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Scattering solutions of the spinless Salpeter equation
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A method to compute the scattering solutions of a spinless Salpeter eq@tianSchrdinger equation
with a central interaction is presented. This method relies on the three-dimensional Fourier grid Hamiltonian
method used to compute bound states. It requires only the evaluation of the potential at equally spaced grid
points and yields the radial part of the scattering solution at the same grid points. It can be easily extended to
the case of coupled channel equations and to the case of nonlocal interdSibp83-651X%99)02701-4

PACS numbg(s): 02.70—c, 03.65.Pm, 11.86:m

. INTRODUCTION whereT depends only on the square of the relative impulsion

D between the particle§/, is a local interaction that depends
the relative distance, aril is the asymptotic kinetic en-
ergy of the two interacting particles. This equation is a spin-

ss Salpeter equation if

Numerous technigues have been developed to compu
the scattering solutions of a Schlinger equation. Simple
Runge-Kutta methods can be performed in the case of a loc
potential and discretization of the integration domain can be
used for a nonlocal interactidid]. All these techniques can T = J52+ m+ J52+ m2

N = m{+ +m5;—m;—m,, 2
be used because the kinetic energy operator can be expressed VP ! VP 2 1 e @
in terms of a derivative operator. This is no longer true in theyherem, andm, are the masses of the particieee use the
case of a spinless Salpeter equation for which the kinetiatyral unitsi =c=1 throughout the text Equation(1) is a

energy is a complicated square-root operator. Schralinger equation if
In a previous papef2] we have developed a method to
compute the eigenvalues of a spinless Salpeter equation. This . p? ) m;my
method relies on the fact that the kinetic energy operator is T= ﬂ with = m+m, ()

best represented in momentum space, while the potential en-
ergy is generally given in coordinate space. It requires only |n configuration space, Eql) is written
the evaluation of the potential at equally spaced grid points
and yields directly the amplitude of the solution at the same
grid points. This method is derived from the Fourier grid
Hamiltonian method3,4] developed to compute the solution
of the one-dimensional Schdimger equation and conse- In the following, we consider only the case of a local central
quently was called the three-dimensional Fourier grid Hamil4otential
tonian method. It appears very accurate and simple to handle. ~

In this paper we show that the three-dimensional Fourier (FIVIF")=V(r)&6(F—F") with r=|f]. (5
grid Hamiltonian method can be used to compute the scat- )
tering solutions of a spinless Salpeter equationa Schie ~ consequently, the wave function has the form
dinger equation We focus our attention on the case of a iy . P
purely central local potential, but the method can also be (FIW)=R(r)Y,n(F) with F=r/r. (6)
applied if the potential is nonlocal or if couplings exist be- Using the method developed in Ré2], Eq. (4) can be re-
tween different channels. To our knowledge, this is the first,itten as
time that the scattering solutions of the spinless Salpeter
equation are presented.

| watiey+@weeiwar -y, @

jdr'r'u.u’)f dq ET(j (anii(ar’)
0 0

Our method is outlined in Sec. Il. Test applications of the 7—Tr
method are presented in Sec. lll. A brief summary is given in
Sec. IV. +V(ru(r)=Eu(r), (7)
where u,(r)=rR,(r) is the regularized radial function and
Il. METHOD the functionsj,(qr) are spherical Bessel functions.
A. Theory Using the orthogonality relation

We assume that the Hamiltonian can be written as the 2 (= _ o )
sum of the kinetic energy and a potential energy operator ;XX JO Ji(@x)i(ax’)gdg= 8(x—x"), ®

V. The scattering equation is given by
o one can show that;(r)erj,(kr), with k fixed, is a solution
[T+V]|V)=E|V), (1)  of Eq. (7) with vanishing potential. The relative energyis
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then equal to/k?+ m7+ \k?+ m5—m,; —m, in the case of a -

. . . . il = AND
spinless Salpeter equation ak@l2u in the case of a Schro N3 IJ E S JI( S')h( SJ) =A5. (13
dinger equation.

