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Coherence properties of multimode incoherent spatial solitons in noninstantaneous Kerr media
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We investigate the coherence characteristics of multimode incoherent spatial solitons in noninstantaneous
Kerr-like nonlinear media. Other properties of these incoherent solitons are also discussed as a function of their
modal composition.@S1063-651X~99!04001-5#

PACS number~s!: 42.65.Tg, 42.65.Hw, 42.65.Jx
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I. INTRODUCTION

In general, an optical spatial soliton is known to occ
when diffraction effects are exactly balanced by ligh
induced waveguiding@1#. Until recently, optical beam self
focusing in nonlinear media has been investigated only w
the aid of coherent sources@2–8#. In 1996, however, inco-
herent spatial solitons were observed in noninstantane
nonlinear media such as biased photorefractive crys
@9,10#. This was accomplished via the saturable drift pho
refractive nonlinearity, which is also known to support c
herent photorefractive spatial solitons@11,12#. In order to
explain this recently observed behavior, two complement
approaches have been developed. The first one is the
called coherent density method@13#. In this theory, the un-
derlying evolution equation takes the form of a nonline
Schrödinger-like integro-differential equation provided in
tially the coherent density is appropriately weighted with
spect to the angular power spectrum of the incoherent so
@13#. For a specific type of nonlinearity~logarithmic!, this
same approach was found to lead to closed form solut
@14#. The second approach is a self-consistent multim
method @15#. This latter model seeks, in a self-consiste
fashion, multimode soliton solutions whose total intens
can be obtained via intensity superposition of all the mo
guided within the nonlinear induced waveguide. This meth
is capable of identifying incoherent spatial soliton stat
their range of existence, and coherence properties@15#. The
equivalence of these two methods was later establishe
saturable logarithmic nonlinear media by means of exact
sults@16#. Another approach for describing broad incohere
bright solitons was also suggested by Snyder and Mitc
@17#. This ray model is to some extent related to the Vlas
transport description previously suggested by Hasegaw
the theory of random-phase solitons in plasmas@18#. Very
recently incoherent dark solitons were predicted in photo
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fractive crystals@19#. The existence of planar dark and vo
tex solitons was subsequently confirmed experimentally
Chen et al. @20#. Their modal composition and coherenc
properties were later explained and analyzed@21#.

It is worth noting that incoherent solitons, as viewed fro
the perspective of the self-consistent modal theory, are
fact related to the so-called incoherently coupled solitons
photorefractive crystals@22,23# or to the vector solitons in
Kerr media@24#. Within the context of incoherently couple
solitons @22#, Vysloukh et al. @25# have shown that multi-
component coupled soliton modes can be incoherently su
imposed in weakly saturating photorefractive crystals. W
would like to emphasize, however, that there is a subtle
ference between self-trapping an incoherent beam and c
ing a multicomponent soliton. This difference is due to t
statistically varying modal weights of the incoherent bea
@15,16#. Consider first a situation where self-trapping occu
from an incoherent light source. During self-trapping, t
beam continuously excites several modes of the jointly
duced waveguide, established by the time averaged inten
of the speckled beam itself. If the time averaged intensity
decomposed into the modes of the induced waveguide, e
mode will have a certain coupling amount or weight. On t
other hand, when multiple laser beams are incoherently
perimposed~engineering the beam profiles!, the relative
modal weights are time independent and only the rela
phase between each pair of modes changes with time
concerns the crystal, the two situations are exactly the sa
The difference lies in the time dependence of the mode
cupancies. In what follows we examine the properties of
coherent spatial solitons in Kerr media. This is of importan
since thus far analytical results for incoherent bright spa
solitons have been obtained for logarithmic nonlinear me
only @14,16#.

