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Scattering solutions of the spinless Salpeter equation

F. Brau and C. Semay
Universitéde Mons-Hainaut, Place du Parc 20, B-7000 Mons, Belgium

~Received 4 February 1998!

A method to compute the scattering solutions of a spinless Salpeter equation~or a Schro¨dinger equation!
with a central interaction is presented. This method relies on the three-dimensional Fourier grid Hamiltonian
method used to compute bound states. It requires only the evaluation of the potential at equally spaced grid
points and yields the radial part of the scattering solution at the same grid points. It can be easily extended to
the case of coupled channel equations and to the case of nonlocal interactions.@S1063-651X~99!02701-4#

PACS number~s!: 02.70.2c, 03.65.Pm, 11.80.2m
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I. INTRODUCTION

Numerous techniques have been developed to com
the scattering solutions of a Schro¨dinger equation. Simple
Runge-Kutta methods can be performed in the case of a l
potential and discretization of the integration domain can
used for a nonlocal interaction@1#. All these techniques can
be used because the kinetic energy operator can be expr
in terms of a derivative operator. This is no longer true in
case of a spinless Salpeter equation for which the kin
energy is a complicated square-root operator.

In a previous paper@2# we have developed a method
compute the eigenvalues of a spinless Salpeter equation.
method relies on the fact that the kinetic energy operato
best represented in momentum space, while the potentia
ergy is generally given in coordinate space. It requires o
the evaluation of the potential at equally spaced grid po
and yields directly the amplitude of the solution at the sa
grid points. This method is derived from the Fourier gr
Hamiltonian method@3,4# developed to compute the solutio
of the one-dimensional Schro¨dinger equation and conse
quently was called the three-dimensional Fourier grid Ham
tonian method. It appears very accurate and simple to han

In this paper we show that the three-dimensional Fou
grid Hamiltonian method can be used to compute the s
tering solutions of a spinless Salpeter equation~or a Schro¨-
dinger equation!. We focus our attention on the case of
purely central local potential, but the method can also
applied if the potential is nonlocal or if couplings exist b
tween different channels. To our knowledge, this is the fi
time that the scattering solutions of the spinless Salp
equation are presented.

Our method is outlined in Sec. II. Test applications of t
method are presented in Sec. III. A brief summary is given
Sec. IV.

II. METHOD

A. Theory

We assume that the Hamiltonian can be written as
sum of the kinetic energyT̂ and a potential energy operato
V̂. The scattering equation is given by

@ T̂1V̂#uC&5EuC&, ~1!
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whereT̂ depends only on the square of the relative impuls
pW between the particles,V̂ is a local interaction that depend
on the relative distance, andE is the asymptotic kinetic en
ergy of the two interacting particles. This equation is a sp
less Salpeter equation if

T̂5ApW 21m1
21ApW 21m2

22m12m2 , ~2!

wherem1 andm2 are the masses of the particles~we use the
natural units\5c51 throughout the text!. Equation~1! is a
Schrödinger equation if

T̂5
pW 2

2m
with m5

m1m2

m11m2
. ~3!

In configuration space, Eq.~1! is written

E @^rWuT̂urW8&1^rWuV̂urW8&#^rW8uC&drW85E^rWuC&. ~4!

In the following, we consider only the case of a local cent
potential

^rWuV̂urW8&5V~r !d~rW2rW8! with r 5urWu. ~5!

Consequently, the wave function has the form

^rWuC&5Rl~r !Ylm~ r̂ ! with r̂ 5rW/r . ~6!

Using the method developed in Ref.@2#, Eq. ~4! can be re-
written as

2

p
r E

0

`

dr8r 8ul~r 8!E
0

`

dq q2T~q2! j l~qr ! j l~qr8!

1V~r !ul~r !5Eul~r !, ~7!

where ul(r )5rRl(r ) is the regularized radial function an
the functionsj l(qr) are spherical Bessel functions.

Using the orthogonality relation

2

p
xx8E

0

`

j l~qx! j l~qx8!q2dq5d~x2x8!, ~8!

one can show thatul(r )}r j l(kr), with k fixed, is a solution
of Eq. ~7! with vanishing potential. The relative energyE is
1207 ©1999 The American Physical Society
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1208 PRE 59F. BRAU AND C. SEMAY
then equal toAk21m1
21Ak21m2

22m12m2 in the case of a
spinless Salpeter equation andk2/2m in the case of a Schro¨-
dinger equation.

