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Stochastic theory of freeway traffic
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Extending a new stochastic approach to congestion in traffic flow@R. Mahnke and N. Pieret, Phys. Rev. E
56, 2666~1997!#, the nucleation, growth, and condensation of car clusters in a circular one-lane freeway traffic
model is investigated. In analogy to usual aggregation phenomena such as the formation of liquid droplets in
supersaturated vapor, the clustering behavior in traffic flow is described by the Master equation. At overcritical
densities the transition from the initial free-particle situation~free flow of vehicles! to the final congested
cluster state, where one big aggregate of cars has been formed, is shown. In dependence on the concentration
of cars on the road, the stationary solution of the Master equation is derived analytically. The obtained
fundamental diagram as a flow-density relation indicates clearly the different regimes of traffic flow~free jet of
cars, coexisting phase of jams and isolated cars, and highly viscous heavy traffic!. In the~thermodynamic! limit
of an infinite number of vehicles on an infinitely long road, the analytical solution for the fundamental diagram
is in agreement with experimental traffic flow data. As a particular example, we take into account measure-
ments from German highways presented by Kerner and Rehborn.@S1063-651X~99!00301-3#

PACS number~s!: 02.50.Ey, 05.70.Fh, 89.40.1k
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I. INTRODUCTION

The aggregation of particles out of an initially homog
neous situation is well known in physics. Depending on
system under consideration and its control parameters,
cluster formation in a supersaturated~unstable! situation has
been observed in nuclear physics as well as in ot
branches. We mention the well-known example of cond
sation ~formation of liquid droplets! in undercooled water
vapor. The formation of binding states as an aggrega
process is related to self-organization phenomena@1#. The
emergence of car clusters~jams! in traffic flow has been
studied by different authors~see, e.g.,@2–7#! and could be
summarized in the so-called fundamental diagram of tra
flow. Up to now there have been numerous discussions a
measured and calculated flow-density curves on freeway
complete understanding of traffic flow should be based
empirical investigations as well as on theoretical desc
tions. Well-defined mathematical equations in analogy to
tablished physical models are very helpful to compare the
and experiment. The support given by relatively simple tr
fic systems such as particle hopping simulations~cellular au-
tomata@8–11#! and deterministic car following theory@12–
14# becomes more and more important for practical tra
engineering.

Since the pioneering work by Prigogine and Herman@15#
on the kinetic theory of vehicular traffic, cars have been c
sidered as interacting particles. Based on a new stoch
description by Mahnke and Pieret@16#, the clustering behav
ior in an initially homogeneous traffic flow is understood
nucleation, growth, and condensation of car clusters~jams!
on a freeway. The purpose of this paper is to improve
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stochastic description by taking into account the experim
tally known vehicle density in the jam or the real distan
between cars in the congested phase, respectively. We
would like to improve the current understanding of the fu
damental diagram of traffic flow in analogy to aggregati
phenomena in metastable and unstable systems, e.g., va
Waals gases, in comparison to experimental data from G
man highways presented by Kerner and Rehborn@17–19#.
These data are a particular example of a large amoun
high-resolution traffic values recorded on freeways in diff
ent countries by induction loop detectors@20,21,7#.

II. EXPERIMENTAL SITUATION ON HIGHWAYS

Vehicular traffic flow on freeways~and in cities too! tends
to suffer from a jamming transition when the total traffi
density exceeds a critical threshold value. The phenome
of car cluster formation~traffic jams! has been studied, a
already mentioned, by different approaches and has to
related to the large variety of experimental observatio
@14,22,2,20,17–19,8,6,21,7#. The accumulation of a grea
number of measurements of traffic flow on Dutch@20#, Ger-
man @17–19,21#, Japanese@14#, U.S. @22#, and other high-
ways shows common macroscopic properties. In gene
German data do not differ from data from elsewhere. T
interpretation of experimental measurements is rather c
plex and the data are highly nonstationary. However, th
are basically three different regimes of traffic~free flow,
highly correlated or synchronized flow, and heavy conges
flow! and phase transitions between them. A short-time
calized perturbation is able to generate a phase transition
later on a flow of slowly moving bounded vehicles can
observed on a highway for several hours.

The description of traffic flow has to be based on tw
fundamental essentials: First, the variability of vehicle p
117 ©1999 The American Physical Society
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118 PRE 59R. MAHNKE AND J. KAUPUŽS
formance and driver behavior demands for a stochastic
proach of description. Second, the reality can only be
scribed based on empirical investigations. Moreover, si
external parameters have a remarkable influence on d
behavior, a specific description of traffic flow can only
valid for one specific point along the highway network, a
for one specific time period. This is the reason why we ha
used empirical data of Kerner and Rehborn@18# in detail to
find values of control parameters for our model. In gene
we allow that these values are slightly dependent on the
cific experimental situation.

