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Stochastic theory of freeway traffic
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Extending a new stochastic approach to congestion in traffic fRmMahnke and N. Pieret, Phys. Rev. E
56, 2666(1997], the nucleation, growth, and condensation of car clusters in a circular one-lane freeway traffic
model is investigated. In analogy to usual aggregation phenomena such as the formation of liquid droplets in
supersaturated vapor, the clustering behavior in traffic flow is described by the Master equation. At overcritical
densities the transition from the initial free-particle situatiree flow of vehicleg to the final congested
cluster state, where one big aggregate of cars has been formed, is shown. In dependence on the concentration
of cars on the road, the stationary solution of the Master equation is derived analytically. The obtained
fundamental diagram as a flow-density relation indicates clearly the different regimes of traffi¢rée\iet of
cars, coexisting phase of jams and isolated cars, and highly viscous heavy. trathe (thermodynamiglimit
of an infinite number of vehicles on an infinitely long road, the analytical solution for the fundamental diagram
is in agreement with experimental traffic flow data. As a particular example, we take into account measure-
ments from German highways presented by Kerner and Rehf®t063-651X99)00301-3

PACS numbegfs): 02.50.Ey, 05.70.Fh, 89.48k

I. INTRODUCTION stochastic description by taking into account the experimen-
tally known vehicle density in the jam or the real distance
The aggregation of particles out of an initially homoge- between cars in the congested phase, respectively. We also
neous situation is well known in physics. Depending on thewould like to improve the current understanding of the fun-
system under consideration and its control parameters, tig@mental diagram of traffic flow in analogy to aggregation
cluster formation in a supersaturatemstablé situation has Phenomena in metastable and unstable systems, e.g., van der
been observed in nuclear physics as well as in othelVaals gases, in comparison to experimental data from Ger-
branches. We mention the well-known example of condenian highways presented by Kerner and Rehldif-19.
sation (formation of liquid dropletsin undercooled water These data are a particular example of a large amount of
vapor. The formation of binding states as an aggregaﬂoﬁigh—resoll_mon trgfflc v_alues recorded on freeways in differ-
process is related to self-organization phenomgijaThe  €nt countries by induction loop detectg20,21,7.
emergence of car clustefg@amsg in traffic flow has been
studied by different authorésee, e.g.[2—7]) and could be
summarized in the so-called fundamental diagram of traffic
flow. Up to now there have been numerous discussions about Vehicular traffic flow on freeway&nd in cities toptends
measured and calculated flow-density curves on freeways. #o suffer from a jamming transition when the total traffic
complete understanding of traffic flow should be based omlensity exceeds a critical threshold value. The phenomenon
empirical investigations as well as on theoretical descripof car cluster formatior(traffic jamg has been studied, as
tions. Well-defined mathematical equations in analogy to esalready mentioned, by different approaches and has to be
tablished physical models are very helpful to compare theoryelated to the large variety of experimental observations
and experiment. The support given by relatively simple traf{14,22,2,20,17-19,8,6,24,7The accumulation of a great
fic systems such as particle hopping simulati@®lular au-  number of measurements of traffic flow on Duf@®], Ger-
tomata[8—11]) and deterministic car following theoffi2—  man[17-19,2]1, Japanes¢l4], U.S.[22], and other high-
14] becomes more and more important for practical trafficways shows common macroscopic properties. In general,
engineering. German data do not differ from data from elsewhere. The
Since the pioneering work by Prigogine and Herriab) interpretation of experimental measurements is rather com-
on the kinetic theory of vehicular traffic, cars have been conplex and the data are highly nonstationary. However, there
sidered as interacting particles. Based on a new stochastiare basically three different regimes of traffifree flow,
description by Mahnke and Pierl6], the clustering behav- highly correlated or synchronized flow, and heavy congested
ior in an initially homogeneous traffic flow is understood asflow) and phase transitions between them. A short-time lo-
nucleation, growth, and condensation of car clusi@ms  calized perturbation is able to generate a phase transition and