B. Discretization

In order to compute the scattering solutions of Eq.~7!, we
replace the continuous variabler by a grid of discrete values
r i defined by

r i5 iD with i 50,1,...,N, ~9!

where D is the uniform spacing between the grid poin
Regularity at the originr 050 imposesul(r 0)50. In the fol-
lowing, we always consider a potential with a finite ran
limr→` rV(r )50 ~the case of scattering by a Coulomb-lik
potential is not considered here!. Outside the range of the
potential, the solution is a phase shifted free wave funct
For a value ofr N5ND sufficiently large, we choose to se
arbitrarily ul(r N)51 in order to fix the normalization of the
wave function.

As explained in Ref.@2#, the spacingD in the configura-
tion space determines the grid spacingDk in the momentum
space. Therefore, we have a grid in the configuration sp
and a corresponding grid in the momentum space

ks5sDk5
sp

ND
with s50,1,...,N. ~10!

If we note thatVi5V(r i), the discretization procedure re
places the continuous equation~7! by a matrix equation

(
j 51

N21

@Hi j 2Ed i j #f j52HiN for i 51,...,N21, ~11!

where

Hi j 5
2p2

N3 i j (
s51

N

s2TXS ps

ND D 2Cj l S p

N
siD j l S p

N
s jD1Vid i j .

~12!

The discrete solutionf i of the linear system~11! gives ap-
proximately the values of the radial part of the solution
Eq. ~7! at the grid points:f i.ul(r i). The phase shift can b
computed by using the values of the wave function at t
points in the region where the potential is vanishing@5#.

This method can also be used in the case of a nonl
potential and in the case of coupled-channel calculatio
Some details about the implementation of such problems
given in Ref.@2#.

Actually, the scattering solution cannot be obtained
rectly from Eq. ~11!. For instance, in the case of a ze
angular momentum solution, it is easy to see thatHiN50.
Consequently, we have to setul(r N21)51 and to restrict the
summation in Eq.~11! to N22 @the pointul(r N) cannot be
determined#. Other normalization problems appear for a
values of angular momentum. All are due to the discreti
tion procedure as explained below.

The three-dimensional Fourier grid Hamiltonian meth
relies on the relation~8!. The equivalent discrete orthogona
ity relation on our grid of points is
.

.

ce

f

o

al
s.
re

-

-

2p2

N3 i j (
s51

N

s2 j l S p

N
siD j l S p

N
s jD5D i j

~N,l ! . ~13!

One can thus expect thatD i j
(N,l )5d i j for all values ofN and

l . Actually, the situation is less favorable. In Ref.@2# we
show that, forl 50, we have

D i j
~N,l 50!5d i j for i , j 51,...,N21. ~14!

We have verified numerically that

lim
N→`

D i j
~N,l 51!5d i j for i , j 51,...,N21, ~15a!

lim
N→`

D i j
~N,l .1!'d i j for i , j 51,...,N21. ~15b!

Consequently, the accuracy of this method becomes po
when l increases; nevertheless, for large enough numbe
grid points, very good results can be obtained.

For scattering problems, it is also interesting to calcul
the values of theD iN

(N,l ) quantity. One can also expect th
D iN

(N,l )5d iN for all values ofN and l . Actually, it is easy to
show that

D iN
~N,l 50!50. ~16!

For other values ofl , we have verified numerically that

lim
N→`

D iN
~N,lÞ0!50 for i 51,...,N and l even,

~17a!

lim
N→`

D iN
~N,lÞ0!52d iN for i 51,...,N and l odd.

~17b!

The simple way to obtain a correct normalization for t
solutions, that is to say, a value of 1 for the regularized rad
part of the wave function at the last point of integration, is
solve two different linear systems with respect to the pa
of the angular momentum. As we shall show in the ne
section, the following procedures allows us to obtain ac
rate solutions of the scattering problem:

(
j 51

N22

@Hi j 2Ed i j #f j52HiN21

for i 51,...,N22 and l even,

~18a!

(
j 51

N21

@Hi j 2Ed i j #f j52HiN/2

for i 51,...,N21 and l odd.

~18b!

