PHYSICAL REVIEW E VOLUME 59, NUMBER 1 JANUARY 1999

Decomposition of the point-dipole field into homogeneous and evanescent parts
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In near-field optics the resolution and sensitivity of measurements depend on the abundance of evanescent
waves in relation to propagating waves. The electromagnetic field propagator is related to the scalar spherical
wave, for which the Weyl expansion is a half-space representation containing both evanescent and homoge-
neous plane waves. Making use of these results, we decompose the dyadic free-space Green function into its
evanescent and homogeneous parts and show that some approaches put forward in the literature are inconsis-
tent with this formulation. We express the results in a form that is suitable for numerical computation and
illustrate the field decomposition for a point dipole in some typical cd&63-651X99)05001-1

PACS numbegs): 41.20.Jb, 07.79.Fc

I. INTRODUCTION II. DIPOLE FIELD

We consider a point dipol® located in the origin, gen-
ating a monochromatic field which at an arbitrary observa-
on pointr can be written(in Sl unity as

In the past few years near-field optical microscopyer
(SNOM or NSOM has become an important practical tool to ;
acquire information about the optical properties of matter in
the nanometer scalgl,2]. The near-field technique allows
the classical diffraction limit to be surpassed typically by an E(r)— Mow
order of magnitude. It is generally accepted that in near-field (= Aqr
optics the high spatial resolution is obtained through detec-
tion of the evanesceltbr nonradiating electromagnetic field _ » )
which concentrates near the sample surface. However, tHd€re o is the permeability of the vacuu is the angular
question of how the nanoscale information is stored in thdrequency of the light, ands(r) is the dyadic free-space
evanescent field is rather complicatggl. In any case the Green function. This function contains all the information
sensitivity of a near-field measurement strongly depends oabout the field components created by the source dipole
the ratio of this evanescent field to the homogene@rs pointing in an arbitrary direction. The dyadic Green function
propagating component that is always present. is expressible af7]

A careful analysis of the signal detected in near-field mea-
surement requires a fully electromagnetic treatment of the
optical fields involved. Useful insight into the problem can G(r)=
be gained by considering a point dipole and by decomposing
the associated free-space dyadic Green function into its

ropagating and nonpropagating constituents. An analogous <. . . .
gec%rr?posi?ion has prpevigugly bgen discussed for the cage éﬁhereu is the unit dyadick= w/c=2m/\ is the wave num-
the scalar spherical wa\é,5]. In Ref.[5] an expression in er of the field, andt is the speed of light in vacuum. The

terms of Bessel and Lommel functions was found for thefunCtion G(r)=exp(kr)/r is the outgoing scalar free-space

evanescent field contribution. Recently, a closed-form forC'€€n function which satisfies the inhomogeneous Helm-

mula for the evanescent dyadic Green function was Sugholtz equation with as-function source term in the origin.

gested and extensively used in SNOM simulatifsis Qn performing the derivations, E(R.2) may also be written
In this paper we decompose the scalar and dyadic fred” the form

space Green functions into their homogeneous and evanes-

cent parts on the basis of proper half-space field representa- -

tions. The results are expressed in a compact form that is G(r)=

suitable for efficient numerical computations. We comment

on the nature of the decompositions and illustrate the point-

source and point-dipole field components in some character- +

istic situations. Our expressions for the evanescent-wave and

homogeneous-wave dyadic Green functions differ in general

from those in Refs[6]; they agree only in one given direc- wherer, is a unit vector in the direction.

tion and we conclude that the method employed in those The objective of this paper is to decompose the total field

works is incorrect. given by Eqg.(2.1), and accordingly the dyadic Green func-

2
G(r)-P. (2.1

U+ VV)G(r), (2.2)
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FIG. 1. Logarithmic(log,o) intensity distributions of the field in the plarye=0, generated by a unit scalar point source located in the
origin. (a) Homogeneous parth) evanescent partc) total field. The results have been calculated Xer633 nm.

tion of Eq.(2.2), into the homogeneous and evanescent partanogeneous plane waves propagating in the various direc-
In order to do this, we first consider the corresponding detions and of exponentially decaying, nonpropagating, eva-

composition of the scalar functioB(r) in source-free half- nescent plane waves. This angular-spectrum representation,
spaces. known as the Weyl expansion, can be writter{ &k

