algorithms and generalize them in a case of nonconstant numbers of attempt configurations. The
algorithm class allows us to introduce a useful method in which the calculation of transition rates are exploited
for the next step in an adaptive way. This method corresponds to a kinetic Metropolis algorithm when the
rejection probability is reasonable and becomes similar to the BKL method otherwise. We describe and
compare four different algorithms applied to a physical example about the diffusion in lattice gases.
@S1063-651X~99!07101-9#

PACS number~s!: 02.70.Lq, 05.20.Dd, 05.50.1q
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I. INTRODUCTION

A dynamic problem in the case of a discrete system t
can occupyN states is defined by giving a particular co
figuration as initial state and the transition rates of the d
ferent connected configurations. The transition ratev i j >0 is
the probability per unit time for the system to transit from t
statei to the statej Þ i .

The Bortz, Kalos, and Lebowitz method@1–3# ~also
called BKL or n-fold way! to treat this problem is based o
the fact that the dynamical processes are in their formula
Poisson processes. The algorithm can be summarized w
diagram@4# where each segment represents a transition f
i and its length is equal to the rate of this transition,

When the system is in statei, the method consists in step
of three operations.~i! The time is increased by a rando
numberDt distributed asv iexp(2viDt) wherev i is the total
transition rate fromi, ( j Þ iv i j . ~ii ! The system transits from
i to j Þ i with probability pi j 5v i j /v i . ~iii ! One has to up-
date the new transition ratesv jk and the new total transition
ratev j . The main advantage of this algorithm is that there
no rejection but two difficulties remain. Operation~ii ! can be
time consuming and is the object of previous studies@4,5#.
Because of operations~ii ! and~iii !, all thev i j are needed a
each step. This can be a serious problem when the calc
tion of eachv i j is complex, for instance, if it involves th
whole system state.

On the other hand, the ‘‘historical’’ way for introducin
time in a Monte Carlo simulation is to associate a const
time step at each step of a Metropolis algorithm. More p
cisely, a Metropolis algorithm consists in~i! choosing an
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attempt configurationj between aconstantnumberN of con-
figurations in a set containing at least those withv i j .0.
Then,~ii ! this configuration is accepted with probabilitya i j
5v i j /n0P@0,1# or rejected with probability 12a i j where
n0 is an attempt frequency. In this algorithm, the dynam
are introduced by associating to each Monte Carlo step
constant time step 1/(n0N) @6#. We will show, in Sec. V,
that this algorithm leads to an approximation of the solut
in which the system relaxation times are underestima
This can be corrected if the time steps are adequate stoc
tic variables.

We introduce, in Sec. III, a class of algorithms to treat t
dynamic problem defined in the first paragraph. We sh
~Appendix! that this class satisfies the formal master eq
tion solution given in Sec. II. Section IV is devoted to pa
ticular cases, i.e., BKL and kinetic Metropolis algorithm
with or without constant number of attempt configuratio
These kinetic Metropolis algorithms are compared to
‘‘historical’’ algorithms in Sec. V. In Sec. VI, we describ
our adaptive method. Finally, these different methods
tested in Sec. VII.

II. FORMAL SOLUTION

Let us recall the exact, but formal, solution of the d
namic problem of Sec. I. By defining the matrixV5(V i j )
with V i j 5v i j if j Þ i and V i i 52( j Þ iv i j , we write the
master equation

Q̇i~ t !5(
j

Qj~ t !V j i , ~1!

whereQi(t) is the probability for the system to be in con
figuration i at time t. This relation gives the exact solutio
for the system state at timet as

@Q1~ t !•••QN~ t !#5@Q1~0!•••QN~0!#@exp~Vt !#, ~2!
1212 ©1999 The American Physical Society
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where @Q1(0)•••QN(0)# is the initial vector, i.e.,Qi(0)
51 for onei andQj Þ i(0)50.

III. ALGORITHM CLASS

The set of algorithms we introduce is summarized by
diagram, which generalizes the BKL one presented in Se

They consist in successive steps of two operations. In
first one, the time is increased by a random numberDt dis-
tributed as

r i~Dt !5m iexp~2m iDt !. ~3!

In the second operation, the system transits inj Þ i with
probability pi j or it stays ini with probability pii with

pi j 5
v i j

m i
for j Þ i , ~4!

pii 512
v i

m i
with v i5(

j Þ i
v i j . ~5!

The value ofm i is not specified but must satisfy the obvio
conditionpii >0,

m i>v i . ~6!

The previous algorithms form a class in the sense that
relation ~6! gives a condition to be fulfilled by the set$m i%
but does not specify their values. In fact, each value ofm i
gives different probabilitiespi j and pii and then defines a
different Monte Carlo algorithm. A proof that this class
algorithm satisfies exactly the relation~1!, independently of
the choice of$m i%, is given in the Appendix.