III. NUMERICAL IMPLEMENTATION

A. Free solutions

As noted above, solutions of the nonrelativistic and se
relativistic free equation~7! can be expressed in terms o
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FIG. 1. Regularized radial partR0(r ) of computed solutions~dotted lines! and the exact solution~solid line! for the semirelativistic free
equation with a given relative kinetic energy and a zero angular momentum. The computed solutions are given for the same spaci
different values ofr N . The value of the parameters5NDk/p is also presented. The energy is chosen in order thats53 for r N

540 GeV21. All computed wave functions are normalized to match the exact solution.
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spherical Bessel functions. It can be easily shown that
vector$r i j 0(kri); i 51,...,N22%, up to a normalization con
stant, is a solution of the system~18a! in the absence of a
potential for l 50 if k5(p/ND)s with s51,...,N22. This
vector is no longer a solution ifk is not a integer multiple of
p/ND. In this case the computed solution matches the s
tion of the continuous equation~7! everywhere, except nea
the last pointr N of the domain of integration. This situatio
is illustrated in Fig. 1 for the semirelativistic free equatio
The regularized radial part of the computed solution fo
given energy is presented for the same value of the spac
but for different values ofr N . The relative kinetic energy
being fixed, different values ofr N correspond to differen
values for the parameters. We can show in this figure tha
the computed solutions differ from the exact solution whes
is not an integer. The situation is not modified by a change
the energy.

If the angular momentuml is different from zero, then the
vector$r i j l(kri)% is not an exact solution of the system~18a!
or ~18b!. Nevertheless, a very good approximation of t
continuous free solution can be obtained with correct val
for the parametersD and r N . Again, the computed and th
exact solutions can differ strongly near the last pointr N . It is
worth noting that the differences between the computed
the exact solutions are much smaller in the nonrelativi
case, whatever the value ofl .

In the free case, the phase shift is expected to be z
Numerically, the phase shift can be determined by using
points of the computed solution. If these points are chose
the region nearr N , the phase shift found can be differe
from zero. On the contrary, when the two points are taken
from r N , the phase shift value vanishes.

B. Gaussian potential

We have tested our method with different finite ran
potentials in the case of symmetric or asymmetric syste
In this section we shall present only some results obtai
with a Gaussian potential
e

u-

.
a
g,

f

s

d
c

o.
o
in

r

s.
d

V~r !52V0e2r 2/a2
~19!

for two identical particlesm15m25m.
In the free case, the computed solution can differ stron

from the real solution near the last pointr N . This is also the
case when a potential is turned on. The phase shift can
computed with two values of the numerical solution eva
ated at two different pointsr p andr q . If p or q is too close
to N, then the value of the phase shift can be very b
Obviously, the two points must be taken in a region whe
the potential can be neglected with respect to the rela
kinetic energy. A good procedure to get a reliable phase s
is to compute the wave function with a large value ofr N .
Then the phase shift can be computed with two adjac
pointsr p andr p21 as a function of the indexp. By decreas-
ing the value ofp from N, the phase shifts will first strongly
vary and rapidly reach a stable value, as long asr p is large
enough to not fall in a region where the potential cannot
neglected. This situation is illustrated in Fig. 2. In this figu
the phase shift for two identical semirelativistic particl
with m51 GeV is plotted as a function ofr p for two values
of the relative energy and for two values ofr N . The Gauss-
ian potential is characterized byV050.5 GeV and a
510 GeV21. It is worth noting that the variation of the
phase shifts is much larger for the semirelativistic case t
for the nonrelativistic case.

Scattering states have been calculated with our method
two nonrelativistic particles interacting with a Gaussian p
tential. In this case, wave functions and phases shifts can
be computed with a great variety of methods. For a la
range of relative energy and for angular momentum vary
from 0 to 4, we have checked that all approaches give
same results. Within our method, a relative accuracy o
least 1024 for phase shifts can be obtained with a grid co
taining 200–400 points. Obviously, the interest of o
method is to compute scattering solutions in the semirela
istic case.
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FIG. 2. Phase shiftsd in radians for two identical semirelativistic particles withm51 GeV, interacting via a Gaussian potential wi
V050.5 GeV anda510 GeV21. The phase shifts are plotted as a function ofr p ~see Sec. III B! for two values of the relative energy an
for two values ofr N . The potential as a function ofr is also indicated.
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It is shown in the Appendix that a spinless Salpeter eq
tion with a particular separable nonlocal potential can
transformed into a Schro¨dinger-like nonlocal equation. In
this case, the scattering semirelativistic equation can
solved directly by the Fourier grid Hamiltonian method
using the equivalent Schro¨dinger-like form by the usual tech
niques. We have verified, for several values of the para
eters and for different values of the relative kinetic ener
that all methods give the same results. This yields a di
verification of our approach.