on a freeway. The purpose of this paper is to improve thdater on a flow of slowly moving bounded vehicles can be
observed on a highway for several hours.
The description of traffic flow has to be based on two
*Electronic address: mahnke@darss.mpg.uni-rostock.de fundamental essentials: First, the variability of vehicle per-
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formance and driver behavior demands for a stochastic agengthL. The motivation of the model and the details of its
proach of description. Second, the reality can only be destochastic description have already been discussgtbin|f
scribed based on empirical investigations. Moreover, since road is crowded by cars, each car requires some minimal
external parameters have a remarkable influence on drivaspace or length which, obviously, is larger than the real
behavior, a specific description of traffic flow can only belength of a car. We call this the effective lendtlof a car.
valid for one specific point along the highway network, andThe distance between the front bumpers of two neighboring
for one specific time period. This is the reason why we havesars, in general, i$+ Ax. The distanceAx can be under-
used empirical data of Kerner and Rehb§t8] in detail to  stood as the headway between two “effectice” cars which,
find values of control parameters for our model. In generalaccording to our definition, is always smaller than the real
we allow that these values are slightly dependent on the spéumper-to-bumper distance. The maximal velocity of each
cific experimental situation. car isvmax. The desiredoptimal) velocity v, depending
Below we have discussed the experimental situation obn the distance between two cdrs, is given in dimension-
Ref. [18] to illustrate the complexity of real traffic. In Ref. less variablesw,p=vopt/vmax and Ay=Ax/I by the for-
[18] nonstationary traffic flow related to the appearance ofmula
complex time-space structures has been discussed on the ba-
sis of flux-density measurements made on a certain section (Ay)2
of German highway A5. The so-called “synchronized” traf- Wop(Ay) = d2+ (A )2’ @)
fic was discussed. A characteristic feature of this regime of y
traffic is that the traffic flow is synchronized in alhre8  \here the parameter=D/I is the interaction distance is
lanes of the road. The density in this case is larger than ifhe distance between two cars corresponding to the velocity
free traffic at the same value of flux, and the time eV°|Ut'0nvaIuevma>J2. According to Eq.(1) the optimal velocity is
of flux and density measured at a given coordinate by avelrepresented by a sigmoidal function with values ranging
aging over relatively short time interval@ min) exhibits @ from 0, corresponding to zero distance between cars, to 1,
very complex nonstationary behavior. Based on measur&soresponding to an infinitely large distance or absence of
ments on Friday, August 25, 1995, when 10 different traffiCinteraction between cars. We have chosen one of the simplest
jams occurred on highway A5, a behavior of nonstationarfnctions having these properties, since this allows analytical
jams has been considered. In particular, a random emergenggyytions. Our choice is also justified physically, since it pro-
of a nonstationary jam, nonstationary growth of the ampli-yges 4 good agreement with the experimental detaSec.
tude and/or of the width of jams, an extinction of & jam, ay||)_n nonlinear dynamics based on car following models
merger of a few jams into one jam, as well as an appearanqgs_14 another functional representation was applied. In

of nonstationary moving blanks ins_ide yvide jams have bee'barticular, the optimal velocity function used in R§L4]
discussed. It was found that for wide jams the average Ve€raads in our notation

locity of downstream fron{the velocity of backwards mo-
tion of a janm is nearly the same, about 15 km/h. The tanh(d,;Ay—d,)+tanhd,)
fronts of jams, where the flux and the average speed abruptly Wopi(Ay) = 1+ tani(d,)

change, have been interpreted as nonstationary and nonho- 2

mogeneous states of synchronized traffic flow. The results of 110 most important difference between the optimal veloc-

measurements have been reflected in the fundamental diﬁ.y functions (1) and(2) is that in our casgEq. (1)] the first

gram of traffic flow. The r_neasured average f_qu and densityjq ivative ofwop(Ay) With respect to spacingy vanishes
in the outflow from the jam was 1800 vehiclesth and 205 Ay =0 The property that the first derivative should be

vehicles/km, respectively. The average density inside the jargma” at vanishing distanced y— 0) is important to under-

was found to_be 140 vehicl_es/km. o : . stand the qualitative behavior of traffic flow at large densi-