IV. KINETIC METROPOLIS ALGORITHMS

If we choosem i5v i , the generalized Monte Carlo algo
rithm is exactly the BKL one. As soon asm i.v i , the prob-
ability to stay in the configurationi is pii Þ0 and we have
another Monte Carlo algorithm. Introducing the ran
@v i ,m i # is very useful in order to understand the Metropol
type algorithms in terms of kinetics. Indeed, they just cor
spond to a judicious subdivision of the interval@0,m i # into
intervals of the same lengths as shown below.

Let ni be the number of configurationsj really connected
to i ~i.e., v i j .0). Note thatni are not necessarily the sam
for all configurations. Letn0( i ) be an attempt frequency fo
the configurationi satisfying

n0~ i !>max
j

~v i j !. ~7!

A kinetic Metropolis algorithm withni attempt configura-
tions corresponds to the choicem i5nin0( i ), i.e., the range
a
I,

e

e

-
-

@0,m i # is divided intoni subsegments

where there is one segment for each configurationj really
connected toi and each interval contains two subintervals

i.e., the algorithm consists in increasing the time of a rand
number Dt distributed as nin0( i )exp@2nin0(i)Dt#, then
choosing an attempt configurationj with equiprobability
among theni that are really connected toi and finally, tran-
siting in j with probabilityv i j /n0( i ). The main advantage o
this algorithm is that only onev i j is computed in one step
but there is a rejection probability measured bypii 51
2v i /@nin0( i )#.

To define a kinetic Metropolis algorithm with a consta
numberN of attempt configurations, we assume

N>max
i

~ni ! and n0>max
~ i , j !

~v i j ! ~8!

and apply the generalized algorithm withm i5Nn0 . It corre-
sponds to

where theni intervals corresponding to the really connect
configurations are divided in two subintervals as describ
above. The algorithm is the same as the one described in
I but the time increments are now random numbersDt dis-
tributed asn0Nexp(2n0NDt) and not constant time step
Dt51/(n0N). We will see in the next section what this di
ference does imply. Note that there isno assumptionhere
that the time steps should be smaller than a time resolu
during which no events can occur simultaneously.

V. COMPARISON WITH THE CONSTANT TIME-STEP
ALGORITHMS

If the time increment is a constantDt, for instance, as in
the ‘‘historical’’ algorithms described in the beginning of th
text whereDt51/(n0N), the system state at timet is

@Q~ t !#5@Q~0!#@11VDt# int~ t/Dt ! ~9!

with the notations of Sec. II. Whereas the exact result~2! is
@Q(t)#5@Q(0)#@exp(Vt)#. Let us study what relation~9!
implies on the relaxation towards equilibrium. WhenV sat-
isfies the detailed balance relation,

v i j exp~2bEi !5v j i exp~2bEj !, ~10!

whereEi is the energy of the configurationi, and if for every
pair (i , j ), there exists a path (i ,i 1 , . . . ,i n , j ) such that
v i i 1

•••v i nj.0 ~ergodicity condition!, one shows@7# the ma-

trix V can be diagonalized with the eigenvalues$2lk ,k
P@1,N#% such thatl150 and lk.0 for all k>2. Those
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eigenvalues define the system relaxation timestk51/lk for
k>2. The eigenvalue exp(2t/tk) of the exponential matrix in
Eq. ~2! is replaced in Eq.~9! by

S 12
Dt

tk
D int~ t/Dt !

; ~11!

then, on one hand, for short relaxation times such thatDt
.tk , Eq. ~11! is an oscillating function. This implies th
time step is too large to study these relaxations. On the o
hand, forDt,tk , Eq. ~11! is written

expF int~ t/Dt !lnS 12
Dt

tk
D G;exp~2t/tk8! when t@Dt

~12!

with

tk852
Dt

ln~12Dt/tk!
,tk ~13!

and therefore, the constant time-step algorithms under
mate the system relaxation times. For instance, for a t
stepDt5tk /10, the relaxation timetk is underestimated by
5%.

VI. THE ADAPTIVE METHOD

In a kinetic Metropolis algorithm introduced in Sec. IV
only one transition rate is computed per step but there
rejection probability. In the BKL method, there is no reje
tion but all the transition rates are needed at each step.
describe here an adaptive algorithm that goes automatic
and continuously from a kinetic Metropolis algorithm whe
the rejection probabilities are low to the BKL method othe
wise.

The main idea is to start with the kinetic Metropolis alg
rithm with ni attempt configurations described in Sec. I
but to store the values of the transition probabilities of
rejected transitions in order to use them in the followi
steps.