11l. DECOMPOSITION OF THE SCALAR SPHERICAL _ ik f jw 1 ;
G(r)=+— — exgik(px+qy+m|z|)]dp dg

WAVE (=5 | | _+ exdik(px+ay+miz)]dpdg
. . . 3.1
The scalar spherical wave fiefd(r), created by a point S
source in the origin, satisfies the homogeneous scalar Helm-
holtz equation in the source-free half-spaces0 andz  Where
<0. It is convenient to express this wave field in an integral

representation which is composed as a superposition of ho- m=\1-p?—qg? for p?+q?<1, (3.2
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m=iypZ+qg?—1 for p2+qg?>1. (3.3 _ Itis important to note that when writing the Weyl expres-
sion, the whole space is divided into two source-free half-

The scalar fields(r) of Eg. (3.1) can be expressed as a sum spaces separated by the plarve0. For point sources this

of two double integrals division is quite arbitrary and could be made equally well
using any other plane. Each choice of the dividing plane will,
G(r)=Gy(r)+Gg(r), (3.4 however, lead to different mathematical values for the homo-

geneous and evanescent parts in a given point. In all cases

where the evanescent plane waves will decay exponentially in the
ik 1 direction perpendicular to the dividing plane and they will
Gu(r)==— f f — propagate in directions parallel to that plane. Since all the
2m p2rg?<1 M different choices must be considered as correct, the physical
: meaning of the spherical-wave decomposition into its homo-
xexik(pxtay+rmizldpdg (39 geneous and evanescent part is somewhat vague. We argue
ik 1 that the decomposition should be understood simply as a
Ge(r)= > f f y . mathematical tool which becomes meaningful only when ap-
7’ p*+q?>1 M plied to a real physical situation in which the geometry of the
xexdik(px+qy+m|z])Jdpdg  (3.6)  Problem fixes the orientation of the dividing plane.
The functionGy(r) contains all the propagating plane waves IV. DECOMPOSITION OF THE VECTOR FIELD

and is therefore called the homogeneous part of the field.

Similarly, the functionGg(r) contains all the exponentially tio

decaying plane waves and is called the evanescent part.
The functionsG(r) and Gg(r) can be expressed in a

By taking advantage of the results of the preceding sec-
n, we decompose the vector field of the point dipole lo-
cated at the origin into its homogeneous and evanescent
. ; parts. To accomplish this, we only need to divide the dyadic
closed form in two special cases, namely along the Ch@senfree-space Green functiof2.?) into the respective parts

axis and in the plane_=0. However, it appears that ther_e 'S since the corresponding field components are then obtained
no closed-form solution to these functions in an arb|traryfrom Eq.(2.)

direction and the integrals have to be calculated numerically. . ; ;

On making use of the polar coordinates for the integration O.n substituting th? Weyl expans.|c(§.1) into Eq. (2',2)’
variables and performing simple changes in the radial inte!V® find for the dyadic Green' fu.nctloﬁa(r) the following
gration variable, the functionSy(r) and Gg(r) may be angular-spectrum representation:

transformed into a form that is more suitable for numerical

- ik 1 4
calculations, viz., G(r):EJJ, EA(p.Q)

1 .
GH(r)zikf exflia(2)v]d[B(X%,y)V1—v2ldv, (3.7 xexfdik(px+qgy+mlz))jdpdg (4.9

0

where the dyad\:(p,q) takes on the symmetric form
G,E(r)=kf0 exf — a(z2)v]Io[ B(X,y) Vv?+1]dv. (3.8 1-p2 —-pg Fpm
Ap.g)= —ap 1-¢* Fam|. (4.2

Here Jg is the Bessel function of the first kind and order *mp Fmg 1-m?
zero, the coordinate-dependent parametgm and B(X,y)

have the form In Eq. (4.2), and from now on, the upper signs refer to the

regionz=0 and the lower signs to the regiar.0. Note also

a(z)=K|Z, the formal similarity of Eq.4.1) wEh Eq. (3.2); they differ
(3.9 _only by_ the presence qf the dyaw(p,_q)._ Perfo_rming the
B(X,y) =kXZ+Yy?, integration over the entirk space, as indicated in E.1),
leads to expressiof2.3).
andv is the transformed radial integration variable. Formally we could calculate the homogeneoyg+ g2