- One can thus expect thaf")= 5, for all values ofN and
B. Discretization I. Actually, the situation Is less favorable. In R¢2] we

In order to compute the scattering solutions of &, we ~ Show that, fol =0, we have
replace the continuous varialleby a grid of discrete values (NJ1=0)_ —_—
r, defined by Aij =¢; forij=1,...N-1 (14

r=iA with i=0,1,..N, (9) We have verified numerically that

lim A{M"Y=5,; forij=1..N-1, (158

N—o

where A is the uniform spacing between the grid points.
Regularity at the origimy=0 imposeay;(ry) =0. In the fol-
Ipwing, we always consider a poten.tial with a finite range lim AN>D~s. forij=1,...N—1. (15b
lim, .. rV(r)=0 (the case of scattering by a Coulomb-like Nosw :

potential is not considered hereDutside the range of the

potential, the solution is a phase shifted free wave functionConsequently, the accuracy of this method becomes poorer
For a value ofry=NA sufficiently large, we choose to set whenl increases; nevertheless, for large enough number of
arbitrarily u;(ry)=1 in order to fix the normalization of the grid points, very good results can be obtained.

wave function. For scattering problems, it is also interesting to calculate
As explained in Ref[2], the spacing\ in the configura-  the values of theA(N"" quantity. One can also expect that
tion space determines the grid spaciklg in the momentum  AN'"= 5, for all values ofN andl. Actually, it is easy to

space. Therefore, we have a grid in the configuration spacghow that
and a corresponding grid in the momentum space
ANI=0=0, (16)
s _
ks=sAk=J7x With s=0,1,..N. (100 For other values of, we have verified numerically that

lim AN'*®=0 fori=1,..N and | even,

N— oo

If we note thatV;=V(r;), the discretization procedure re-

places the continuous equati6r) by a matrix equation (179
N—-1
: lim AN'*9=26, for i=1,..N and| odd.
S [Hi—E6;]¢=—Hi for i=1,...N—1, (11) oS N for
=t (17b)
where The simple way to obtain a correct normalization for the

solutions, that is to say, a value of 1 for the regularized radial
_cm 2 ™ i evs. part of the wave function at the last point of integration, is to
Hij J ]' NS Ji SJ e solve two different linear systems with respect to the parity
(12) of the angular momentum. As we shall show in the next
section, the following procedures allows us to obtain accu-
The discrete solutiorp; of the linear systengll) gives ap- rate solutions of the scattering problem:
proximately the values of the radial part of the solution of
Eq. (7) at the grid pointsip;=u,(r;). The phase shift can be 2 H _Es
computed by using the values of the wave function at two [Hjj ij1¢= ~Hin-a
points in the region where the potential is vanishiBg
This method can also be used in the case of a nonlocal for i=1,...N—2 and| even,
potential and in the case of coupled-channel calculations. (183
Some details about the implementation of such problems are
given in Ref.[2]. N-1
Actually, the scattering solution cannot be obtained di- >, [Hij—Edjléj=—Hin/2
rectly from Eq.(11). For instance, in the case of a zero =1

N-2

angular momentum solution, it is easy to see tHa;=0. for i=1. . N—1 and| odd.
Consequently, we have to sg{(ry_41) =1 and to restrict the

summation in Eq(11) to N—2 [the pointu,(ry) cannot be (18b)
determined Other normalization problems appear for all

values of angular momentum. All are due to the discretiza- . NUMERICAL IMPLEMENTATION

tion procedure as explained below.

The three-dimensional Fourier grid Hamiltonian method
relies on the relatio8). The equivalent discrete orthogonal-  As noted above, solutions of the nonrelativistic and semi-
ity relation on our grid of points is relativistic free equatior(7) can be expressed in terms of

A. Free solutions
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FIG. 1. Regularized radial paR,(r) of computed solutiongdotted lineg and the exact solutio¢solid line) for the semirelativistic free
equation with a given relative kinetic energy and a zero angular momentum. The computed solutions are given for the same spacing, but for
different values ofry. The value of the parametes=NAk/7 is also presented. The energy is chosen in order $haB for ry
=40 GeV*. All computed wave functions are normalized to match the exact solution.

spherical Bessel functions. It can be easily shown that the V(r)=—V0e*r2’a2 (19)
vector{r;jo(kr;); i=1,...N—2}, up to a normalization con-

stant, is a solution of the syste(®8a in the absence of a for two identical particlesn,=m,=m.