The first step of the adaptive method in configuratioi
corresponds to a step of the kinetic Metropolis algorith
with m i

(1)5nin0( i ),

where there is one interval for each configurationj directly
connected toi and each interval contains two subintervals

i.e., the time is increased by a random numberDt distributed
as m i

(1)exp(2mi
(1)Dt). Then an attempt configurationj 1 is

chosen among theni that are directly connected toi and
finally, the system transits inj 1 with probability v i j 1

/n0( i ).

If the system does transit inj 1 , we have to start a new firs
step with i 5 j 1 ; otherwise, the next step is proceeded w
er

ti-
e

a

e
lly

-

e

m i
(2)5v i j 1

1(ni21)n0( i ),

i.e., the time is increased by a random numberDt distributed
asm i

(2)exp(2mi
(2)Dt). Then, with probabilityv i j 1

/m i
(2) , j 1 is

selected once againand the system does transit inj 1 . Oth-
erwise, a new attempt configurationj 2 is selected randomly
between theni21 other ones and the system transits inj 2
with probability v i j 2

/n0( i ).

More generally, the step numbern11(nP@0,ni #) corre-
sponds to

m i
~n11!5 (

k51

n

v i j k
1~ni2n!n0~ i !, ~14!

where j 1 , . . . ,j n are then different configurations, which
have been successively attempted and rejected:

Precisely, the algorithm in stepn11 consists in increasing
the time of a random number distributed
m i

(n11)exp(2mi
(n11)Dt). Then, with probability

(k51
n v i j k

/m i
(n11) , the system will transit in a configuratio

already attempted; the research of this configuration is s
lar to the research in a BKL algorithm@4,5#. Otherwise, a
segment corresponding to a new configurationj n11 is se-
lected randomly amongstni2n and the system transits i
j n11 with probability v i j n11

/n0( i ).

In this algorithm, only onev i j is computed in one step
but we have the guarantee that the system transits in a n
ber of steps less than or equal toni11. At each time the
system transits, the process is started at a new first step
the new configuration. If the rejection probability is low, fe
transition rates will be calculated. Otherwise, almost all
v i j will be needed and the algorithm will be similar to th
BKL method.

VII. A PHYSICAL APPLICATION: DIFFUSION
IN LATTICE GASES

To illustrate the usefulness of the different algorithms
a physical application, we have used them in the case
lattice gas or a binary alloy where theN sites of a regular
simple cubic lattice are occupied byA particles and byV
vacancies or particles. We consider that two configuratioi
andj are directly connected if the system can transit fromi to
j by exchanging onlyA and V particles in onenearest-
neighborpair. The Hamiltonian is taken as

H~$Sa%!52 (
^a,b&

JSaSb , ~15!

with Sa521 (11) if the site a is occupied by anA ~V!
particle. In practice the size of the system isN532332
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332 and the number ofA particles is equal toN/2. The
boundary conditions are periodic and the initial state, at e
temperatureT51/b, is made with all theA particles to-
gether in one-half of the cubic box. The transition rates a

v i j 5n0exp@2b max~0,Hj2Hi !#. ~16!

Each configurationi is characterized by the numbe
nA2V( i ) of A2V nearest-neighbor pairs. This number cor
sponds to the number of configurationsj really connected to
i.

For each of the following four algorithms, we have ca
ried out five numerical simulations~corresponding to five
different random number series! from the same initial state
The average energy curvesHT(t) are indistinguishable for
all the algorithms. However, as seen below, the computa
cost is different and depends on the temperature.

For the BKL algorithm, we have to calculate all the tra
sition ratesv i j and their sumv i . Then the time is increase
by a random numberDt distributed asv iexp(2viDt). An
A2V nearest-neighbor pair is selected with the probabi
v i j /v i and the particles are exchanged. Figure 1 shows
total simulated physical timet after 10 sec of computer tim
~CPU time! versus temperature. The BKL method appears
be very efficient at low temperature and becomes less
less efficient when the temperature increases.

The second algorithm presented here is a kinetic Metro
lis algorithm with a constant number of attempt configu
tions. We denote itNz/2 in Fig. 1 since it corresponds t
parametersm i5n0Nz/2, wherez is the coordination numbe
of the lattice~six in the simple cubic crystal! andNz/2 is the
total number of nearest-neighbor pairs in the system. In
algorithm, one increases the time byDt distributed as
m iexp(2miDt). Then, a site and one of itsz nearest neighbors
are chosen randomly and if anA2V pair is selected, the
particles are exchanged with the probabilityv i j /n0 . What-
ever the configuration and the temperature, the parametem i
is a constant and, therefore, the simulated time is alm
independent of the temperature. At high temperature, i
more efficient than the BKL method since the rejection r
is low and fewer calculations are needed.