In conclusion, the experimental situation on highways iSjes petails are discussed in Sec. VII. Following our inten-
rather complex(see also Refs[17,19). Nevertheless, We 5, to minimize the number of control parameters, we use in
believe that some general features of traffic flow exist. ConEq. (1) only one free parameterwith a precise understand-
slderab[e attempts were made to investigate scaling ProPefig. Two parameterd; andd, in Eq. (2) obviously allow a
ties tp f|.nd power_-law behavior n which the power spectralpeyer fit with data, but this is not so important in our inves-
density is proportional to 1 (f is the frequency The ex- tigation.

ponenta is obtained by fitting traffic flow datgo,21]. Measurements on highways have shown that the density

Our purpose is to give a relatively simple description of ¢ ¢4rq in congested traffig. . is independent of the size
traffic flow. Our model does not include all the complexity of of the dense phasgam). The quantityg. e is known ex-
" clus

the explefrlmental sl|tui3|1t|on, but |t(|jncluq§s the most |mpofrtan erimentally (cf. Sec. I). As a consequence, the distance
generfa ?fqtu_res. tadow_s us to ?f(]f” € spoqtaneom;s c;][.m etween jammed cars, the spacifg.,s;, is well known
tion of traffic jams and to interpret different regimes of raffic 5,4 pas to be treated as a given measured quantity. There-

flow as well as to calculate the fundamental diagrdim- ¢, it js assumed that the distance between cars inside the
density plangin comparison with experimental data. cluster isAxgye=IAY=const0. In earlier work(see
Ill. THE CAR CLUSTER MODEL [23,16]) the caseAXgs=0 was considered. This corre-
AND ITS STOCHASTIC DESCRIPTION sponds to the sp_eC|aI S|tuat!on where the cpngested cars are
close together without spacing, and according to @&ythe
Here we consider a model of traffic flow on a one-lanevelocity of all cars bounded in the jam is zero. This simple
road according to whichl cars are moving along a circle of approximation dealing with a nonmoving jam of highest car

@



PRE 59 STOCHASTIC THEORY OF FREEWAY TRAFFIC 119

density is not very often valid on highways. From the physi- w_(n)=1/r=const, (7)
cal point of view, the experimentally known jam density

Qclust OF the spacing in jamax. s, respectively, connected \yhereb=uv /| denotes a dimensionsless parameter. The
by the relationshipg cjyst=1/(I + AXgjusd, is @ given mea-  parameterr is a time constant, which can be understood as

sured parameter. the waiting time for the escag@etachmentof the first car
The length of the clustefjam) depending on the number oyt of the jam into free flow. This parameter characterizes
of congested cars is defined by the fastness of the driver's reaction or adaptation to a new
situation (the road is free and one can start to mowc-
Lewst=In+(n—1)AXcjust- 3 cording to this interpretation, our assumption theandw_

) ) . are constants is well justified. On the other hand, in a real
According to this, the average distand&rec=|AYtree be-  sjtuation the detachment of cars from the jam occurs more or
tween two cars outside the jafor free carpdistributed over  |ass continuously, therefore the above interpretation as a

the free part of the road with lengthee=L — LciustiS given  \ajting time interval to escape is appropriate.
by In any casew_ is the average number of cars leaving the
jam per time unit. This allows us to relateo the velocity of

LII=N—=(n=1)Aycyst backwards motion of the jamiy ¢k, i.€.,

AYfree(N)= N—n+1 ) (4)

. I"*‘Axclust
whereN is the total number of cars on the roécircle of vbacsz—vopt(AXcmst)=7_Q——vopt(AXc|ust),

lengthL). clust ®)
The traffic flow is described as a stochastic process where

adding a vehicle to a car cluster of siaés characterized by 514 to determine the value of parameterccording to the
a transition frequencyattachment probability per time upit data of Ref.[18], we have ., =140 vehicles’km and

