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Coherence properties of multimode incoherent spatial solitons in noninstantaneous Kerr media
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We investigate the coherence characteristics of multimode incoherent spatial solitons in noninstantaneous
Kerr-like nonlinear media. Other properties of these incoherent solitons are also discussed as a function of their
modal compositionfS1063-651X99)04001-5
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I. INTRODUCTION fractive crystal{19]. The existence of planar dark and vor-
tex solitons was subsequently confirmed experimentally by
In general, an optical spatial soliton is known to occurChen et al. [20]. Their modal composition and coherence
when diffraction effects are exactly balanced by light- properties were later explained and analyf2d.
induced waveguidingl]. Until recently, optical beam self- It is worth noting that incoherent solitons, as viewed from
focusing in nonlinear media has been investigated only withthe perspective of the self-consistent modal theory, are in
the aid of coherent sourc¢2—8]. In 1996, however, inco- fact related to the so-called incoherently coupled solitons in
herent spatial solitons were observed in noninstantaneoyshotorefractive crystal§22,23 or to the vector solitons in
nonlinear media such as biased photorefractive crystalkerr media[24]. Within the context of incoherently coupled
[9,10]. This was accomplished via the saturable drift photo-solitons[22], Vysloukh et al. [25] have shown that multi-
refractive nonlinearity, which is also known to support co-component coupled soliton modes can be incoherently super-
herent photorefractive spatial solitof$1,12. In order to  imposed in weakly saturating photorefractive crystals. We
explain this recently observed behavior, two complementaryvould like to emphasize, however, that there is a subtle dif-
approaches have been developed. The first one is the sterence between self-trapping an incoherent beam and creat-
called coherent density meth¢di3]. In this theory, the un- ing a multicomponent soliton. This difference is due to the
derlying evolution equation takes the form of a nonlinearstatistically varying modal weights of the incoherent beam
Schralinger-like integro-differential equation provided ini- [15,16. Consider first a situation where self-trapping occurs
tially the coherent density is appropriately weighted with re-from an incoherent light source. During self-trapping, the
spect to the angular power spectrum of the incoherent sourdeeam continuously excites several modes of the jointly in-
[13]. For a specific type of nonlinearitflogarithmig, this  duced waveguide, established by the time averaged intensity
same approach was found to lead to closed form solutionsf the speckled beam itself. If the time averaged intensity is
[14]. The second approach is a self-consistent multimodelecomposed into the modes of the induced waveguide, each
method[15]. This latter model seeks, in a self-consistentmode will have a certain coupling amount or weight. On the
fashion, multimode soliton solutions whose total intensityother hand, when multiple laser beams are incoherently su-
can be obtained via intensity superposition of all the modegerimposed(engineering the beam profilgesthe relative
guided within the nonlinear induced waveguide. This methodnodal weights are time independent and only the relative
is capable of identifying incoherent spatial soliton statesphase between each pair of modes changes with time. As
their range of existence, and coherence propeffis The  concerns the crystal, the two situations are exactly the same.
equivalence of these two methods was later established ifhe difference lies in the time dependence of the mode oc-
saturable logarithmic nonlinear media by means of exact reeupancies. In what follows we examine the properties of in-
sults[16]. Another approach for describing broad incoherentcoherent spatial solitons in Kerr media. This is of importance
bright solitons was also suggested by Snyder and Mitchelsince thus far analytical results for incoherent bright spatial
[17]. This ray model is to some extent related to the Vlasowsolitons have been obtained for logarithmic nonlinear media
transport description previously suggested by Hasegawa ianly [14,16.
the theory of random-phase solitons in plasm®g]. Very In this paper we demonstrate that incoherent spatial soli-
recently incoherent dark solitons were predicted in photoretons are possible in noninstantaneous Kerr-like media.
Closed form solutions are obtained using the self-consistent
multimode approachl5]. It is shown that the intensity pro-
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') Let us now assume that the incoherent spatial soliton in this
0.4 Kerr-like medium has a seffx/xy) intensity profile, that is,
0.2t
0 I =1, sech(x/Xg), 2
-0.2r wherel ; represents the peak intensity of the optical incoher-
_04} ent multimode beam and, is associated with its spatial
06 extent. In this case, Eql) takes the form
> 0 5 U 1 PU a?
n i —— + — seck(5)U=0. 3

