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Class of Monte Carlo algorithms for dynamic problems leads to an adaptive method
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We introduce a class of Monte Carlo algorithms that solve a dynamic problem defined by the transition rates
and the initial state of a discrete system. This class contains the method of Bortz, Kalos, and L&bKwjtz
[J. Comp. Phys17, 10 (1975] as a limit. We show that introducing a constant time step in a Metropolis
algorithm leads to an approximation of the solution in which the system relaxation times are underestimated.
This can be corrected if the time step is an adequate stochastic variable. Thus, we are able to define kinetic
Metropolis algorithms and generalize them in a case of nonconstant numbers of attempt configurations. The
algorithm class allows us to introduce a useful method in which the calculation of transition rates are exploited
for the next step in an adaptive way. This method corresponds to a kinetic Metropolis algorithm when the
rejection probability is reasonable and becomes similar to the BKL method otherwise. We describe and
compare four different algorithms applied to a physical example about the diffusion in lattice gases.
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PACS numbg(s): 02.70.Lg, 05.20.Dd, 05.58.q

I. INTRODUCTION attempt configuration between aonstannumberN of con-
figurations in a set containing at least those wiih>0.

A dynamic problem in the case of a discrete system thafThen, (ii) this configuration is accepted with probability;
can occupy\ states is defined by giving a particular con- = wjj/vo€[0,1] or rejected with probability * «;; where
figuration as initial state and the transition rates of the dif-vy is an attempt frequency. In this algorithm, the dynamics
ferent connected configurations. The transition igte=0 is  are introduced by associating to each Monte Carlo step the
the probability per unit time for the system to transit from theconstant time step 1/¢N) [6]. We will show, in Sec. V,
statei to the statg #i. that this algorithm leads to an approximation of the solution

The Bortz, Kalos, and Lebowitz method—3] (also in which the system relaxation times are underestimated.
called BKL orn-fold way) to treat this problem is based on This can be corrected if the time steps are adequate stochas-
the fact that the dynamical processes are in their formulatiotic variables.
Poisson processes. The algorithm can be summarized with a We introduce, in Sec. lll, a class of algorithms to treat the
diagram[4] where each segment represents a transition frondynamic problem defined in the first paragraph. We show

i and its length is equal to the rate of this transition, (Appendi¥ that this class satisfies the formal master equa-
tion solution given in Sec. Il. Section IV is devoted to par-
| L Rindl , L ticular cases, i.e., BKL and kinetic Metropolis algorithms
| T 1 1 1 1 | . . . .
......... Wy e with or without constant number of attempt configuration.
0 i

These kinetic Metropolis algorithms are compared to the

h h .. h h L “historical” algorithms in Sec. V. In Sec. VI, we describe
When the system is in statethe method consists in Seps - aqantive method. Finally, these different methods are
of three operations(i) The time is increased by a random tested in Sec. VII.

numberAt distributed asv;exp(—w;At) wherew; is the total

transition rate from, X .w;; . (i) The system transits from

i to j#i with probability p;; = wj; /w; . (iii) One has to up- Il. FORMAL SOLUTION

date the new transition ratesy and the new total transition

ratew; . The main advantage of this algorithm is that there is

no rejection but two difficulties remain. OperatiGin can be X L .

time consuming and is the object of previous studies].  With {ij=wj; if j#i and Qj=—Z2. 0, we write the

Because of operatior(éi) and(iii), all the w;; are needed at Master equation

each step. This can be a serious problem when the calcula-

tion of eachw; is complex, for instance, if it involves the .

whole system state. Q=2 Q1Y @
On the other hand, the “historical” way for introducing .

time in a Monte Carlo simulation is to associate a constant

time step at each step of a Metropolis algorithm. More prewhereQ;(t) is the probability for the system to be in con-

cisely, a Metropolis algorithm consists i) choosing an figurationi at timet. This relation gives the exact solution

for the system state at tinteas

Let us recall the exact, but formal, solution of the dy-
namic problem of Sec. I. By defining the matiix= (€};;)