Below we have discussed the experimental situation
Ref. @18# to illustrate the complexity of real traffic. In Re
@18# nonstationary traffic flow related to the appearance
complex time-space structures has been discussed on th
sis of flux-density measurements made on a certain sec
of German highway A5. The so-called ‘‘synchronized’’ tra
fic was discussed. A characteristic feature of this regime
traffic is that the traffic flow is synchronized in all~three!
lanes of the road. The density in this case is larger tha
free traffic at the same value of flux, and the time evolut
of flux and density measured at a given coordinate by a
aging over relatively short time intervals~1 min! exhibits a
very complex nonstationary behavior. Based on meas
ments on Friday, August 25, 1995, when 10 different tra
jams occurred on highway A5, a behavior of nonstation
jams has been considered. In particular, a random emerg
of a nonstationary jam, nonstationary growth of the amp
tude and/or of the width of jams, an extinction of a jam
merger of a few jams into one jam, as well as an appeara
of nonstationary moving blanks inside wide jams have b
discussed. It was found that for wide jams the average
locity of downstream front~the velocity of backwards mo
tion of a jam! is nearly the same, about215 km/h. The
fronts of jams, where the flux and the average speed abru
change, have been interpreted as nonstationary and no
mogeneous states of synchronized traffic flow. The result
measurements have been reflected in the fundamental
gram of traffic flow. The measured average flux and den
in the outflow from the jam was 1800 vehicles/h and
vehicles/km, respectively. The average density inside the
was found to be 140 vehicles/km.

In conclusion, the experimental situation on highways
rather complex~see also Refs.@17,19#!. Nevertheless, we
believe that some general features of traffic flow exist. C
siderable attempts were made to investigate scaling pro
ties to find power-law behavior in which the power spect
density is proportional to 1/f a ( f is the frequency!. The ex-
ponenta is obtained by fitting traffic flow data@9,21#.

Our purpose is to give a relatively simple description
traffic flow. Our model does not include all the complexity
the experimental situation, but it includes the most import
general features. It allows us to describe spontaneous fo
tion of traffic jams and to interpret different regimes of traf
flow as well as to calculate the fundamental diagram~flux-
density plane! in comparison with experimental data.

III. THE CAR CLUSTER MODEL
AND ITS STOCHASTIC DESCRIPTION

Here we consider a model of traffic flow on a one-la
road according to whichN cars are moving along a circle o
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lengthL. The motivation of the model and the details of i
stochastic description have already been discussed in@16#. If
a road is crowded by cars, each car requires some min
space or length which, obviously, is larger than the r
length of a car. We call this the effective lengthl of a car.
The distance between the front bumpers of two neighbor
cars, in general, isl 1Dx. The distanceDx can be under-
stood as the headway between two ‘‘effectice’’ cars whic
according to our definition, is always smaller than the r
bumper-to-bumper distance. The maximal velocity of ea
car isvmax. The desired~optimal! velocity vopt , depending
on the distance between two carsDx, is given in dimension-
less variableswopt5vopt /vmax and Dy5Dx/ l by the for-
mula

wopt~Dy!5
~Dy!2

d21~Dy!2
, ~1!

where the parameterd5D/ l is the interaction distance.D is
the distance between two cars corresponding to the velo
value vmax/2. According to Eq.~1! the optimal velocity is
represented by a sigmoidal function with values rang
from 0, corresponding to zero distance between cars, t
corresponding to an infinitely large distance or absence
interaction between cars. We have chosen one of the simp
functions having these properties, since this allows analyt
solutions. Our choice is also justified physically, since it p
vides a good agreement with the experimental data~cf. Sec.
VIII !. In nonlinear dynamics based on car following mode
@12–14# another functional representation was applied.
particular, the optimal velocity function used in Ref.@14#
reads in our notation

wopt~Dy!5
tanh~d1Dy2d2!1tanh~d2!

11tanh~d2!
. ~2!

The most important difference between the optimal vel
ity functions~1! and~2! is that in our case@Eq. ~1!# the first
derivative ofwopt(Dy) with respect to spacingDy vanishes
at Dy50. The property that the first derivative should b
small at vanishing distances (Dy→0) is important to under-
stand the qualitative behavior of traffic flow at large den
ties. Details are discussed in Sec. VII. Following our inte
tion to minimize the number of control parameters, we use
Eq. ~1! only one free parameterd with a precise understand
ing. Two parametersd1 andd2 in Eq. ~2! obviously allow a
better fit with data, but this is not so important in our inve
tigation.