potential forl =0 if k=(a/NA)s with s=1,... N—2. This In the free case, the computed solution can differ strongly
vector is no longer a solution K is not a integer multiple of  from the real solution near the last pom. This is also the
w/NA. In this case the computed solution matches the soluease when a potential is turned on. The phase shift can be
tion of the continuous equatio(T) everywhere, except near computed with two values of the numerical solution evalu-
the last pointry of the domain of integration. This situation ated at two different points, andr . If p or g is too close

is illustrated in Fig. 1 for the semirelativistic free equation.io N, then the value of the phase shift can be very bad.
T_he regularized radial part of the computed solution for_ @0bviously, the two points must be taken in a region where
given energy is presented for the same value of the spacing,e potential can be neglected with respect to the relative
but for different values of . The relative kinetic energy \inetic energy. A good procedure to get a reliable phase shift
being fixed, different values ofy correspond to different is to compute the wave function with a large valuergf

Yﬁéusosrgor ttgg Spjrat‘.rgﬁ:sé.f\r/greffoar?] tshheO\év ;]ctﬂ;lcs)l f'tggr:e tg:rt] Then the phase shift can be computed with two adjacent
. pu utions dirier r xact solution w pointsr, andr,_; as a function of the indep. By decreas-
is not an integer. The situation is not modified by a change o p p . e

ing the value ofp from N, the phase shifts will first strongly

the energy. d rapidly reach a stable val long g |
If the angular momenturhis different from zero, then the V&Y @nd rapidly reach a stable vaiug, as long s large

vector{r,j,(kr;)} is not an exact solution of the systdf8a enough to not. fal! in a regiqn where the potential cgnnot be
or (18b). Nevertheless, a very good approximation of theneglected. Thl_s situation is |IIu§trated |n_F|g._2: Ir_l this f|gure
continuous free solution can be obtained with correct valuef® Phase shift for two identical semirelativistic particles
for the parametera andr,. Again, the computed and the With m=1GeV is plotted as a function af, for two values
exact solutions can differ strongly near the last pojpt Itis  Of the relative energy and for two valuesmf. The Gauss-
worth noting that the differences between the computed antin potential is characterized by,=0.5 GeV and a
the exact solutions are much smaller in the nonrelativistic= 10 GeV L. It is worth noting that the variation of the
case, whatever the value bf phase shifts is much larger for the semirelativistic case than
In the free case, the phase shift is expected to be zerdor the nonrelativistic case.
Numerically, the phase shift can be determined by using two Scattering states have been calculated with our method for
points of the computed solution. If these points are chosen ifwo nonrelativistic particles interacting with a Gaussian po-
the region neary, the phase shift found can be different tential. In this case, wave functions and phases shifts can also
from zero. On the contrary, when the two points are taken fape computed with a great variety of methods. For a large
fromry, the phase shift value vanishes. range of relative energy and for angular momentum varying
from O to 4, we have checked that all approaches give the
same results. Within our method, a relative accuracy of at
We have tested our method with different finite rangeleast 104 for phase shifts can be obtained with a grid con-
potentials in the case of symmetric or asymmetric systemgaining 200-400 points. Obviously, the interest of our
In this section we shall present only some results obtainedhethod is to compute scattering solutions in the semirelativ-
with a Gaussian potential istic case.

B. Gaussian potential
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FIG. 2. Phase shift$ in radians for two identical semirelativistic particles witi=1 GeV, interacting via a Gaussian potential with
V,=0.5 GeV anda=10 GeV *. The phase shifts are plotted as a functiorr pfsee Sec. Ill B for two values of the relative energy and
for two values ofry . The potential as a function ofis also indicated.