*Electronic address: Erwan.Adam@cea.fr [Qi(t) - - QD ]I=[Q1(0)- - - Q(0) [ exp Qt)], (2)

1063-651X/99/5601)/12125)/$15.00 PRE 59 1212 ©1999 The American Physical Society



PRE 59 CLASS OF MONTE CARLO ALGORITHMS FOR DYNAMC . .. 1213

where[Q4(0)---Qx(0)] is the initial vector, i.e.,Q;(0) [O,u;] is divided inton; subsegments

=1 for onei andQ;.;(0)=0.  vo(i) voli)
i T T T | !
0 I/o(i) ......... n,'I/o(i)

Ill. ALGORITHM CLASS

where there is one segment for each configuratioeally

The set of algorithms we introduce is summarized by a onnected to and each interval contains two subintervals
diagram, which generalizes the BKL one presented in Sec. F

| ] no event |
]
I ' I

|
T b .
o o fi—w 0 wij vo(%)
Wy i

no event |

o ] ] i.e., the algorithm consists in increasing the time of a random
_ They con5|§t in successive steps of two operatlong. In thaumber At distributed as nivo(i)exd —nive(i)At], then
first one, the time is increased by a random numbedis- choosing an attempt configuration with equiprobability

tributed as among then; that are really connected toand finally, tran-
siting inj with probability w;; /vo(i). The main advantage of
pi(At) = uiexp(— uiAt). (3 this algorithm is that only oney;; is computed in one step,
but there is a rejection probability measured py=1
In the second operation, the system transitsj#i with —w I[nive(i)].
probability p;; or it stays ini with probability p;; with To define a kinetic Metropolis algorithm with a constant
numberN of attempt configurations, we assume
Wii ) i
I0i1=7|_J for j#i, (4) N=maxn;) and vo=max w;j) (8)
i i (ih))
o . and apply the generalized algorithm with=Nvg. It corre-
pi=1-— with v;=2 wj. (3 sponds to |
Mi j#i
. i . . | ™ configurations | (VN = n;) no event |
The value ofu; is not specified but must satisfy the obvious | | |
condition p;; =0, 0 e vy e Noo
Ui ;. (6)  Wwhere then; intervals corresponding to the really connected

configurations are divided in two subintervals as described
The previous algorithms form a class in the sense that thabove. The algorithm is the same as the one described in Sec.

relation (6) gives a condition to be fulfilled by the sgr;} | Put the time increments are now random numbtsdis-
but does not specify their values. In fact, each valugi.pf triPuted asvoNexp(=»NAt) and not constant time steps
gives different probabilitiep; and p; and then defines a At=1/(vgN). We will see in the next §ect|on Wha_t this dif-
different Monte Carlo algorithm. A proof that this class of ference does imply. Note that therens assumptiorhere

algorithm satisfies exactly the relatiéf), independently of that the time steps should be smaller than a time resolution
the choice of( 1}, is given in the Appendix. during which no events can occur simultaneously.

V. COMPARISON WITH THE CONSTANT TIME-STEP

IV. KINETIC METROPOLIS ALGORITHMS ALGORITHMS

If we chooseu;= w;, the generalized Monte Carlo algo-
rithm is exactly the BKL one. As soon ag§> w;, the prob-
ability to stay in the configuration is p;; #0 and we have
another Monte Carlo algorithm. Introducing the range
[ wi,ui] is very useful in order to understand the Metropolis- [Q(1)]=[Q(0)][ 1+ QAt]N¥/AD 9)
type algorithms in terms of kinetics. Indeed, they just corre-
spond to a judicious subdivision of the intenfdl,.;] into  with the notations of Sec. Il. Whereas the exact re@)lis
intervals of the same lengths as shown below. [Q(t)]=[Q(0)][exp@t)]. Let us study what relatior9)