— 4 =
9E 2 gy 2

In this equation we have used normalized coordinates and

0.8 quantities, i.e.p=x/Xo, é=2z/kx3, anda®=k3x3n,lo. The
i) 06 incoherent spatial soliton solutions of this equation can then
04 be obtained by expressing the optical envelbpthrough a
superposition of all the modes involved, that i§
02 3 crut(7)expBnf), wherec, are the mode-occupancy
0 coefficients that vary randomly with time'( ) is the pro-
02 file of the mth-order mode, an@,, is its phase constant. The
04 discrete indexn stands for the total number of modes al-
’ lowed in the system. By substituting this form dfinto Eq.
—0.61 , (3), we obtain, for each mode, the ordinary differential equa-
-5 0 5 tion
n
FIG. 1. Normalized mode profiles as a function sfor (a) n d?uy
_3 and(®) ned P wior (@ dn; +[a? sech(7)— 2B, JuM=0. (4)

solitons are related to the number of allowed modes. Thq-he mode profiles™() and their phase constangs, can
coherence properties of these soliton states are investigatﬂxfien be found by sT)Iving Eq4). In order to find the mode
in detail. Relevant examples are provided. occupancy coefficients, the self-consistency of this solution
must be satisfied, i.e., the total intensity of this incoherent
Il. THEORETICAL FORMULATION beam should be given by Ed2). The self-consistency

: : . . . method relies on the basic concept that a soliton itself is a
We consider a spatially partially incoherent optical beammode of the self-inducedvia the nonlinearity waveguide.

that propagates in a nonlinear self-focusing Kerr-like me—_ . X
dium along thez axis. For simplicity we assume that this Th's was suggested by Askar'ya@s] and later developed

beam is planar, that is, it diffracts only along thdirection. into a self-consistency methodology by Snyeeal. [29] to

The refractive index of this Kerr-like material varies linearly analyze coherent solitons. For mcoherent bn_ght solitons it
. L L 5 5 . was used in[15] and subsequently if21] for incoherent

with the optical intensity, i.e.,n“=ng+n,l, whereng is the

: o ! . dark beams.

linear part of the refractive index am, is the nonlinear

Kerr coefficient. We also make the important assumption

that the nonlinearity responds much slower than the charac- lll. RESULTS AND DISCUSSION

teristic phase fluctuation time across the incoherent beam so T find the modal structure of these multimode incoherent

as to avoid speckle-induced filamentation instabilifi26].  gpatial solitons, we first adopt the transformatidn

In this regime, the material will experience only the time —ann(,), in which case Eq(4) takes the form
averaged beam intensity. For example, such noninstanta-

neous Kerr nonlinearities can be encountered in biased pho- 2,,m m
. . . . . ye d un dun ZBm
torefractive crystals in the low-intensity regintee., when 1—t2) —— —2t a’— u™=0. (5)
s in the lo hen — (1-13) —R -2t ;|un
the so-called dark irradiance is much larger than the intensity dt —t

of the optical bean{11,12) or in materials with thermal _

nonlinearities27]. Furthermore, let the total electric fiel It can now be easily shown that, whef=n(n+1), where

of this spatially incoherent beam be written in terms of an=1,2,...(an integer determined by the amount of nonlinear-
slowly varying envelop#J, that is,E=U exp(kz), where the ity) andm=1,2,...n, the allowed modes can be expressed in
wave vectork is given byk=kone=(2m/\o)N, and N, is  terms of associated Legendre functi¢8§], i.e.,

the free-space wavelength. In this case, it can be readily " "