In this paper we demonstrate that incoherent spatial s
tons are possible in noninstantaneous Kerr-like med
Closed form solutions are obtained using the self-consis
multimode approach@15#. It is shown that the intensity pro
file of these incoherent soliton states is of the sech2(x/x0)
type. Moreover, our analysis indicates that, in this case,
peak intensity and spatial width of these incoherent spa
k-
1193 ©1999 The American Physical Society
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solitons are related to the number of allowed modes. T
coherence properties of these soliton states are investig
in detail. Relevant examples are provided.

II. THEORETICAL FORMULATION

We consider a spatially partially incoherent optical be
that propagates in a nonlinear self-focusing Kerr-like m
dium along thez axis. For simplicity we assume that th
beam is planar, that is, it diffracts only along thex direction.
The refractive index of this Kerr-like material varies linear
with the optical intensityI, i.e.,n25n0

21n2I , wheren0 is the
linear part of the refractive index andn2 is the nonlinear
Kerr coefficient. We also make the important assumpt
that the nonlinearity responds much slower than the cha
teristic phase fluctuation time across the incoherent beam
as to avoid speckle-induced filamentation instabilities@26#.
In this regime, the material will experience only the tim
averaged beam intensity. For example, such noninsta
neous Kerr nonlinearities can be encountered in biased
torefractive crystals in the low-intensity regime~i.e., when
the so-called dark irradiance is much larger than the inten
of the optical beam@11,12#! or in materials with therma
nonlinearities@27#. Furthermore, let the total electric fieldE
of this spatially incoherent beam be written in terms o
slowly varying envelopeU, that is,E5U exp(ikz), where the
wave vectork is given byk5k0n05(2p/l0)n0 and l0 is
the free-space wavelength. In this case, it can be rea
shown that the envelopeU evolves according to

FIG. 1. Normalized mode profiles as a function ofh for ~a! n
53 and~b! n54.
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k0
2n2I

2k
U50. ~1!

Let us now assume that the incoherent spatial soliton in
Kerr-like medium has a sech2(x/x0) intensity profile, that is,

I 5I 0 sech2~x/x0!, ~2!

whereI 0 represents the peak intensity of the optical incoh
ent multimode beam andx0 is associated with its spatia
extent. In this case, Eq.~1! takes the form

i
]U

]j
1

1

2

]2U

]h2
1

a2

2
sech2~h!U50. ~3!

In this equation we have used normalized coordinates
quantities, i.e.,h5x/x0 , j5z/kx0

2, anda25k0
2x0

2n2I 0 . The
incoherent spatial soliton solutions of this equation can th
be obtained by expressing the optical envelopeU through a
superposition of all the modes involved, that is,U
}(mcn

mun
m(h)exp(ibmj), wherecn

m are the mode-occupanc
coefficients that vary randomly with time,un

m(h) is the pro-
file of themth-order mode, andbm is its phase constant. Th
discrete indexn stands for the total number of modes a
lowed in the system. By substituting this form ofU into Eq.
~3!, we obtain, for each mode, the ordinary differential equ
tion

d2un
m

dh2
1@a2 sech2~h!22bm#un

m50. ~4!

The mode profilesun
m(h) and their phase constantsbm can

then be found by solving Eq.~4!. In order to find the mode
occupancy coefficients, the self-consistency of this solut
must be satisfied, i.e., the total intensity of this incoher
beam should be given by Eq.~2!. The self-consistency
method relies on the basic concept that a soliton itself i
mode of the self-induced~via the nonlinearity! waveguide.
This was suggested by Askar’yan@28# and later developed
into a self-consistency methodology by Snyderet al. @29# to
analyze coherent solitons. For incoherent bright soliton
was used in@15# and subsequently in@21# for incoherent
dark beams.

III. RESULTS AND DISCUSSION

To find the modal structure of these multimode incoher
spatial solitons, we first adopt the transformationt
5tanh(h), in which case Eq.~4! takes the form

~12t2!
d2un

m

dt2
22t

dun
m

dt
1Fa22

2bm

12t2Gun
m50. ~5!