Let n; be the number of configuratiopseally connected implies on the relaxation towards equilibrium. Wh@nsat-
toi (i.e., w;>0). Note that; are not necessarily the same isfies the detailed balance relation,
for all configurations. Lew(i) be an attempt frequency for

If the time increment is a constadtt, for instance, as in
the “historical” algorithms described in the beginning of the
text whereAt=1/(v¢N), the system state at tintds

the configurationi satisfying wijexp — BEj) = wjiexp( — BE;), (10
vo(i)=max w;;). 7) whereE; is the energy of the configuratianand if for every
j . pair (i,j), there exists a pathifi,...,i,,j) such that

wjj,- @ ;>0 (ergodicity condition, one show$7] the ma-
A kinetic Metropolis algorithm withn; attempt configura- trix 0 can be diagonalized with the eigenvalugs),,k
tions corresponds to the choigg=n;vy(i), i.e., the range e[1,N]} such thatA;=0 and\, >0 for all k=2. Those
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eigenvalues define the system relaxation timgs L\ for  u(®=w;; +(m—1) (i),
k=2. The eigenvalue exp(t/7) of the exponential matrix in

Eq. (2) is replaced in Eq(9) by i voli) voli) woli)
At intt/AD creT T Tl
( _T_) ; 11 0 u;
k

i.e., the time is increased by a random numbedistributed
then, on one hand, for short relaxation times such thiat  asu(®exp(—w®At). Then, with probabimwijl/ﬂi(?), jiis
>1,, EQ. (1)) is an oscillating function. This implies the gqjacted once againd the system does transit j. Oth-
time step is too large to st_udy t_hese relaxations. On the Oth%rwise, a new attempt configuratign is selected randomly
hand, forAt<ry, Eq.(11) is written between then,—1 other ones and the system transitsj jn

with probability w;; ,/vo(i).
~exp(—t/7,) when t>At More generally, the step number-1(ne[0,n;]) corre-
12 sponds to

gson] -2
expg int(t/At)In| 1— —
Tk

n

with .
"= 2 o (i mv(i), (14)

At
n=—— <7 13
KT In(1-At/m) K (13 whereji, ... j, are then different configurations, which

_ ) have been successively attempted and rejected:
and therefore, the constant time-step algorithms underesti-

mate the system relaxation times. For instance, for a time
stepAt=7,/10, the relaxation time is underestimated by } — — | ! |

0, n
5%. 0 T )
VI. THE ADAPTIVE METHOD Precisely, the algorithm in step+1 consists in increasing

S . . . . the time of a random number distributed as
In a kinetic Metropolis algorithm introduced in Sec. IV, ) .
P g (" Dexp—u"VAt). Then, with probability

only one transition rate is computed per step but there is é‘in (n41) . o X -
rejection probability. In the BKL method, there is no rejec- Zk=1@ij, /s, the system will transit in a configuration
tion but all the transition rates are needed at each step. Wadready attempted; the research of this configuration is simi-
describe here an adaptive algorithm that goes automaticalliar to the research in a BKL algorithif@,5]. Otherwise, a
and continuously from a kinetic Metropolis algorithm when segment corresponding to a new configuratjgn, is se-

the rejection probabilities are low to the BKL method other-lected randomly amongst;—n and the system transits in
wise. jn+1 With probability w;; . /vo(i).