It is shown in the Appendix that a spinless Salpeter equa- IV. SUMMARY
tion with a particular separable nonlocal potential can be The three-dimensional Fourier grid Hamiltonian method,

transformed into a Schdinger-like nonlocal equation. In used in a previous work to compute bound stiBsappears
this case, the scattering semirelativistic equation can be P P pp

solved directly by the Fourier grid Hamiltonian method or 85 @ convenient method to find the scattering solutions of a

using the equivalent Schadnger-like form by the usual tech- spinless Salpeter equatigar a Schrainger equation It has

) o the advantage of simplicity since it requires only the evalu-
nigues. We have verified, for several values of the param- . . . . g
ation of the potential at some grid points and it generates

eters and for different values of the relative kinetic energy, .. . .
: o ~7directly the values of the radial part of the wave function at
that all methods give the same results. This yields a direc . .
e the same grid points. Moreover, the method can be extended
verification of our approach. : .
. o . . to the cases of nonlocal interaction or coupled-channel equa-
Finally, we give, in Table I, the phase shifts for two iden- _. L , !
. . ; . . : . tions. To our knowledge, this is the first time that the scat-
tical particles interacting via a Gaussian potential as a func- . : . .
. . oS tering solutions of the spinless Salpeter equation have been
tion of the relative kinetic energy. Results have been com-
L , L . presented.
puted for a nonrelativistic and a semirelativistic kinematics

Meson-meson scattering has been recently investigated in
and for two values of the angular momentunAs expected, e
: o . ... terms of quark degrees of freedom within the framework of
phase shifts are similar for low relative energy and differ

. the nonrelativistic resonating group methgdl. From this
when energy increases. work it appears that the use of a semirelativistic kinematics
is necessary to avoid inconsistencies related to the nonrela-
tivistic formalism. We have calculated a semirelativistic ver-
sion of the pion-pion scattering equation. This equation is a
scattering spinless Salpeter equation. In this framework, the
method presented here appears suitable to calculate the cor-
responding phase shiffg].

The accuracy of the solutions of the numerical method

TABLE 1. Phase shifts for two identical particles witm
=1 GeV as a function of the relative kinetic energy The inter-
action is a Gaussian potential withy=0.1 GeV anda=5 GeV !
[see Eq.(19)]. Results are given for a nonrelativistiblR) and a
semirelativistic(SR) kinematics and for two values of the angular

momentuml .
presented here can easily be controlled since it depends only
I E (GeV) Sur (rad Ser (rad) on two parameters: the number of grid points and the largest
value of the radial distance considered to perform the calcu-
0 0.001 —-0.192 —0.189 lation. This distance must be large enough to fall in the re-
0.01 —0.627 —0.619 gion where the potential can be neglected with respect to the
0.1 1.363 1.376 asymptotic kinetic energy. Both parameters can be automati-
1 0.447 0.524 cally increased until a convergence is reached for phase
10 0.156 0.256 shifts.
1 0.001 -0.231 —0.226 The method involves the use of matrices of orblex N,
0.01 -0.931 —0.925 whereN is the number of grid points. Generally, the most
0.1 1.241 1.254 time consuming part of the method is the solution of the
1 0.479 0.517 linear system. This is not a problem for modern computers,
10 0.156 0.256 even for personal computer stations. Moreover, several pow-

erful techniques exist and can be used convenidAfly.
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APPENDIX: PARTICULAR CASE OF THE SPINLESS XV(r) fo dr'r’2V(r")Ry(r"),
SALPETER EQUATION
A3
The spinless Salpeter equation for two identical particles _ _ _ ( ) )
interacting via a nonlocal potential can be written whereRg(r) is the radial part of th&-wave function¥ (r).
It has been shown in Reff8] that
2\/ﬁ2+m7\P(F):M\P(F)—J dr' W(r,r")w(r’). \/me*mrzdf—:Ko(mr), (A%)

(A1)
whereK(x) is a modified Bessel functiosee[9], p. 952.

Acting on both sides with the square-root operator gives In this case, if we choos¥/(r)=exp(—mr), then Eq.(Al)
reduces to a nonlocal Sclioger-like equation

=2 2 P\ — 2\ =21 > =27 >/ d2 M2
4(F%+ m?) W (7) M(M‘I'(r) f AP W(F, )W (F >) (de‘m2+T (1) = V(M e~™+ 8mKq(mr)
—ZJ dr’ B2+ m?W(F, i)W (F"). o ,
>< Iy ! A—Mr ’
(A2) rfo dr'r'e ug(r’),
: > o1y _ ) : (AS)

If the potential has the formV(r,r')=VyV(r)V(r') and if

we perform the integrations on angular variables, we obtainvhereug(r')=r'Ry(r').
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