Measurements on highways have shown that the den
of cars in congested traffic%clust is independent of the size
of the dense phase~jam!. The quantity%clust is known ex-
perimentally ~cf. Sec. II!. As a consequence, the distan
between jammed cars, the spacingDxclust , is well known
and has to be treated as a given measured quantity. Th
fore, it is assumed that the distance between cars inside
cluster isDxclust5 lDyclust5const>0. In earlier work~see
@23,16#! the caseDxclust50 was considered. This corre
sponds to the special situation where the congested car
close together without spacing, and according to Eq.~1! the
velocity of all cars bounded in the jam is zero. This simp
approximation dealing with a nonmoving jam of highest c
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PRE 59 119STOCHASTIC THEORY OF FREEWAY TRAFFIC
density is not very often valid on highways. From the phy
cal point of view, the experimentally known jam densi
%clust or the spacing in jamsDxclust , respectively, connecte
by the relationship%clust51/(l 1Dxclust), is a given mea-
sured parameter.

The length of the cluster~jam! depending on the numbe
of congested carsn is defined by

Lclust5 ln1~n21!Dxclust . ~3!

According to this, the average distanceDxf ree5 lDyf ree be-
tween two cars outside the jam~or free cars! distributed over
the free part of the road with lengthL f ree5L2Lclust is given
by

Dyf ree~n!5
L/ l 2N2~n21!Dyclust

N2n11
, ~4!

whereN is the total number of cars on the road~circle of
lengthL).

The traffic flow is described as a stochastic process wh
adding a vehicle to a car cluster of sizen is characterized by
a transition frequency~attachment probability per time unit!
w1(n) and the opposite process by a frequencyw2(n). The
number n of cars in the cluster is the stochastic variab
which may have values from 1 toN. The situation of a single
‘‘congested’’ carn51 is treated as a cluster of size 1, a
therefore we do not consider transitions between states
n51 andn50. According to our model, only one car clust
exists at any given time. The basic equation for the evolut
of the probability distributionP(n,t) to find a cluster of size
n at time t with probability P is known as the Master equa
tion. The one-dimensional stochastic equation~see, e.g.,
@24,25#! reads

1

t

dP~n,T!

dT
5w1~n21!P~n21,T!

2@w1~n!1w2~n!#P~n,T!

1w2~n11!P~n11,T!, ~5!

whereT5t/t is the dimensionless time. The time constant
will be specified below.

The main task is to formulate expressions for both tran
tion probabilitiesw1 and w2 . As already explained in ou
previous work@23,16#, we have assumed that the detachm
frequencyw2(n) or the average number of cars leaving t
cluster per time unit is a constant independent of cluster
n. The ansatz forw1(n) is now corrected allowing for
Dxclust to be nonzero. Our general assumption is that a
hicle changes the velocity fromvopt(Dxf ree) in free flow to
vopt(Dxclust) in jam and approaches the cluster as soon
the distance to the next car~the last car in the cluster! re-
duces fromDxf ree to Dxclust . This assumption allows one t
calculate the average number of cars joining the cluster
time unit or the attachment frequencyw1(n). Thus, we have
the ansatz which in dimensionless quantities reads

w1~n!5
b

t

wopt„Dyf ree~n!…2wopt~Dyclust!

Dyf ree~n!2Dyclust
, ~6!
-

re

ith

n

i-

t

e

-

s

er

w2~n!51/t5const, ~7!

whereb5vmaxt/ l denotes a dimensionsless parameter. T
parametert is a time constant, which can be understood
the waiting time for the escape~detachment! of the first car
out of the jam into free flow. This parameter characteriz
the fastness of the driver’s reaction or adaptation to a n
situation ~the road is free and one can start to move!. Ac-
cording to this interpretation, our assumption thatt andw2

are constants is well justified. On the other hand, in a r
situation the detachment of cars from the jam occurs mor
less continuously, therefore the above interpretation oft as a
waiting time interval to escape is appropriate.

In any case,w2 is the average number of cars leaving t
jam per time unit. This allows us to relatet to the velocity of
backwards motion of the jamvback, i.e.,

vback5
l 1Dxclust

t
2vopt~Dxclust!5

1

t%clust
2vopt~Dxclust!,

~8!

and to determine the value of parametert. According to the
data of Ref. @18#, we have%clust5140 vehicles/km and
vback515 km/h, which yields the value oft about 1.7 s or
smaller.

The Master equation~5! can be rewritten as follows:

dP~n,T!

dT
5 j ~n21→n!2 j ~n→n11!2 j ~n→n21!

1 j ~n11→n!, ~9!

where j (n21→n), j (n→n11), j (n→n21), and j (n
11→n) are probability fluxes which are equal to the corr
sponding terms in Eq.~5!. The boundary conditions for Eq
~9! are

j ~1→0!5 j ~0→1!5 j ~N→N11!5 j ~N11→N!50.
~10!