shown that the envelopé evolves according to Uy (7)=Pp(tanh ), (6)
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FIG. 2. Normalized intensity FWHM of Kerr-like incoherent
spatial solitons versus nonlinear index chadgefor n=1,2,...,6.
1
and Bn,=m?/2, where P™(x) are associated Legendre - (b)
functions of the first kind. In general, P;(X) ost
=(1—x%)™2d™P(x)/dx™, where P,(x) denote Legendre ==
polynomials. The value of the integar(associated withw?
or the degree of nonlinearityrepresents the number of al- 0
lowed modes in the self-induced waveguide amthe mode
index for this case. Note that the lowest-order mode occurs 05
whenm=n, whereas the highest occursnat 1. For a given
value ofn, the statistically varying optical field of the inco-
herent spatial soliton is given by -1
n -10 -5 0 5 5 10
U(9,&)= 2, ciPp(tanh 7)exp(im2¢/2).
m=1
Note that the self-consistency condition also requires that the (c)
mode-occupancy coefficients also depend on the number of
modesn. The time averaged intensity of this beam can then
be evaluated from
n
(UB=1= X (erlAIPrtanhn)?, ()
where we made use of the fact that under incoherent excita-
tion the time average of cross-interference terms among Y
modes is zer¢(c'(c’)*)= ;] [15,16. Finally, Eq.(7) can -10 =5 0 5 10

be used to obtain the mode-occupancy coefficiefitehat
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FIG. 4. Cross section of the coherence functionrfer2 and(a)

7n=0, (b) »=-3, and(c) »=—-0.4.

self-consistently lead to the incoherent spatial soliton

NS =1, secl(7) assumed in the very beginning of this analysis.
It proves convenient to normalize the eigenmodes in the fol-
lowing fashionT(7) =[(|cM?)/1,]1¥2ul( ») or, equivently,

10 o=h_,[UM(7)]?>=1osech(z). The functional form of the
normalized eigenfunction®;'(#) is given in Appendix A.
Figure Xa) depicts the normalized mode profil@$( ») for a

S three-component (=3) multimode incoherent soliton,

-5 whereas Fig. (b) is for a four-component structure

10 -10

FIG. 3. Spatial coherence function as a functionycdnd 6 for
n=2.

(n=4). Having found closed form solutions for these spatial
incoherent solitons, the question naturally arises as to what
factors contribute to their spatial full width at half maximum
(FWHM). To answer this question one has to consider the
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FIG. 5. Spatial coherence function as a functionycdnd 6 for
n=3.
1
expression a?=n(n+1). More specifically, sincea? Hiz el
=k3x3n,l o, given the number of guided modesand the ool n=3
peak intensityl 5, the spatial widthx, can be determined. In : n=-3
turn one quickly finds the resuty=\n(n+1)/kan,l,. Us- 047
ing Eq.(2) and providech is known, the intensity FWHM of oot
these soliton states, can be calculated fronw,=1.76x,
and thus 0
-0.2
1.76 [n(n+1) 8
U Nolg ® AT = 0 5 10
i)
Note that whem=1 (“single-mode” soliton), this expres-
sion (8) is in full agreement with the results previously ob- "l
tained for coherent Kerr spatial solitofig. Equation(8) can
also be written in terms of a normalized FWHM (/) ) as L, 0-8 (c)
function of the maximum induced nonlinear index change 0.6l
(An=nylg), i.e., wy/Ng=(1.76/27) yn(n+1)/An. Figure
2 shows the dependence of the normalized intensity FWHM 0.4 n=3
of these incoherent optical solitons am for different val- 0ol M=0.4812
ues ofn. This figure clearly shows that for a given nonlinear '
index change, the intensity FWHM tends to increase with the 0
number of modes involved. This should have been antici- - \/ ]
pated since the incoherence increases witht is also im- e
portant to note that in Fig. 2, the existence curves are discrete 0.4 .
as opposed to the continuum range found in RES]. This is -10 -5 0 5 5 10

due to the specific se®x/x,) intensity shape assumed at the
beginning of our analysis.