W..(n) and the opposite process by a frequemcy(n). The . —15 km/h, which yields the value of about 1.7 s o
numbern of cars in the cluster is the stochastic variablesrﬁ‘;”er. ’

which may have values from 1 td. The situation of a single The Master equatiofb) can be rewritten as follows:
“congested” carn=1 is treated as a cluster of size 1, and

therefore we do not consider transitions between states with dP(n,T)
n=1 andn=0. According to our model, only one car cluster ——~
exists at any given time. The basic equation for the evolution dT
of the probability distributiorP(n,t) to find a cluster of size +j(n+1—n), )
n at timet with probability P is known as the Master equa-
tion. The one-dimensional stochastic equati@ee, e.g.,
[24,25) reads

=j(in—=1-n)—j(h—n+1)—j(n—n—-1)

where j(n—1—n), j(n—n+1), j(h—n—-1), and j(n
+1—n) are probability fluxes which are equal to the corre-
sponding terms in Eq5). The boundary conditions for Eq.

}mzw+(n—l)P(n—l,T) (9) are

T dT
—[w,(n)+w_(n)]P(n,T) J'(l—>0)=j(0—>1)=j(N—>N+1)=j(N+1—>N)=o(.1o)
+w_(n+1)P(n+1,T), (5)

Our purpose is to solve this equation and to extract from
whereT=t/7 is the dimensionless time. The time constant this solution information about the formation of traffic jams
will be specified below. and about the various possible regimes of traffic flow de-

The main task is to formulate expressions for both transipending on the parameters of the system, as well as to cal-
tion probabilitiesw, andw_ . As already explained in our culate the flux-density or the fundamental diagram of traffic
previous wor 23,16, we have assumed that the detachmenflow. Finally, our aim is to compare the results of calculation
frequencyw_(n) or the average number of cars leaving thewith experimental data.
cluster per time unit is a constant independent of cluster size
n. The ansatz forw,(n) is now corrected.allo.wing for IV. STATIONARY PROBABILITY DISTRIBUTION
AX¢ust to be nonzero. Our general assumption is that a ve- OF TRAEEIC JAMS
hicle changes the velocity fromy,,(AX;ee) in free flow to _ _ _
Vopi(AXcius) in jam and approaches the cluster as soon as Now let us consider the stationary solutioR(n)
the distance to the next céthe last car in the clustere-  =lim;_.P(n,T) of the Master equatioi5) corresponding
duces fromA X¢,ee 10 AXqjyst- This assumption allows one to to the condition
calculate the average number of cars joining the cluster per
time unit or the attachment frequenay, (n). Thus, we have dP(n,T)
the ansatz which in dimensionless quantities reads TZO- (11)

W, (n)= EWOPI(Ay”ee(n))_WOPt(AyC'USf), (6)  The general solutioP(n) of Eq. (11) is well known and
T AYtree(N) = AYeiust reads(see[24])
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FIG. 1. Series of different stationary probability distributid®é&) (solid lineg and ratios of transition rates, (n)/w_ (dashed lines
showing the formation of a jam of sizedepending on the total number of cédson the road. The values &f and P, are (@) N=55,
Pmax=0.439; (b) N=96, P,,,=0.070; (c) N=135, P,,,=0.039; (d) N=300, P,,,=0.045; (6) N=776, P,,,=0.088; (f) N=777,
Pmax=0.227. The parameters of the system lafe=1000 L =5000 m,[=5 m), b=10,d=2.5, andAy,s+=0.2. The maximum of the
probability distribution corresponds to the stable cluster size of congested cars.

w,(n) j(m—m+1)=j(m+1—m) (19

_(n+1
w-(n+1) (12) holds form=n if it is satisfied atm=n—1. According to

Egs.(9)—(11), Eq. (14) holds form=1, therefore it holds for

P(n+1)=P(n)Q(n) with Q(n)=

or any 1I=m=<N-—1. This means that the detailed balarité)
is true and leads unambiguously to the final solution given
n—-1
by Eq. (13).
11 o(m)
P(n)= x——7—— with Q(0)=1. (13 V. NUMERICAL RESULTS FOR FINITE SYSTEMS
ngl =0 Q(m) A series of probability distribution®(n) for increasing