It can now be easily shown that, whena25n(n11), where
n51,2,...~an integer determined by the amount of nonline
ity! andm51,2,...,n, the allowed modes can be expressed
terms of associated Legendre functions@30#, i.e.,

un
m~h!5Pn

m~ tanhh!, ~6!
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and bm5m2/2, where Pn
m(x) are associated Legendr

functions of the first kind. In general, Pn
m(x)

5(12x2)m/2dmPn(x)/dxm, where Pn(x) denote Legendre
polynomials. The value of the integern ~associated witha2

or the degree of nonlinearity! represents the number of a
lowed modes in the self-induced waveguide andm the mode
index for this case. Note that the lowest-order mode occ
whenm5n, whereas the highest occurs atm51. For a given
value ofn, the statistically varying optical field of the inco
herent spatial soliton is given by

U~h,j!} (
m51

n

cn
mPn

m~ tanhh!exp~ im2j/2!.

Note that the self-consistency condition also requires that
mode-occupancy coefficients also depend on the numbe
modesn. The time averaged intensity of this beam can th
be evaluated from

^uUu2&}I 5 (
m51

n

^ucn
mu2&@Pn

m~ tanhh!#2, ~7!

where we made use of the fact that under incoherent ex
tion the time average of cross-interference terms am
modes is zero@^ci(cj )* &}d i j # @15,16#. Finally, Eq. ~7! can
be used to obtain the mode-occupancy coefficientscn

m that

FIG. 2. Normalized intensity FWHM of Kerr-like incoheren
spatial solitons versus nonlinear index changeDn for n51,2,...,6.

FIG. 3. Spatial coherence function as a function ofh andd for
n52.
rs

e
of
n

a-
g

self-consistently lead to the incoherent spatial solitonI
5I 0 sech2(h) assumed in the very beginning of this analys
It proves convenient to normalize the eigenmodes in the
lowing fashion:ũn

m(h)5@^ucn
mu2&/I 0#1/2un

m(h) or, equivently,
I 0(m51

n @ ũn
m(h)#25I 0sech2(h). The functional form of the

normalized eigenfunctionsũn
m(h) is given in Appendix A.

Figure 1~a! depicts the normalized mode profilesũn
m(h) for a

three-component (n53) multimode incoherent soliton
whereas Fig. 1~b! is for a four-component structur
(n54). Having found closed form solutions for these spat
incoherent solitons, the question naturally arises as to w
factors contribute to their spatial full width at half maximu
~FWHM!. To answer this question one has to consider

FIG. 4. Cross section of the coherence function forn52 and~a!
h50, ~b! h523, and~c! h520.4.
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1196 PRE 59M. I. CARVALHO et al.
expression a25n(n11). More specifically, sincea2

5k0
2x0

2n2I 0 , given the number of guided modesn and the
peak intensityI 0 , the spatial widthx0 can be determined. In

turn one quickly finds the resultx05An(n11)/k0
2n2I 0. Us-

ing Eq.~2! and providedn is known, the intensity FWHM of
these soliton statesvn can be calculated fromvn51.76x0
and thus

vn5
1.76

k0
An~n11!

n2I 0
. ~8!

Note that whenn51 ~‘‘single-mode’’ soliton!, this expres-
sion ~8! is in full agreement with the results previously o
tained for coherent Kerr spatial solitons@1#. Equation~8! can
also be written in terms of a normalized FWHM (vn /l0) as
function of the maximum induced nonlinear index chan

(Dn5n2I 0), i.e., vn /l05(1.76/2p)An(n11)/Dn. Figure
2 shows the dependence of the normalized intensity FW
of these incoherent optical solitons onDn for different val-
ues ofn. This figure clearly shows that for a given nonline
index change, the intensity FWHM tends to increase with
number of modes involved. This should have been ant
pated since the incoherence increases withn. It is also im-
portant to note that in Fig. 2, the existence curves are disc
as opposed to the continuum range found in Ref.@15#. This is
due to the specific sech2(x/x0) intensity shape assumed at th
beginning of our analysis.