We now |nvest|gate the Coherence propertles Of these Spa_ FIG. 6. Cross section of the coherence functionrfer3 and(a)
tial solitons. This is done by evaluating the complex coher-7=0, (b) 7=—3, and(c) 7=0.4812.

ence factofu, of these soliton statd81], which is given by The complex coherence factos,(7, 7+ ) up to n=5

( +5) have been tabulated in Appendix B. Whe# 1, which cor-
K20 responds to a coherent optical solitqn,,( 7, 7+ 8)=1, as
=(U(n,&)U* (n+8,6)N(U 21U (n+0)[2), should have been anticipated. This in turn |_mpI|es an infinite
(U(m.HU% (7 &) \/<| (XU + a1 correlation length. As the number of modeéncreases, the
where & represents the normalized distance between tw&oherence properties of these incoherent soliton states be-
points. From Eq(2) and by using the modal expansion of the come more complicated. Figure 3 provides a two-

optical envelopdJ, for a givenn we obtain dimensional plot ofw, as a function of normalized position
n and point separatiod for n=2. As expectedu,=1 for
Sh=1Un () UR( 7+ 8) 5=0 and this is true for every value of Note that any cut

©) (np=const) of these two-dimensional plots provides the

“correlation” (magnitude and phagsbetween the two points
where again we made use of the fact that the time average @dcated atn and n+ 5. Moreover, as it is well known31],
cross-interference terms is zero under incoherent excitatiothe magnitude of the complex coherence factor is always

Pl 0) = G e (7 8)
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nature. As shown here for the Kerr case, the coherence
curves depend also on the positigrand do not always go to
zero asé— * . This feature was also encountered in satu-
rable Kerr media ofl/(1+1) type [15,19. This important
difference is due to the finite number of modes associated
with the Kerr incoherent solitons. In particular, the induced
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7 waveguides in Kerr and Kerr-saturable media exhibit cutoffs
”\//;; S 10 (finite number of modes whereas the logarithmic one does
'%/%\\g%i,;.’ 5 not. Figure 5 depicts the coherence functionrer3. Simi-
2 %@W/ 0 lar cuts are also provided in Fig. 6. Figuréa6shows how
,f’/yﬁ\\i/ S the center correlates with the rest of the beam riet3.
4 -5 Interestingly enough, in this case, there is a weak correlation
10 =10 between the centers=0) and the tails §— *=). This is

because the highest-order mode=f 1), which survives at
the tails, happens to be even and it is thus finite at the center.
Figure 8b) gives the correlation between a point at the tails
(7= —13) and the rest of the beam. Note the high degree of
coherence £q,~1) between the two tails. Unlike the case
shown in Fig. 4b), the correlation is in phase since again in
this case the highest-order mode is even. Finally, Fig) 6
gives the coherence factor at=sech (2/\/5)~ +0.4812
for n=3. Using the coherence factor given in Appendix B, it
can be readily shown that these particular points are com-
letely uncorrelated with the tails of this incoherent soliton.
gures 7 and 8 depict the coherence factorsferdd and 5,
respectively. It is interesting to observe the similarity be-
tween theu, surfaces when is odd or even. Clearly, as the
order of the soliton increases, the coherence surfaces become
more involved.

FIG. 7. Spatial coherence function as a functionycdnd & for
n=4.

|1 =<1. In general, two points are mutually coherent if
m1o=1 and mutually incoherenfpoor correlation if wq»
~0. Figure 4a) depicts a cross section of the complex co-
herencewq, as obtained right at the centen€0) of an
incoherent soliton whenn=2. In this case, u5(0,5)
=sechg), which implies that the correlation between the
center and any other point of this soliton decreases ith
This expression also demonstrates that the tails of this bea
(6— =) and the center are totally uncorrelated. Figure
4(b), on the other hand, shows how a point at the téals
n=—3) correlates with the rest of the beam when again
=2. For example, wheA~ 3, in which case the second point
is close to the beam centew,,~0 (poor correlation, in
agreement with Fig.(@). As 6— —« (i.e., both points are on
the left tail of the beam there is maximum correlation