dimensionless densities=IN/L, calculated on the basis of
Here we propose a short way of getting this established resulg. (13) together with Eqs(6) and(7) indicating the forma-
and proving that it is the only stationary solution and thetion of a cluster on the road, is depicted in Fig. 1. The ratio
detailed balance is true. From E@8) and(11) we conclude of transition ratesv_ (n)/w_(n) is shown too. Calculations
that the relation are made for a finite system with=5000 m,|=5 m, or
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FIG. 2. Evolution of probability distributiofP(n,T) as a func-
tion of time for a system olN =200 cars simulated by Monte Carlo
method starting wittP(n,0)= &, ;. Solid curves from left to right
correspond to increasing timé&s=2, 10, 50, 100, 200, and 400. The
dashed line depicts the stationary solution Tor-oo. The param-
eters of the system ark/|=1000, b=10, d=2.5, and Ay st
=0.2.

L/1=1000.0,d=2.5, b=10.0, andAy,s~=0.2. One can
conclude from Eq.(12) that the conditionw, (n)/w_(n)
=1 corresponds to a probability maximur minimum
located an/N#0 if N—o andL—o0. This holds approxi-
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simulated by the Monte Carlo meth$®5]. The dashed line
in Fig. 2 represents the stationary solution given by @&8§).
The same simulations have been made starting R(t,0)
=6dpn- In both cases the probability distribution tends as-
ymptotically to the stationary solution far— .

VI. THE FUNDAMENTAL DIAGRAM

One of the most important characteristics of traffic flow is
the fundamental diagram showing the flixof cars as a
function of the total densitg =N/L (or dimensionless total
densityc=1p) on the road. We defind as a local flux
o(x,t)v(x,t) averaged over an infinite time interval, where
o(x,t) is the local density and(x,t) is the local velocity of
cars at a time momertand space coordinate i.e.,

1t
J=lim ff ot )u(x,t)dt'. (15)
t—oo 0

In our model the local velocity as well as the density of cars
are defined by the cluster sireand the distanc&—x' be-
tween the considered local coordinateand the coordinate
x' of the first car in the jam. Thus, we hawx,t) =g (x
—x'(t),n(t)) andv (x,t)=v(x—x’(t),n(t)), and after aver-

mately for a finite system, as it can be seen from Fig. 1. Aging over time we get

small densities |=55), w_ (n)/w_(n)<1 holds for anyn,
therefore the absolute maximum &f(n) is located atn

=1, indicating the absence of a macroscopic cluster. This n
corresponds to the regime of free traffic without congestions.

If the density increases above some critical valte first
critical densityc, with the valueN~96 in this casgcorre-

sponding tow,(1)/w_(1)=1, then a macroscopic cluster

=

j dx'P(n,x")o(x—x",nuv(x—x",n), (16

whereP(n,x’)dx’ denotes the part of the total time during
which the size of the cluster is and the coordinate of the
first car of the jam is betweex’ andx’+dx’. The cluster

appears 1/N+0 at N—c). The series of snapshots with can be found with equal probability at any coordinate
N=135, 300, and 776 illustrates the growth of the clustel‘along the circle if an averaging over an infinite time interval

with increasing density. This corresponds to a partly con-

t is considered. Thus we haw{n,x’)=P(n)/L. According

gested road where one cluster of cars coexists with a regicl? OUr assumptions, the velocity of congested cars is

of free traffic. The probability maximum corresponds to the

average cluster size. This holds exactlyNat-co and repre-

sents a reasonable approximation for the considered finite

system. At large densitiesNE=776,777), the equation
w, (n)/w_(n)=1 has two solutions with respect to The

first (the smallestroot corresponds to the minimum, whereas

the second corresponds to the maximumRgh). In this

case, the stationary probability distributi®§n) has another
maximum ain=1. At some critical densitythe second criti-
cal densityc, corresponding tiN~777), the maximum at

n=1 becomes the absolute maximum and the macroscopic

Vopt(AXciysy) and their density i9¢),s:=n/L s inside the
jam of length L;,s. Outside the jam we havey
_Uopt(AXfree(n)) and eree:(N_n)/Lfree- By these as-
sumptions the integratio(16) can be performed easily, and
this yields

nl nl
T+Wopt(Ayfree(n)) C_r ’