The main idea is to start with the kinetic Metropolis algo- | this algorithm, only onew;; is computed in one step,
rithm with n; attempt configurations described in Sec. IV, hyt we have the guarantee that the system transits in a num-
but to store the values of the transition probabilities of theper of steps less than or equal g+ 1. At each time the
rejected transitions in order to use them in the followingsystem transits, the process is started at a new first step with
steps. ) _ ] ) the new configuration. If the rejection probability is low, few

The first step of the adaptive method in configuration transition rates will be calculated. Otherwise, almost all the
corresponds to a step of the kinetic Metropolis algorithmy, . will be needed and the algorithm will be similar to the

with u(M=n;ve(i), BKL method.
| ”°("), ”°(i), AU VII. A PHYSICAL APPLICATION: DIFFUSION
L y IN LATTICE GASES
0 I/o(l) I

To illustrate the usefulness of the different algorithms on
a physical application, we have used them in the case of a
lattice gas or a binary alloy where th¢ sites of a regular
simple cubic lattice are occupied By particles and by

where there is one interval for each configuratjadirectly
connected to and each interval contains two subintervals

e no event | vacancies or particles. We consider that two configurations
J ' 1 andj are directly connected if the system can transit ficm
0 wii voli) i by exchanging onlyA and V particles in onenearest-

. S o neighborpair. The Hamiltonian is taken as
i.e., the time is increased by a random numbéedistributed

(1) — @ ; N i
as u;’exp(—w~At). Then an attempt configuratiojy is
chosen among the; that are directly connected toand H({Sa}):_WEB) JS,Sg, (15
finally, the system transits ijy with probability wijl/Vo(i)- ’
If the system does transit i, we have to start a new first with S,=—1 (+1) if the site @ is occupied by am (V)
step withi=j,; otherwise, the next step is proceeded withparticle. In practice the size of the systemNs=32X32
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10T T T T T T T 7T interfaces. This is the case here at low temperature. Thus, we
BKL —6— introduce a third algorithm, calledl,_\, in Fig. 1. It is a new
S 100 1 “Nz[2" —— kinetic Metropolis method in which the attempt pairs are
g “na_y” —B— chosen randomly only among the, \(i)A—V nearest-
= Adaptive method neighbor pairs of the configuratiani.e., the number of at-
g 10 tempt configurations is not constant. It corresponds to a pa-
= rameter u;=np_y(i)vg. Since the rejection rate is lower
B0 than in the second algorithm, this third one is more efficient
at all temperatures, despite the overhead due to the manage-
1 15 2 25 3 35 4 45 5 ment of theA—V pair list.
Temperature (J/ks) Finally, the adaptive method described in Sec. VI is

) L _ equivalent to the previous,_,, method at high temperature
FIG. 1. Slmulate_d physical time in a dynamical system VeISUSyhere it is the most efficient, and to the BKL one at low
temperature for a given computer Grt@PU). See Sec. Vil for the temperature where this one is the most efficient. Only near
description of the Monte Carlo method corresponding to eaChthe crossover, the BKL could be significantly better, but in

. Each value i fi lizations. . ' o . .
curve. Each value Is an average over five realizations this method, the adapting is done automatically even if we do

. ) not know where the crossover is.
X 32 and the number oA particles is equal tdN/2. The