Our purpose is to solve this equation and to extract fr
this solution information about the formation of traffic jam
and about the various possible regimes of traffic flow d
pending on the parameters of the system, as well as to
culate the flux-density or the fundamental diagram of tra
flow. Finally, our aim is to compare the results of calculati
with experimental data.

IV. STATIONARY PROBABILITY DISTRIBUTION
OF TRAFFIC JAMS

Now let us consider the stationary solutionP(n)
5 limT→`P(n,T) of the Master equation~5! corresponding
to the condition

dP~n,T!

dT
50. ~11!

The general solutionP(n) of Eq. ~11! is well known and
reads~see@24#!
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FIG. 1. Series of different stationary probability distributionsP(n) ~solid lines! and ratios of transition ratesw1(n)/w2 ~dashed lines!
showing the formation of a jam of sizen depending on the total number of carsN on the road. The values ofN and Pmax are ~a! N555,
Pmax50.439; ~b! N596, Pmax50.070; ~c! N5135, Pmax50.039; ~d! N5300, Pmax50.045; ~e! N5776, Pmax50.088; ~f! N5777,
Pmax50.227. The parameters of the system areL/ l 51000 (L55000 m,l 55 m!, b510, d52.5, andDyclust50.2. The maximum of the
probability distribution corresponds to the stable cluster size of congested cars.
s
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en

f
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P~n11!5P~n!Q~n! with Q~n!5
w1~n!

w2~n11!
~12!

or

P~n!5

)
m50

n21

Q~m!

(
n51

N

)
m50

n21

Q~m!

with Q~0!51. ~13!

Here we propose a short way of getting this established re
and proving that it is the only stationary solution and t
detailed balance is true. From Eqs.~9! and~11! we conclude
that the relation
ult

j ~m→m11!5 j ~m11→m! ~14!

holds for m5n if it is satisfied atm5n21. According to
Eqs.~9!–~11!, Eq. ~14! holds form51, therefore it holds for
any 1<m<N21. This means that the detailed balance~14!
is true and leads unambiguously to the final solution giv
by Eq. ~13!.

V. NUMERICAL RESULTS FOR FINITE SYSTEMS

A series of probability distributionsP(n) for increasing
dimensionless densitiesc5 lN/L, calculated on the basis o
Eq. ~13! together with Eqs.~6! and~7! indicating the forma-
tion of a cluster on the road, is depicted in Fig. 1. The ra
of transition ratesw1(n)/w2(n) is shown too. Calculations
are made for a finite system withL55000 m, l 55 m, or
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PRE 59 121STOCHASTIC THEORY OF FREEWAY TRAFFIC
L/ l 51000.0, d52.5, b510.0, andDyclust50.2. One can
conclude from Eq.~12! that the conditionw1(n)/w2(n)
51 corresponds to a probability maximum~or minimum!
located atn/NÞ0 if N→` andL→`. This holds approxi-
mately for a finite system, as it can be seen from Fig. 1.
small densities (N555), w1(n)/w2(n),1 holds for anyn,
therefore the absolute maximum ofP(n) is located atn
51, indicating the absence of a macroscopic cluster. T
corresponds to the regime of free traffic without congestio
If the density increases above some critical value~the first
critical densityc1 with the valueN'96 in this case! corre-
sponding tow1(1)/w2(1)51, then a macroscopic cluste
appears (n/NÞ0 at N→`). The series of snapshots wit
N5135, 300, and 776 illustrates the growth of the clus
with increasing density. This corresponds to a partly c
gested road where one cluster of cars coexists with a re
of free traffic. The probability maximum corresponds to t
average cluster size. This holds exactly atN→` and repre-
sents a reasonable approximation for the considered fi
system. At large densities (N5776,777), the equation
w1(n)/w2(n)51 has two solutions with respect ton. The
first ~the smallest! root corresponds to the minimum, where
the second corresponds to the maximum ofP(n). In this
case, the stationary probability distributionP(n) has another
maximum atn51. At some critical density~the second criti-
cal densityc2 corresponding toN'777), the maximum at
n51 becomes the absolute maximum and the macrosc
cluster disappears. The latter means that the density of ca
large over the whole road~highly viscous overcrowded situ
ation!. Generally Fig. 1 shows the phase transition from
lute gas~free flow, one phase!, cluster phase~congestion and
free flow, two coexisting phases!, to liquid state~heavy traf-
fic, one dense phase!.