17

j:bE P(n) Wopt(Ayclust)

n

wherej=Jr is the dimensionless flux.
Now we consider the behavior of the system in (treer-

cluster disappears. The latter means that the density of Carsriﬁ'odynamia limit N—o under the condition

large over the whole roathighly viscous overcrowded situ-

ation). Generally Fig. 1 shows the phase transition from di-

lute gas(free flow, one phagecluster phasécongestion and
free flow, two coexisting phasgdo liquid state(heavy traf-
fic, one dense phase

The time evolution of probability distributioR(n,T) rep-
resented by Master equatidf) has been simulated for a

o=(Rd)?2+4RAy¢ysi—4>0, (18)
whereR=Db/[d?+ (Ay.us)?]. This is the condition at which
the equatiorw . (n)/w_(n)=1 has real physical soluti¢s)
and a cluster witm/N#0 emerges, i.e., a phase transition
takes place at some value of car dengityin the opposite

finite system of 200 cars moving along the road of lengthcase there is no phase transiti@uster formation at all. In
L=1000 | with the same values of control parameters ashe special situatiody,st=0, condition(18) reduces td
before. Results are shown in Fig. 2. The probability distribu->2d. The analysis of solution(13) shows that P(2)

tion P(n,T) at various time momenfs=2, 10, 50, 100, 200,
and 400 starting witiP(n,0)= &, ; as initial condition are

=N"16(z—z,) holds in the thermodynamic limiN—oe,
wherezis defined ag=n/N with the valuez, corresponding

obtained by averaging over 500000 stochastic trajectorieto the absolute maximum d?(z). z;=0 holds ifc=<c, or
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c>c,. If c;<c<c,, thenzy=2z;, wherez; is defined by

26:(1+Ayfree_ 1/C)/(AYfree_AYClust) andAyfree has the 1.5 ¢ ////\\ —_ L=infinity
constant valued/2) (Rd+ o), as it follows from the equa- / \\ L= 10000m
tion w, (n)/w_(n)=1. The critical densities; andc, have / \ L= a00m

the same meaning as discussed in Sec. V. They are defined
by zy=0 or c;=1[1+(d/2)(Rd+ Jo)], and I{P(z=0))
=In(P(z=12;)), respectively.

In the following, an equation will be derive@inder the
assumptiomy,s7=0) from which both critical densities,;
andc, can be determined. Taking account of E#2), the
condition I(P(z=0))=In(P(z=zp)) in the thermodynamic
limit reduces to

J:ﬂn[Q(a]dz:o. (19)

Thi tion i tisfied both at de=c. b . FIG. 3. Based on the stationary solution of the stochastic Master
IS equation IS salislied both @&t=C, andc=C, DECAUSE IN o0, 4tion the fundamental diagrddimensionless flow ratéflux) j

the latter case we hawg=0. Using partial integratiofwith s gimensionless car densit] is calculated. The dimensionless

account forQ(z;) =1] and change of integration variable to control parameters ate=10,d=7/3, andAy,s=0. The length of

h=Ay;,.e [defined by Eq(4)], we get roadL varies, the effective length of a car being fixed6 m. For
flow j can be divided in two homogeneous reginglest: free flow
as gaseous phase; right: heavy traffic as liquid phasd a transi-

where s=(1-c)/(cd) and B=b/(2d)+ Jb%/(4d?)—1. Cluste).