boundary conditions are periodic and the initial state, at each
temperatureT=1/8, is made with all theA particles to- VIIl. CONCLUSION
gether in one-half of the cubic box. The transition rates are \we have defined a class of Monte Carlo algorithms to
solve dynamic problems on discrete systems. This class con-
wij= voexf — B max 0H;—H;)]. (16)  tains the well-known BKL methofil], and allows an analy-
sis of the widely used Metropolis-type algorithm. We have
Each configurationi is characterized by the number demonstrated that the constant time step used in this method
na_y(i) of A—V nearest-neighbor pairs. This number corre-leads to an approximation of the solution in which the sys-
sponds to the number of configuratigneeally connected to  tem relaxation times are underestimated. The use of distrib-
i uted time steps corrects this method. We have also general-
For each of the following four algorithms, we have car-ized it to the case where the number of reachable
ried out five numerical simulationécorresponding to five configurations is not a constant but depends on the current
different random number serjeBom the same initial state. configuration. Depending on the system and the transition
The average energy curvég(t) are indistinguishable for rates, one or the other of these methods can be more adapted.
all the algorithms. However, as seen below, the computatiokVe have introduced an algorithm that automatically tends to
cost is different and depends on the temperature. the one that is the most suitable. This method is particularly
For the BKL algorithm, we have to calculate all the tran- useful when the transition rate calculations are computer
sition ratesw;; and their sumw; . Then the time is increased time consuming.
by a random numbeAt distributed asw;exp(—w;At). An
A—V nearest-neighbor pair is selected with the probability ACKNOWLEDGMENT
wjj lw; and the particles are exchanged. Figure 1 shows the . ,
total simulated physical timeafter 10 sec of computer time We gratgfully acknowledge Professor J. Villain for fruit-
(CPU time versus temperature. The BKL method appears tdul discussions.
be very efficient at low temperature and becomes less and
less efficient when the temperature increases. APPENDIX: PROOF
The second algorithm presented here is a kinetic Metropo-
lis algorithm with a constant number of attempt configura-
tions. We denote iNz/2 in Fig. 1 since it corresponds to
parameterg:; = voNz/2, wherez is the coordination number
of the lattice(six in the simple cubic crystaandNz/2 is the
total number of nearest-neighbor pairs in the system. In this

Let i, be the initial configuration an@M(t) the prob-
ability for the system to be in the statet timet if we use
one of the proposed algorithms. We write

MOt = 8Pt > ]+ i PG <1, (5 +t>1)]

algorithm, one increases the time hyt distributed as o
miexp(— u;iAt). Then, a site and one of itsnearest neighbors + E 2 i Pii
are chosen randomly and if ah—V pair is selected, the n=1li;, i, ©°1 n

particles are exchanged with the probability / v4. What- KPI(t 4t <UL 4+t +t>1)]
ever the configuration and the temperature, the parameter o " o in 't H '

is a constant and, therefore, the simulated time is almost (A1)
independent of the temperature. At high temperature, it is

more efficient than the BKL method since the rejection rate,pare Pit, >t] is the probability for the system to have
is low and fewer calculations are needed. o

However, in this second algorithm, the probability that thespent a timeti0>t in the initial configuration. We recall that
selected nearest-neighbor pair is/&n V pair is low if there 1, is distributed as E¢(3). The probabilities in Eq(A1) can
are large clusters @&, since they are typically located at the be separated in two parts as
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MOt = 8,,i(1— Pt <t])

+pii (Pt <t]=Prt; +t;<t])

+n§l il,Z_ P Pigi, " Pii
><(P|[tio+ ~-+tinst]—P|{tiO+---+tin+tist]).
(A2)
The last term in Eq(A2) is
Pt +- -+t +t<t]
f f dt; - - -dt dt,
-t +t <t
xuioe’“io‘io . .,uine’“in‘inme’“i‘i (A3)

and after a quite technical recurrence, we find

d
aPr[tio-F v +tin+ti$t]

=/.L|(Pr[t|0+ e +t| gt]_Pl{tlo‘f‘ c . +t|n+t|$t])

(A4)

and similar results for the other members of E&R). Hence,

from Eq. (A2), the time derivative oQMC(t) is
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dQM®
dt OlMlo(l Pl{t

<t]) +pi i{wmi(1-Priti <t])

—pi(Pt <t] =Pt +ti<t])}

+E 2 pioil'"pi i

= "
X{Min(Pl{tio+
Pt +
— wi(Prt +

— Pt +

o+t <t]

S+t <t])
o+t <t]

ot <t} (A5)

By using again the relatiofA2), we can express E@A5) as

MC
I

dt = T M

(t)+2 PiiniQV(t).  (A6)

With the relation(5), this result becomes independent of
{mit,
dQM®
dt __<,Z‘i i
This equation is the same as Hd) and we have

[QY(1)- - - QX“(1)]1=[Q4(0) - - - Qu(0) [ exp( Q1)].
(A8)

(A7)

M°<t>+j§i ;i QM"(1).
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