Expressions3.7) and (3.8) are cylindrically symmetric <1) and evanescenpf+q?>1) parts of the dyadic Green
about thez axis and mirror symmetric with respect to the  function, denoted bys,(r) andGg(r), respectively, by di-
=0 plane. These characteristics are also evident in Figs. 1 rect integration of Eq(4.1). However, it is more convenient
and 1b), in which we have plotted logGy(r)|? and  to determine these functions by substituting into &) the
log10/Ge(r)|? in the planey=0. Furthermore, the total field forms(3.7) and(3.8), which still are in Cartesian coordinates
intensity calculated as the interference of the homogeneousut in which one integration already has been carried out.
and evanescent parts is spherically symmetric as expectaghfortunately, it does not seem possible to perform analyti-
[see Fig. Lc) illustrating logg G(r)|?]. Figure 1b) shows cally the remaining integral to find closed-form expressions
that the evanescent par the envelope of the ridgesle-  for the homogeneous and the evanescent parts. These func-
cays slower in the direction of theaxis and in the plane  tions can, however, be expressed in a rather compact form
=0 than in any other direction. This observation is in accor-containing only simple classes of integrals which can readily
dance with the results presented earlier by Shereta. [9] be computed numerically. By direct calculation we find for
and quite recently by Wolf and Foldst0]. the homogeneous part
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k?(x2—y?) k?x? k?xy [ 2 ikx
ARS H— LY — L=y F—
0 ﬁ?: 1 EZ 2 ?2_ 18 1 2 + B
- k?xy [ 2 k2(y?—x?) k2y? iky
Gu(r)=ik — —LH—L”} 15+ Lt— Ly =—=1L51, 4.3
H(r) ﬁz 8 1 2 0 53 1 ,32 2 B 4.3
ikx ik
IF Lg IFy Lg L;‘
where
i
LY =—[3.B)-BIT],
LYry=15-1%, (4.9
H 1 : IH H_: H
L3(r)=—E[Jo(ﬂ)+|a|0—2|1—|a|2],
and
1 )
m(r):JOv“e'a<Z>vJo[ﬂ(x,y)\/1—v2]du. (4.5
For the evanescent part we find
k?(x?—y? k?x? k?xy [ 2 kx
LAl ]
B B B B B
- k2xy [ 2 } k?(y2—x?) k2y? ky
Ge(r) =k — |= LE-L§ 15+ £ LY =— L& 4.6
e(r) g2 gt 0 I 1”7 b2 B -3 (4.6)
kx k
=5 LS tFy LS LS
|
where they are different. The physical implications are best seen by

considering the homogeneous and evanescent parts of the

1 o :
LE(r)= - [32(8)+BIE], point-dipole field.

The dyadic equation$4.3) and (4.6) are valid for any

point dipole P at the origin, but for simplicity we také
LS(r=15+15, (4.7 =(0,0,1), i.e., a unit dipole pointing in the positizedirec-

1
—[Jo(B)—al§+21T—al5],

LE(n)=
3(r) B X Y

and

|E(r)=fwu“e—W)vJO[ﬂ(x,y) Ju?+1ldv. (4.9 7
0 /

In these equationd, and J, are Bessel functions and the >

parametersx(z) and B(x,y) are the same as in the scalar P

case, given by Eq3.9.

The symmetry properties of the homogeneous and eva-
nescent parts of the dyadic Green function are not as trans-
parent as in the scalar case, and a general discussion of the
symmetries based on Eg&!.3 and (4.6) necessarily be-
comes rather complicated. Formally the expressi@h8)

y=0

\ 4

and(4.6) for the homogeneous and evanescent contributions FIG. 2. lllustration of point dipoleP=(0,0,1) located in the

look very similar, but both mathematically and physically origin and the planes of observationzat A andy=0.
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FIG. 3. Logarithmic(log,) electric energy distributions in the plame=\ for point dipoleP=(0,0,1) at origin.(a) Homogeneous part,
(b) evanescent parfe) total field; A =633 nm.

tion as shown in Fig. 2. The homogeneous and evanescehy a point dipole are seen to have the same characteristics as
parts of the ensuing electric field, denoted By(r) and the corresponding fields produced by the scalar point source
Eg(r), respectively, are then obtained with the help of Eq.(cf. Fig. 1). The homogeneous and evanescent parts exhibit
(2.1). The results, as would be observed in the plarea sharp ridges, while the total field is smooth. As in the scalar
andy=0 (see Fig. 2, are illustrated in Figs. 3 and 4. More case, the evanescent waves decay exponentially only in the
specifically, the logarithmic homogeneous and evanescemiirection and propagate in the plane perpendicular to it.
electric energy density distributions IpfE,(r)|> and  These characteristics do not depend on the direction of the
log,o EE(r)|? in the planez=\ are plotted in Figs. @) and  source dipole. We stress again, however, that the arguments
3(b), respectively, while Fig. @) shows the logarithmic total about the physical meaningfulness of the division stated in
electric energy density lgg E(r)|?. Analogous results per- connection with the scalar functidg®(r) also apply for this
taining to the plang/=0 are illustrated in the three parts of vector field case.