This integral can be calculated analytically, and this yields

finite roads [ <) as well as for infinitely long roadd.(— ), the
JBd( L Sd)dh—o 20
sa \h d?+h? h ’ . OuS P ; :
tion regime with free and congested vehiclésrmation of a car
our relatively simple model, calculated in the thermody-
namic limit. Since the fundamental diagram represents one
of the most important characteristics of traffic flow, this re-
(21) SL_JIt has a fundamental significance and has to be compared
with vehicular experiments. As can be seen from these equa-
One of the solutions is, obviously,; =B corresponding to tions_, the fundamental diagra_m co_nsists of frag_ments of a
the first critical valuec; = 1/(1+Bd). A complete analytical nonlinear curve and _of a straight line. The nonlinear curve
solution is possible in some asymptotic casesBAt1+ e, represented by the first formula of EQ2) corresponds to
where e—0, the solution can be found in the fors=1 homogeneous flow, whereas the straight line corresponds to
+ 8, where5— 0. Neglecting terms of fourth and higher or- Nohhomogeneou®r congestepiflow.
ders we get §—€)%(6+2€)=0. Thus, we haves;=1+¢
=B ands,=1—2e. At the critical pointe=0 orb=2d (at
b>2d the cluster emergg¢swe gets;=s,=1 or ¢;=¢C,
=Ccrit » Wherece;;=1/(d+1) is the critical value ot. An- Based on the analysis of the fundamental diagfag),
other asymptotical case B—, where we have a solution different regimes of traffic flow and phase transitions be-
with s,— 0. Retaining only the main terms in the equation, tween these regimes have been discussed. The fundamental
we get In;B)+1=0 or s,=1/(eB). diagram is shown in Fig. 3, calculated bt=10, d=7/3
It should be noted that cases witksc. ¢ have a physi- =2.333, andAy,.,=0 for different values of the length of
cal meaning only, because the total densityannot exceed the roadL. The effective length of a car is fixed te=6 m,
the density of cars in the clusteg,= 1/(1+Aygusy- IN which corresponds to the experimental data discussed in Sec.
general(with Ay s>0), a situation is possible where the Il. The set of control parameters in this case is chosen
equation forc, has no solution at,<<c .. In this case the slightly different from that in Sec. V. Our intention is to
following flux equations for an infinite system are correct, show two phase transitions at critical densitgsand c,,

formally settingc,=c,st. Thus, taking into account the respectively, which are more distinct Aty =0 than at
above discussed solution fd?(n), we get the following Ay.,s=0.2. The regionsce[0;c;], ce[cy;Cy[, and ¢

B(1+s?)

n ———|+ = —1+2s(arctanB—arctans)=0.
s(1+B?)

B

VIl. PHASE TRANSITIONS AND DIFFERENT REGIMES
OF TRAFFIC FLOW

flux-density relation: e]c,;1] correspond to three different regimes of traffic
) flow. Besides, there is a breakpoint in flppat c=c, and a
be(l—c) jump atc=c,, as may be seen from Fig. 3, where the ana-

(cd)’+(1—c)? :eef0iea]UICs:Cosd lytical solution(22) is shown by dashed lingsorresponding

to the first and the second formulas in E82)]. The jump
Aj tends to zero in the casB=1+¢€ at e—0, i.e., Aj
=3dcie, andj in the vicinity of the jump tends to the
These equations represent an exact analytical solution foralue j.,;=d/(1+d). In general, the valugd/(1+Bd)
the fundamental diagram of traffic flow in the framework of corresponds t$ at c=c; andAy,,s—=0. The results of the

i(c)=
1—c+c[bWop(AYcius) —AYciust:Ce[C15C[
(22
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calculation for finite systems, shown in Fig. 3, coincide with  TABLE I. Values of parameters for the stochastic traffic model
the above analytical solution ilL—. The regionc determined from experimental observations on German highways.

e[0;c,] corresponds to the free traffic flow where the rela-

tive part of the cars involved in the jam tends to zerdif Quantity Symbol value
—oo. The regionce[cq;C,[ corresponds to the traffic flow Effective length of a car | 6 m
on a partly congested road where one cluster of cars coexiststeraction distance D 13 m
with a region of free traffic. The regione]c,;1] corre-  Distance in jam AXclust 1m
sponds to a highly viscous overcrowded situation, where thevaiting time T 15s
density of cars is high and their velocity is small over theyaximal velocity Umax 34 mls

whole road.
In our model, two phase transitions are always present at

Ay.usi=0 andb>2d, since Eq.(21) has two real positive

solutions with respect te. The physical reason for the first VIll. COMPARISON WITH EXPERIMENTAL DATA