However, in this second algorithm, the probability that t
selected nearest-neighbor pair is anA2V pair is low if there
are large clusters ofA, since they are typically located at th

FIG. 1. Simulated physical time in a dynamical system ver
temperature for a given computer time~CPU!. See Sec. VII for the
description of the Monte Carlo method corresponding to e
curve. Each value is an average over five realizations.
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interfaces. This is the case here at low temperature. Thus
introduce a third algorithm, callednA2V in Fig. 1. It is a new
kinetic Metropolis method in which the attempt pairs a
chosen randomly only among thenA2V( i )A2V nearest-
neighbor pairs of the configurationi, i.e., the number of at-
tempt configurations is not constant. It corresponds to a
rameterm i5nA2V( i )n0 . Since the rejection rate is lowe
than in the second algorithm, this third one is more efficie
at all temperatures, despite the overhead due to the man
ment of theA2V pair list.

Finally, the adaptive method described in Sec. VI
equivalent to the previousnA2V method at high temperatur
where it is the most efficient, and to the BKL one at lo
temperature where this one is the most efficient. Only n
the crossover, the BKL could be significantly better, but
this method, the adapting is done automatically even if we
not know where the crossover is.

VIII. CONCLUSION

We have defined a class of Monte Carlo algorithms
solve dynamic problems on discrete systems. This class
tains the well-known BKL method@1#, and allows an analy-
sis of the widely used Metropolis-type algorithm. We ha
demonstrated that the constant time step used in this me
leads to an approximation of the solution in which the s
tem relaxation times are underestimated. The use of dis
uted time steps corrects this method. We have also gen
ized it to the case where the number of reacha
configurations is not a constant but depends on the cur
configuration. Depending on the system and the transi
rates, one or the other of these methods can be more ada
We have introduced an algorithm that automatically tends
the one that is the most suitable. This method is particula
useful when the transition rate calculations are compu
time consuming.
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APPENDIX: PROOF

Let i 0 be the initial configuration andQi
MC(t) the prob-

ability for the system to be in the statei at time t if we use
one of the proposed algorithms. We write

Qi
MC~ t !5d i 0iPr@ t i 0

.t#1pi 0iPr@~ t i 0
<t !,~ t i 0

1t i.t !#

1 (
n51

`

(
i 1 , . . . ,i n

pi 0i 1
•••pi ni

3Pr@~ t i 0
1•••t i n

<t !,~ t i 0
1•••t i n

1t i.t !#,

~A1!

where Pr@ t i 0
.t# is the probability for the system to hav

spent a timet i 0
.t in the initial configuration. We recall tha

t i 0
is distributed as Eq.~3!. The probabilities in Eq.~A1! can

be separated in two parts as

s

h
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Qi
MC~ t !5d i 0i~12Pr@ t i 0

<t# !

1pi 0i~Pr@ t i 0
<t#2Pr@ t i 0

1t i<t# !

1 (
n51

`

(
i 1 , . . . ,i n

pi 0i 1
•••pi ni

3~Pr@ t i 0
1•••1t i n

<t#2Pr@ t i 0
1•••1t i n

1t i<t# !.

~A2!

The last term in Eq.~A2! is

Pr@ t i 0
1•••1t i n

1t i<t#

5 E •••E
t i 0

1•••t i n
1t i<t

dti 0•••dti ndti

3m i 0
e2m i 0

t i 0 . . . m i n
e2m i n

t i nm ie
2m i t i ~A3!

and after a quite technical recurrence, we find

d

dt
Pr@ t i 0

1•••1t i n
1t i<t#

5m i~Pr@ t i 0
1•••1t i n

<t#2Pr@ t i 0
1•••1t i n

1t i<t# !

~A4!

and similar results for the other members of Eq.~A2!. Hence,
from Eq. ~A2!, the time derivative ofQi

MC(t) is
s.

J.
dQi
MC

dt
52d i 0im i 0

~12Pr@ t i 0
<t# !1pi 0i$m i 0

~12Pr@ t i 0
<t# !

2m i~Pr@ t i 0
<t#2Pr@ t i 0

1t i<t# !%

1 (
n51

`

(
i 1 ,i 2 , . . . ,i n

pi 0i 1
•••pi ni

3$m i n
~Pr@ t i 0

1•••1t i n21
<t#

2Pr@ t i 0
1•••1t i n

<t# !

2m i~Pr@ t i 0
1•••1t i n

<t#

2Pr@ t i 0
1•••1t i n

1t i<t# !%. ~A5!

By using again the relation~A2!, we can express Eq.~A5! as

dQi
MC

dt
52m iQi

MC~ t !1(
j

pj i m jQj
MC~ t !. ~A6!

With the relation~5!, this result becomes independent
$m i%,

dQi
MC

dt
52S (

j Þ i
v i j DQi

MC~ t !1(
j Þ i

v j i Qj
MC~ t !. ~A7!

This equation is the same as Eq.~1! and we have

@Q1
MC~ t !•••QN

MC~ t !#5@Q1~0!•••QN~0!#@exp~Vt !#.
~A8!
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