Finally, we give, in Table I, the phase shifts for two ide
tical particles interacting via a Gaussian potential as a fu
tion of the relative kinetic energy. Results have been co
puted for a nonrelativistic and a semirelativistic kinemat
and for two values of the angular momentuml . As expected,
phase shifts are similar for low relative energy and dif
when energy increases.

TABLE I. Phase shifts for two identical particles withm
51 GeV as a function of the relative kinetic energyE. The inter-
action is a Gaussian potential withV050.1 GeV anda55 GeV21

@see Eq.~19!#. Results are given for a nonrelativistic~NR! and a
semirelativistic~SR! kinematics and for two values of the angul
momentuml .

l E ~GeV! dNR ~rad! dSR ~rad!

0 0.001 20.192 20.189
0.01 20.627 20.619
0.1 1.363 1.376
1 0.447 0.524

10 0.156 0.256
1 0.001 20.231 20.226

0.01 20.931 20.925
0.1 1.241 1.254
1 0.479 0.517

10 0.156 0.256
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IV. SUMMARY

The three-dimensional Fourier grid Hamiltonian metho
used in a previous work to compute bound states@2#, appears
as a convenient method to find the scattering solutions o
spinless Salpeter equation~or a Schro¨dinger equation!. It has
the advantage of simplicity since it requires only the eva
ation of the potential at some grid points and it genera
directly the values of the radial part of the wave function
the same grid points. Moreover, the method can be exten
to the cases of nonlocal interaction or coupled-channel eq
tions. To our knowledge, this is the first time that the sc
tering solutions of the spinless Salpeter equation have b
presented.

Meson-meson scattering has been recently investigate
terms of quark degrees of freedom within the framework
the nonrelativistic resonating group method@6#. From this
work it appears that the use of a semirelativistic kinema
is necessary to avoid inconsistencies related to the non
tivistic formalism. We have calculated a semirelativistic ve
sion of the pion-pion scattering equation. This equation i
scattering spinless Salpeter equation. In this framework,
method presented here appears suitable to calculate the
responding phase shifts@7#.

The accuracy of the solutions of the numerical meth
presented here can easily be controlled since it depends
on two parameters: the number of grid points and the larg
value of the radial distance considered to perform the ca
lation. This distance must be large enough to fall in the
gion where the potential can be neglected with respect to
asymptotic kinetic energy. Both parameters can be autom
cally increased until a convergence is reached for ph
shifts.

The method involves the use of matrices of orderN3N,
whereN is the number of grid points. Generally, the mo
time consuming part of the method is the solution of t
linear system. This is not a problem for modern compute
even for personal computer stations. Moreover, several p
erful techniques exist and can be used conveniently@10#.
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APPENDIX: PARTICULAR CASE OF THE SPINLESS
SALPETER EQUATION

The spinless Salpeter equation for two identical partic
interacting via a nonlocal potential can be written

2ApW 21m2C~rW !5MC~rW !2E drW8W~rW,rW8!C~rW8!.

~A1!

Acting on both sides with the square-root operator gives

4~pW 21m2!C~rW !5M S MC~rW !2E drW8W~rW,rW8!C~rW8! D
22E drW8ApW 21m2W~rW,rW8!C~rW8!.

~A2!

If the potential has the formW(rW,rW8)5V0V(r )V(r 8) and if
we perform the integrations on angular variables, we ob
,

s

y

.

s

in

S pW 21m22
M2

4 DR0~r !52pV0~M12ApW 21m2!

3V~r !E
0

`

dr8r 82V~r 8!R0~r 8!,

~A3!

whereR0(r ) is the radial part of theS-wave functionC(rW).
It has been shown in Ref.@8# that

ApW 21m2e2mr5
4m

p
K0~mr!, ~A4!

whereK0(x) is a modified Bessel function~see@9#, p. 952!.
In this case, if we chooseV(r )5exp(2mr), then Eq.~A1!
reduces to a nonlocal Schro¨dinger-like equation

S d2

dr2 2m21
M2

4 Du0~r !5V0„Mpe2mr18mK0~mr!…

3r E
0

`

dr8r 8e2mr8u0~r 8!,

~A5!

whereu0(r 8)5r 8R0(r 8).
,
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