(r12=1). This high degree of coherence is due to the fol- |y conclusion, we have shown that multimode incoherent
lowing fact: At the tails there is essentially only one modegpatial solitons are possible in noninstantaneous Kerr-like
(the highest-order moden=1) that is coherent in itself media. Closed form solutions were obtained using the self-
[15,16. For §—, u;,=—1 and thisw phase shift is due to consistency approach provided their intensity profile is of the
the antisymmetric character _of this h_ighest-orde_r mode. _Figsecﬁ(x/xo) type. The coherence properties of these incoher-
ure 4c) provides the same information at the intermediategn; soliton states were also investigated in detail and ex-

point »=—0.4 for n=2. Note that all these cross sections pjained by means of their modal composition.
are very different in character from those found in the case o?

logarithmically saturable nonlinear medi&6]. In logarith-
mic systemg 16|, the statistical process is everywhere sta-
tionary, i.e., uq, depends only ond and it is Gaussian in This work has been supported in part by AFOSR, NSF,

V. CONCLUSION
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NINNIZR2 . . . .
w@%@%ﬁ“\ In this appendix we provide the normalized mode func-
...si%i’:%:i:i:iti‘\\%‘ﬁ%'iﬁ\\“\\\\ tions UM(7). Here we defineT=tanh(;) and S=sechg).
2 \!3;3 TheT, (#) functions appear in accord with their modal order
! :.:3;*&;\\ \’Q"";,i‘:iét’:'o‘.izj (lowest-order mode first Forn=1,
Hiz o %:o:’of\‘“\\\“\\\\\\’llll&ﬁ?ég:‘%“'
S \\\“‘X\?Z'il///ﬁhzzt.w. -~ _
Ao s Ur(n)=S.
-1 WilkesE N s 10 !
W 5 Forn=2,
p
0 Wi =S, Un=ST
u 2( 77) - ’ u2( 77) - .
10 -10 Forn=3,

FIG. 8. Spatial coherence function as a functionycdnd 6 for

n=>5. TU3(5)=15/165°, TZ(7)=6/25T,
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Tz(n)= 1S(4—58%). definedT(#)=tanh(y) andS(#%)=sechf). Forn=1,
Forn=4, miAdm,p+6)=1.
TUl(n)=\7/85", T(n) =275, Forn=2,
W2(n)=(V214)SA(6—7S%), Ti(n)=iST4-7S?). w17+ 8)=T()T(n+8)+S(7)S(7+6).
Forn=5, Forn=3,
W(7)=(210/16S°, Tl(7n)=121S°T, 1A 7.+ 8)=1+3{S(5)S(n+5)
X[T(p)T(n+6)+S(7n)S(n+6)]
() = (\42/16S%(8—95?), —3[SA () +S(n+ )]}
Ue(7)=(7/2ST(2-38Y), Forn=4,

pad 7.+ 8)=T(n) T(n+ ){1-2[SH(n) +S(n+0)]
+7S() S+ 8)} +S(1)S(7+6)
X{3-Z[S(m+S(n+8)]+7S(n)
X S%(n+ )},

Ti(n)=1S(8—2852+21S").
Forn=6,
Ue(7)=2\225°, TY(n) =% /665°T,

Tg(7)=(v3/4)S*(10-11S?%), Forn—s

U3(7) = {5 V105°T(8 - 1157, fad 7o+ 8) =1+ (T () T( 7+ 5)S(7)S(n+ 6)

T§(7)=(10/16 (16— 485°+335"), x{1-3[S(7) + S (n+ 5)]+3F(7)
Tl(7)=tST(8—3652+335%). XS (n+8)}—3[SA(m) +S(n+ )]

+3[S* ) +SHn+)]+Sn)
APPENDIX B

XS (n+ OB —3[SA(n)+S*(n+4
In this appendix the functional form of the complex co- (n+ O —3(S(m) (7+9)]
herence factorg.,, is provided up ton=>5. Again we have +3S%(5)S?(n+6)}).
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