The time evolution of probability distributionP(n,T) rep-
resented by Master equation~5! has been simulated for
finite system of 200 cars moving along the road of len
L51000 l with the same values of control parameters
before. Results are shown in Fig. 2. The probability distrib
tion P(n,T) at various time momentsT52, 10, 50, 100, 200,
and 400 starting withP(n,0)5dn,1 as initial condition are
obtained by averaging over 500 000 stochastic trajecto

FIG. 2. Evolution of probability distributionP(n,T) as a func-
tion of time for a system ofN5200 cars simulated by Monte Carl
method starting withP(n,0)5dn,1 . Solid curves from left to right
correspond to increasing timesT52, 10, 50, 100, 200, and 400. Th
dashed line depicts the stationary solution forT→`. The param-
eters of the system areL/ l 51000, b510, d52.5, and Dyclust

50.2.
t
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simulated by the Monte Carlo method@25#. The dashed line
in Fig. 2 represents the stationary solution given by Eq.~13!.
The same simulations have been made starting withP(n,0)
5dn,N . In both cases the probability distribution tends a
ymptotically to the stationary solution forT→`.

VI. THE FUNDAMENTAL DIAGRAM

One of the most important characteristics of traffic flow
the fundamental diagram showing the fluxJ of cars as a
function of the total density%5N/L ~or dimensionless tota
density c5 l%) on the road. We defineJ as a local flux
%(x,t)v(x,t) averaged over an infinite time interval, whe
%(x,t) is the local density andv(x,t) is the local velocity of
cars at a time momentt and space coordinatex, i.e.,

J5 lim
t→`

1

t E0

t

%~x,t8!v~x,t8!dt8. ~15!

In our model the local velocity as well as the density of ca
are defined by the cluster sizen and the distancex2x8 be-
tween the considered local coordinatex and the coordinate
x8 of the first car in the jam. Thus, we have%(x,t)5%„x
2x8(t),n(t)… andv(x,t)5v„x2x8(t),n(t)…, and after aver-
aging over time we get

J5(
n
E dx8P~n,x8!%~x2x8,n!v~x2x8,n!, ~16!

whereP(n,x8)dx8 denotes the part of the total time durin
which the size of the cluster isn and the coordinate of the
first car of the jam is betweenx8 andx81dx8. The cluster
can be found with equal probability at any coordinatex8
along the circle if an averaging over an infinite time interv
t is considered. Thus we haveP(n,x8)5P(n)/L. According
to our assumptions, the velocity of congested cars
vopt(Dxclust) and their density is%clust5n/Lclust inside the
jam of length Lclust . Outside the jam we havev
5vopt„Dxf ree(n)… and % f ree5(N2n)/L f ree . By these as-
sumptions the integration~16! can be performed easily, an
this yields

j 5b(
n

P~n!Fwopt~Dyclust!
nl

L
1wopt„Dyf ree~n!…S c2

nl

L D G ,
~17!

where j 5Jt is the dimensionless flux.
Now we consider the behavior of the system in the~ther-

modynamic! limit N→` under the condition

s5~Rd!214RDyclust24.0, ~18!

whereR5b/@d21(Dyclust)
2#. This is the condition at which

the equationw1(n)/w2(n)51 has real physical solution~s!
and a cluster withn/NÞ0 emerges, i.e., a phase transitio
takes place at some value of car densityc. In the opposite
case there is no phase transition~cluster formation! at all. In
the special situationDyclust50, condition~18! reduces tob
.2d. The analysis of solution~13! shows that P(z)
5N21d(z2z0) holds in the thermodynamic limitN→`,
wherez is defined asz5n/N with the valuez0 corresponding
to the absolute maximum ofP(z). z050 holds if c<c1 or
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122 PRE 59R. MAHNKE AND J. KAUPUŽS
c.c2 . If c1<c,c2 , then z05z08 , wherez08 is defined by
z085(11Dyf ree21/c)/(Dyf ree2Dyclust) andDyf ree has the
constant value (d/2)(Rd1As), as it follows from the equa-
tion w1(n)/w2(n)51. The critical densitiesc1 andc2 have
the same meaning as discussed in Sec. V. They are de
by z0850 or c151/@11(d/2)(Rd1As)#, and ln„P(z50)…
5 ln„P(z5z08)…, respectively.

In the following, an equation will be derived~under the
assumptionDyclust50) from which both critical densitiesc1
and c2 can be determined. Taking account of Eq.~12!, the
condition ln„P(z50)…5 ln„P(z5z08)… in the thermodynamic
limit reduces to

E
0

z08 ln@Q~z!#dz50. ~19!

This equation is satisfied both atc5c2 andc5c1 because in
the latter case we havez0850. Using partial integration@with
account forQ(z08)51# and change of integration variable
h5Dyf ree @defined by Eq.~4!#, we get

E
sd

BdS 1

h
2

2h

d21h2D S 12
sd

h Ddh50, ~20!

where s5(12c)/(cd) and B5b/(2d)1Ab2/(4d2)21.
This integral can be calculated analytically, and this yield

lnFB~11s2!

s~11B2!
G1

s

B
2112s~arctanB2arctans!50.