We now investigate the coherence properties of these
tial solitons. This is done by evaluating the complex coh
ence factorm12 of these soliton states@31#, which is given by

m12~h,h1d!

5^U~h,j!U* ~h1d,j!&/A^uU~h!u2&^uU~h1d!u2&,

where d represents the normalized distance between
points. From Eq.~2! and by using the modal expansion of th
optical envelopeU, for a givenn we obtain

m12~h,h1d!5
(m51

n ũn
m~h!ũn

m~h1d!

sech~h!sech~h1d!
, ~9!

where again we made use of the fact that the time averag
cross-interference terms is zero under incoherent excita

FIG. 5. Spatial coherence function as a function ofh andd for
n53.
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The complex coherence factorsm12(h,h1d) up to n55
have been tabulated in Appendix B. Whenn51, which cor-
responds to a coherent optical soliton,m12(h,h1d)51, as
should have been anticipated. This in turn implies an infin
correlation length. As the number of modesn increases, the
coherence properties of these incoherent soliton states
come more complicated. Figure 3 provides a tw
dimensional plot ofm12 as a function of normalized positio
h and point separationd for n52. As expected,m1251 for
d50 and this is true for every value ofn. Note that any cut
(h5const) of these two-dimensional plots provides t
‘‘correlation’’ ~magnitude and phase! between the two points
located ath andh1d. Moreover, as it is well known@31#,
the magnitude of the complex coherence factor is alw

FIG. 6. Cross section of the coherence function forn53 and~a!
h50, ~b! h523, and~c! h50.4812.
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um12u<1. In general, two points are mutually coherent
m1251 and mutually incoherent~poor correlation! if m12
'0. Figure 4~a! depicts a cross section of the complex c
herencem12 as obtained right at the center (h50) of an
incoherent soliton whenn52. In this case, m12(0,d)
5sech(d), which implies that the correlation between th
center and any other point of this soliton decreases withd.
This expression also demonstrates that the tails of this b
(d→6`) and the center are totally uncorrelated. Figu
4~b!, on the other hand, shows how a point at the tails~at
h523! correlates with the rest of the beam when againn
52. For example, whend'3, in which case the second poin
is close to the beam center,m12'0 ~poor correlation!, in
agreement with Fig. 4~a!. As d→2` ~i.e., both points are on
the left tail of the beam! there is maximum correlation
(m12>1). This high degree of coherence is due to the f
lowing fact: At the tails there is essentially only one mo
~the highest-order modem51! that is coherent in itself
@15,16#. Ford→`, m12>21 and thisp phase shift is due to
the antisymmetric character of this highest-order mode. F
ure 4~c! provides the same information at the intermedi
point h520.4 for n52. Note that all these cross sectio
are very different in character from those found in the case
logarithmically saturable nonlinear media@16#. In logarith-
mic systems@16#, the statistical process is everywhere s
tionary, i.e.,m12 depends only ond and it is Gaussian in

FIG. 7. Spatial coherence function as a function ofh andd for
n54.