Fig. 4. We note thaE(r)|?+|Eg(r)|?#|E(r)|? because of Let us now consider the form of the evanescent Green
the interference terms. The fiellg (r) andEg(r) generated function in the two special directions of theaxis and the
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FIG. 4. Logarithmic(log,) electric energy distributions in the plage=0 for point dipoleP=(0,0,1) at origin.(a) Homogeneous part,
(b) evanescent parfe) total field; A =633 nm.

z=0 plane. Setting=y=0 in Eqg.(4.1) and integrating over and the homogeneous Green function can be expressed in a
the evanescent waves only, it is straightforward to show thatlosed form. In this case the integrafsin Eq. (4.8) reduce

along thez axis §E(r) can be expressed as to
1 1 \. (1 3 E cosp
2)= ( U+ )kk (4.9 lo(z=0)= ,
Ced=| 3 wezp )V 2 e B
wherek is the unit vector in the direction, i.e., normal to E J1(B)
_ i ; I7(z=0)=— (4.10
the planez=0 that divides the space into the two source-free 1 B

halves. The corresponding homogeneous Green function
along the z axis can be calculated fronGy(z)=G(z)
—§E(z). Similarly, in the planez=0 both the evanescent

sinB cosp
IE(Z:O):__ﬂr__,BT.
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With the help of Eq(4.%@ and I'Hospital’s rule, one obtains §H(r:0)= %iklj. (4.14
for the corresponding., terms
sin cos
Lf(z= 0)= T'B + —Bzﬁ This shows that the homogeneous part in the source point is

finite and the singularity in the total field resides in the eva-

cos B sin B cospB nescent part.

Lg(zzo): > —, (4.11 The result glong the axis, Eq.(4.$_)), is precisely the same
B B B (except for units and an overall minus sjgas that put for-
3,(8) ward in Refs[6], but in those works it is claimed that this
LE(z=0)=— 222 form should hold in all directions. This cannot possibly be
B correct. Apart from the axis and the=0 plane, the leading

: 0 3/2
In the same manner for the homogeneous part, the integra{%rm of the evanescent part of the spherical wavej {

H : _ ]. One can analytically apply the differential operator of
'n 1N Eq. (4.5 in thez=0 plane can be expressed as Eq. (2.2) on this asymptotic form and see that the result does
H sin 8 not contain terms behaving askt/ This shows that except
lg(z=0)= T for the two special directions, the dyadic evanescent Green
function falls faster than kf.
H(z=0)= 2B (4.12
B
i V. CONCLUSIONS
a=0-- P4 2E
In this work we used the known results from scalar-wave
and theLE terms as propagation and decomposed in appropriate half-spaces the
] dyadic free-space Green function into its homogeneous and
LH(z=0)=— cosp il B evanescent parts. We found that properties similar to those
! B B° for scalar fields are also associated with vector fields, i.e.,
. ) that irrespective of the dipole orientation, the dyadic evanes-
H,__ . _SINnB cosB sinpg cent waves decay exponentially in thdirection and propa-
L5(z=0)= —— ——, (4.13 ; ) .
B B B gate parallel to it. This result originates from the fact that the
dyadic free-space Green function is generated by the corre-
H J>(B) sponding scalar Green function.
L3(z=0)= 8 Contrary to what has been proposed in the literature be-

fore, the dyadic Green-function decomposition depends on
By inserting expression&.10 and(4.1)) into Eq.(4.6), one  the choice of the half-spaces, in a fixed reference frame, and
observes that, as in propagation along ztais, the evanes- leads to different expressions for different choices. In any
cent Green function falls off asrlalso in thez=0 plane. practical situation the proper half-space is determined by the

Furthermore, as a limiting case one obtains physical conditions.
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