~21!

One of the solutions is, obviously,s15B corresponding to
the first critical valuec151/(11Bd). A complete analytical
solution is possible in some asymptotic cases. AtB511e,
where e→0, the solution can be found in the forms51
1d, whered→0. Neglecting terms of fourth and higher o
ders we get (d2e)2(d12e)50. Thus, we haves1511e
5B ands2.122e. At the critical pointe50 or b52d ~at
b.2d the cluster emerges! we get s15s251 or c15c2
5ccrit , whereccrit51/(d11) is the critical value ofc. An-
other asymptotical case isB→`, where we have a solution
with s2→0. Retaining only the main terms in the equatio
we get ln(s2B)1150 or s251/(eB).

It should be noted that cases withc<cclust have a physi-
cal meaning only, because the total densityc cannot exceed
the density of cars in the clustercclust51/(11Dyclust). In
general~with Dyclust.0), a situation is possible where th
equation forc2 has no solution atc2,cclust . In this case the
following flux equations for an infinite system are corre
formally setting c25cclust . Thus, taking into account th
above discussed solution forP(n), we get the following
flux-density relation:

j ~c!5H bc~12c!2

~cd!21~12c!2 :cP@0;c1#ø]c2 ;cclust]

12c1c@bwopt~Dyclust!2Dyclust#:cP@c1 ;c2@ .
~22!

These equations represent an exact analytical solution
the fundamental diagram of traffic flow in the framework
ed

,

,

or

our relatively simple model, calculated in the thermod
namic limit. Since the fundamental diagram represents
of the most important characteristics of traffic flow, this r
sult has a fundamental significance and has to be comp
with vehicular experiments. As can be seen from these eq
tions, the fundamental diagram consists of fragments o
nonlinear curve and of a straight line. The nonlinear cu
represented by the first formula of Eq.~22! corresponds to
homogeneous flow, whereas the straight line correspond
nonhomogeneous~or congested! flow.

VII. PHASE TRANSITIONS AND DIFFERENT REGIMES
OF TRAFFIC FLOW

Based on the analysis of the fundamental diagram~22!,
different regimes of traffic flow and phase transitions b
tween these regimes have been discussed. The fundam
diagram is shown in Fig. 3, calculated atb510, d57/3
.2.333, andDyclust50 for different values of the length o
the roadL. The effective length of a car is fixed tol 56 m,
which corresponds to the experimental data discussed in
II. The set of control parameters in this case is chos
slightly different from that in Sec. V. Our intention is t
show two phase transitions at critical densitiesc1 and c2 ,
respectively, which are more distinct atDyclust50 than at
Dyclust50.2. The regionscP@0;c1#, cP@c1 ;c2@ , and c
P]c2 ;1] correspond to three different regimes of traffi
flow. Besides, there is a breakpoint in fluxj at c5c1 and a
jump atc5c2 , as may be seen from Fig. 3, where the an
lytical solution~22! is shown by dashed lines@corresponding
to the first and the second formulas in Eq.~22!#. The jump
D j tends to zero in the caseB511e at e→0, i.e., D j
.3dccrite, and j in the vicinity of the jump tends to the
value j crit5d/(11d). In general, the valueBd/(11Bd)
corresponds toj at c5c1 andDyclust50. The results of the

FIG. 3. Based on the stationary solution of the stochastic Ma
equation, the fundamental diagram@dimensionless flow rate~flux! j
vs dimensionless car densityc# is calculated. The dimensionles
control parameters areb510,d57/3, andDyclust50. The length of
roadL varies, the effective length of a car being fixedl 56 m. For
finite roads (L,`) as well as for infinitely long roads (L→`), the
flow j can be divided in two homogeneous regimes~left: free flow
as gaseous phase; right: heavy traffic as liquid phase! and a transi-
tion regime with free and congested vehicles~formation of a car
cluster!.
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calculation for finite systems, shown in Fig. 3, coincide w
the above analytical solution ifL→`. The region c
P@0;c1# corresponds to the free traffic flow where the re
tive part of the cars involved in the jam tends to zero ifN
→`. The regioncP@c1 ;c2@ corresponds to the traffic flow
on a partly congested road where one cluster of cars coe
with a region of free traffic. The regioncP]c2 ;1] corre-
sponds to a highly viscous overcrowded situation, where
density of cars is high and their velocity is small over t
whole road.