FIG. 8. Spatial coherence function as a function ofh andd for
n55.
-

m

-

-
e

f

-

nature. As shown here for the Kerr case, the cohere
curves depend also on the positionh and do not always go to
zero asd→6`. This feature was also encountered in sa
rable Kerr media ofI /(11I ) type @15,19#. This important
difference is due to the finite number of modes associa
with the Kerr incoherent solitons. In particular, the induc
waveguides in Kerr and Kerr-saturable media exhibit cuto
~finite number of modes!, whereas the logarithmic one doe
not. Figure 5 depicts the coherence function forn53. Simi-
lar cuts are also provided in Fig. 6. Figure 6~a! shows how
the center correlates with the rest of the beam forn53.
Interestingly enough, in this case, there is a weak correla
between the center (h50) and the tails (d→6`). This is
because the highest-order mode (m51), which survives at
the tails, happens to be even and it is thus finite at the cen
Figure 6~b! gives the correlation between a point at the ta
(h523) and the rest of the beam. Note the high degree
coherence (m12'1) between the two tails. Unlike the cas
shown in Fig. 4~b!, the correlation is in phase since again
this case the highest-order mode is even. Finally, Fig. 6~c!
gives the coherence factor ath5sech21(2/A5)'60.4812
for n53. Using the coherence factor given in Appendix B,
can be readily shown that these particular points are c
pletely uncorrelated with the tails of this incoherent solito
Figures 7 and 8 depict the coherence factors forn54 and 5,
respectively. It is interesting to observe the similarity b
tween them12 surfaces whenn is odd or even. Clearly, as th
order of the soliton increases, the coherence surfaces bec
more involved.

IV. CONCLUSION

In conclusion, we have shown that multimode incoher
spatial solitons are possible in noninstantaneous Kerr-
media. Closed form solutions were obtained using the s
consistency approach provided their intensity profile is of
sech2(x/x0) type. The coherence properties of these incoh
ent soliton states were also investigated in detail and
plained by means of their modal composition.
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APPENDIX A

In this appendix we provide the normalized mode fun
tions ũn

m(h). Here we defineT5tanh(h) and S5sech(h).
The ũn

m(h) functions appear in accord with their modal ord
~lowest-order mode first!. For n51,

ũ1
1~h!5S.

For n52,

ũ 2
2~h!5S2, ũ2

1~h!5ST.

For n53,

ũ3
3~h!5A15/16S3, ũ3

2~h!5A5/2S2T,
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ũ3
1~h!5 1

4 S~425S2!.

For n54,

ũ4
4~h!5A7/8S4, ũ4

3~h!5 3
4 A7S3T,

ũ4
2~h!5~&/4!S2~627S2!, ũ4

1~h!5 1
4 ST~427S2!.

For n55,

ũ5
5~h!5~A210/16!S5, ũ5

4~h!5 1
2 A21S4T,

ũ5
3~h!5~A42/16!S3~829S2!,

ũ5
2~h!5~A7/2!S2T~223S2!,

ũ5
1~h!5 1

8 S~8228S2121S4!.

For n56,

ũ6
6~h!5 3

16A22S6, ũ6
5~h!5 5

16A66S5T,

ũ6
4~h!5~)/4!S4~10211S2!,

ũ6
3~h!5 3

16A10S3T~8211S2!,

ũ6
2~h!5~A10/16!S2~16248S2133S4!,

ũ6
1~h!5 1

8 ST~8236S2133S4!.

APPENDIX B

In this appendix the functional form of the complex c
herence factorsm12 is provided up ton55. Again we have
ett

.
.

an

, L

B
hy

.

ni

v.
definedT(h)5tanh(h) andS(h)5sech(h). For n51,

m12~h,h1d!51.

For n52,

m12~h,h1d!5T~h!T~h1d!1S~h!S~h1d!.

For n53,

m12~h,h1d!511 5
2 $S~h!S~h1d!

3@T~h!T~h1d!1S~h!S~h1d!#

2 1
2 @S2~h!1S2~h1d!#%.

For n54,

m12~h,h1d!5T~h!T~h1d!$12 7
4 @S2~h!1S2~h1d!#

17S2~h!S2~h1d!%1S~h!S~h1d!

3$ 9
2 2 21

4 @S2~h!1S2~h1d!#17S2~h!

3S2~h1d!%.

For n55,

m12~h,h1d!5117„T~h!T~h1d!S~h!S~h1d!

3$12 3
2 @S2~h!1S2~h1d!#13S2~h!

3S2~h1d!%2 1
2 @S2~h!1S2~h1d!#

1 3
8 @S4~h!1S4~h1d!#1S2~h!

3S2~h1d!$ 13
4 23@S2~h!1S2~h1d!#

13S2~h!S2~h1d!%….
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