In our model, two phase transitions are always presen
Dyclust50 andb.2d, since Eq.~21! has two real positive
solutions with respect tos. The physical reason for the firs
phase transition is that the homogeneous flow, which
stable at low densities, becomes unstable at some cri
density c1 . This phenomenon has been shown experim
tally and theoretically by many authors~see, e.g.,@12–
14,3,4,17–19,5,23,16,8–10#!, and it is not a unique featur
of our model. The second phase transition occurs becaus
homogeneous flow becomes stable again at large densiti
cars, i.e., atc.c2 . This phenomenon can be explained
terms of transition probabilities between two different ma
roscopic states in a bistable system, i.e., between the s
without and with a macroscopic cluster. At sufficiently lar
densities,P(n) has a minimum@w1(n)/w2(n)51 has two
solutions# at n5nunst, where nunst is the unstable cluste
size. It means that there exists a nucleation barrier for
formation of the macroscopic cluster from an initially hom
geneous state. A stable growth of the cluster can oc
merely atn.nunst, whereas a stable dissolution of the clu
ter can take place atn,nunst only. A switching between the
two macroscopic states of the system is possible due to
chastic fluctuations. In our model,nunst increases withc and
approachesN if c→1. The velocity of cars is strongly de
creased if the distance between them becomes small.
result, the average flow of cars, joining the cluster, can
ceed the opposite flow merely if the density of cars in
free phase is not too large. From a purely geometrical asp
the necessary condition of this atc→1 is n→N. In such a
way, because of a large nucleation barrier and a small di
lution barrier, a spontaneous dissolution of the cluster
comes much more probable than its formation atc→1. Thus,
in this case the highly dense homogeneous state with
probability maximum atn51 is the stable state of the sy
tem. It is noteworthy that two phase transitions take place
our model at not too large values ofDyclust only. If Dyclust
is large, then the average distance between cars~at c
,cclust) is never small enough to ensure the above discus
effects. A question arises whether the two phase transit
are present at an optimal velocity function different from E
~1!. The necessary condition for the second phase trans
at Dyclust50 andN→` is

dwopt~Dy!

d~Dy!
U

Dy50

,
1

b
. ~23!

If this condition is not satisfied, then the homogeneous fl
is unstable atc→1, since in this casew1(1).w2(1) holds.
As a consequence, the existence of the second phase tr
tion depends on the specific choice of the optimal veloc
function.
-

sts

e

at

is
al
-

the
of

-
tes

e

ur
-

to-

a
-

e
ct,

o-
-

he

in

ed
ns
.
on

nsi-
y

VIII. COMPARISON WITH EXPERIMENTAL DATA

The fundamental diagram discussed in the preceding
tion has been calculated for quite realistic values of the
rameters. These parameter values are suitable to show s
general features of behavior of a vehicular system descr
by our model. Nevertheless, these parameters have up to
not been adjusted to real experimental data. In this sec
we present a comparison with the experimental data repo
partly in Sec. II~see@17–19#!. The parameter values corre
sponding to the best~or near to the best! fit with these ex-
perimental data are given in Table I. The corresponding
mensionless parameters areb5vmaxt/ l 58.5, d5D/ l 513/6
.2.167, andDyclust5Dxclust / l 51/6.0.167. We have con-
sideredvmax andl 1Dxclust51/rclust as experimentally mea
sured quantities consistent with data given in Ref.@18#. In
this case there are only three independent free parame
i.e., D, Dxclust , andt, which can be used for matching th
theoretically calculated fundamental diagram with the e
perimental one in the case ifN andL are large. The param
eterL/ l is responsible for finite-size effects.

The velocity of backwards motion of a jamvback'16
km/h calculated with these parameters from Eq.~8! is close
to the experimental value 15 km/h@18#. The latter fact pro-
vides good evidence of validity of the used optimal veloc
function ~1!. To ensure a good fit with the experiment
value ofvback, it is important thatvopt(Dxclust) in Eq. ~8! is
small compared tovback. Thus, not any function of the op
timal velocity is valid. In our case, a sufficiently small valu
of vopt(Dxclust)'1 km/h is ensured by the fact that the fir
derivative of the optimal velocity function~1! vanishes at
Dy50. In any case, this derivative should be remarka
smaller than 1. Although our choice is not the only possi
one, Eq.~1! represents one of the simplest functions hav
this property. The optimal velocity function~2! used in Ref.
@14# with the parameter valuesd150.602 andd251.548,
determined on the basis of the experimental data meas
on the Chuo Motorway, has also a sufficiently small val
0.052 of the first derivative atDy50. However, this function
is more complicated as compared to Eq.~1!.

Under the conditionvopt(Dxclust)!vback, the waiting
time t may be considered as a directly measured quan
@t'1/(vback%clust)#. As already mentioned in Sec. III, thi
yields the value oft about 1.7 s, which is compatible wit
the value 1.5 s obtained in this section by matching the
perimental and the theoretical fundamental diagrams. I
also interesting to compare the interaction distancesd @d
in any case is defined bywopt(d)51/2#, d.2.167 and

TABLE I. Values of parameters for the stochastic traffic mod
determined from experimental observations on German highwa

Quantity Symbol Value

Effective length of a car l 6 m
Interaction distance D 13 m
Distance in jam Dxclust 1 m
Waiting time t 1.5 s
Maximal velocity vmax 34 m/s
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124 PRE 59R. MAHNKE AND J. KAUPUŽS
d.2.643, following from Eqs.~1! and ~2!, respectively.
These values are compatible. The agreement is satisfac
taking into account that different models and different e
perimental data have been used to determine the value
the control parameters in these two equations.

The values of the dimensionless parameters are ra
close to those used in Sec. VII (b510, d57/3.2.333,
Dyclust50). Therefore qualitatively similar behavior of th
system is expected. The fundamental diagram calcula
with these parameters for a circular road of lengthL
55000 m is shown by the thick solid line in Fig. 4, whe
the experimental data of Ref.@18# corresponding to free traf
fic flow are shown by separate points. The experimen
points measured inside the region of wide traffic jams
connected by a thin solid line. Since data, taken from Fig
in @18# ~with the same notation!, are measured in a nonsta
tionary situation, a hysteresis appears~points starting from
upper ones are connected in a sequence of measure
time!. It is necessary to make an averaging over a sufficie
large time interval to get the value of flux defined by Eq.~15!
corresponding to an average~total! density of cars. Accord-
ing to this, there are some difficulties in comparing the e
perimentally measured nonstationary values of the flux w
our theoretical results. In the first approximation we ha
assumed that the result of averaging of nonstationary m
surements at a given density corresponds to the value of
calculated at this density from our theoretical model. This
a criterion we have used to find the values of parame
corresponding to the experimental data optimally. The th
retical line in Fig. 4 is in good agreement with the averag
experimental values of flux at both small densities and
high densities. The most significant difference is at densi
slightly above the first critical densityc1 corresponding to

FIG. 4. Comparison of the fundamental diagram of traffic flo
calculated at fitted parameter valuesl 56 m, vmax534 m/s, t
51.5 s, D513 m, and Dxclust51 m (b58.5, d513/6, and
Dyclust51/6) with experimental data of Ref.@18# ~denoted by sepa
rate points and a thin solid line connecting measured points!. The
thick solid line shows the solution for the finite road of lengthL
55000 m; the theoretical curves for an infinite system represe
by the first and the second formulas in Eq.~22! are shown by a
smooth thin solid line and a dashed line, respectively.
ry,
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the maximum of theoretical curve for an infinite system. T
theoretical curves for an infinite system represented by
first and the second formulas in Eq.~22! are shown in Fig. 4
by a ~smooth! thin solid line and a dashed line, respective
The thin solid line corresponds to homogeneous flow with
congestions, whereas the dashed line reflects the conge
traffic flow. The experimental data shown in Fig. 4 by sep
rate points correspond to homogeneous traffic flow. The
mogeneous situation in the considered experiments is
served at densities slightly larger thanc1 , as can be seen
from the figure. In such a way, the separated experime
points above the maximum of the theoretical curve can
interpreted as metastable homogeneous flow.

IX. CONCLUSIONS

The stochastic Master equation approach to describe
fic flow developed in Refs.@16,23# is extended allowing tha
cars in a jam are not close to each other and that they
moving. The stationary probability distribution over ja
sizes and the fundamental~flux-density! diagram is calcu-
lated on the basis of the developed model depending on
density of cars on a circular one-lane road. The evolution
probability distribution, showing formation of a jam on
road, is investigated on the basis of the time-dependent M
ter equation solved by the Monte Carlo method.

The obtained results indicates the existence of three
ferent regimes of traffic flow, i.e., free flow at small densiti
of cars, congested traffic or coexisting phase, where a
cluster coexists with a region of free traffic, at intermedia
densities, and a highly viscous overcrowded situation, wh
the density of the cars is large and their velocity is small o
the whole road, at high densities.

The obtained results represented in the flux-density pl
allow us to interpret the main features of traffic flow o
served experimentally. The analytical solution of the fund
mental diagram for an infinite road, as well as solutions
finite roads of different lengths, are in qualitative agreem
with experimental data. A good quantitative agreement w
experimental data@17–19#, especially with Fig. 3 from Ref.
@18#, is obtained at appropriate realistic values of cont
parameters~Table I!. It is shown that the experimental poin
corresponding to free traffic are in good agreement with
analytical curve for homogeneous flow. Besides, the larg
experimental values of flux correspond to a metastable
mogeneous state. The experimental values of flux meas
in a region of wide jams on average correspond to the th
retical ~straight! line of the coexisting phase.

In conclusion, we summarize that the interpretation
traffic measurements by physically motivated car mod
based on particle interaction gives support to the current
derstanding of traffic behavior of real road networks.
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