phase transition is that the homogeneous flow, which is

stable at low densities, becomes unstable at some critical The fundamental diagram discussed in the preceding sec-
densityc,. This phenomenon has been shown experimention has been calculated for quite realistic values of the pa-
tally and theoretically by many authorsee, e.g.[12—  rameters. These parameter values are suitable to show some
14,3,4,17-19,5,23,16,8-0and it is not a unique feature general features of behavior of a vehicular system described
of our model. The second phase transition occurs because thg our model. Nevertheless, these parameters have up to now
homogeneous flow becomes stable again at large densities @6t been adjusted to real experimental data. In this section
cars, i.e., att>c,. This phenomenon can be explained inwe present a comparison with the experimental data reported
terms of transition probabilities between two different mac-partly in Sec. I1(see[17-19). The parameter values corre-
roscopic states in a bistable system, i.e., between the statgﬁonding to the bedor near to the besfit with these ex-
without and with a macroscopic cluster. At sufficiently large perimental data are given in Table I. The corresponding di-
densities,P(n) has a minimunfw, (n)/w_(n)=1 has two  mensjonless parameters dre v a7/ =8.5,d=D/l = 13/6
solutiong at n=n,,s;, Wheren,s; is the unstable cluster ~2.167, andAy, ye= AXe1yei/| = 1/6=0.167. We have con-

f5|ze. Itt me?r;rs] that there e_X|st|s "’: nt;cleaﬂon_ t.)tqr“erhfor thgiderecbmax andl + AXgjysi= Upciust @s experimentally mea-
ormation of the macroscopic cluster from an initially Nomo- ¢, o 4 guantities consistent with data given in R&B]. In
geneous state. A stable growth of the cluster can occur

. : this case there are only three independent free parameters,
merely atn>n,,;, Whereas a stable dissolution of the clus-. . :
ter can take place at<n,,s;only. A switching between the .e., D, .AXC'“S" andr, which can be use;d for mat.chlng the
two macroscopic states of the system is possible due to Stéheprencally cal_culated fundamental diagram with the ex-
chastic fluctuations. In our mode, o increases wittc and ~ Pefimental one in the case\f andL are large. The param-
approached\ if c—1. The velocity of cars is strongly de- €t€rL/l is responsible for finite-size effects.

creased if the distance between them becomes small. As a The velocity of backwards motion of a jamy,ac~16
result, the average flow of cars, joining the cluster, can exkm/h calculated with these parameters from E).is close
ceed the opposite flow merely if the density of cars in theto the experimental value 15 kmfti8]. The latter fact pro-
free phase is not too large. From a purely geometrical aspectides good evidence of validity of the used optimal velocity
the necessary condition of this @1 isn—N. In such a function (1). To ensure a good fit with the experimental
way, because of a large nucleation barrier and a small diss¢ralue ofvy,,¢y, it is important thav ;i AXcjys) in EQ. (8) is
lution barrier, a spontaneous dissolution of the cluster besmall compared t@,,.. Thus, not any function of the op-
comes much more probable than its formatios-atl. Thus, timal velocity is valid. In our case, a sufficiently small value

in this case the highly dense homogeneous state with thef v,,(AXc,s)~1 km/h is ensured by the fact that the first
probability maximum an=1 is the stable state of the sys- derivative of the optimal velocity functiofl) vanishes at
tem. It is noteworthy that two phase transitions take place imly=0. In any case, this derivative should be remarkably
our model at not too large values Afy.,s;only. If Ay.us¢  smaller than 1. Although our choice is not the only possible
is large, then the average distance between catsc one, Eq.(1) represents one of the simplest functions having
<C¢ust) IS never small enough to ensure the above discussetthis property. The optimal velocity functiof2) used in Ref.
effects. A question arises whether the two phase transitioNd4] with the parameter valued;=0.602 andd,=1.548,

are present at an optimal velocity function different from Eq.determined on the basis of the experimental data measured
(1). The necessary condition for the second phase transitioon the Chuo Motorway, has also a sufficiently small value

at Ay ust=0 andN—oo is 0.052 of the first derivative aty= 0. However, this function
is more complicated as compared to Et).
dwop(AY) <E 23 Under the conditionu opi(AXeiys) <Upack. the waiting
d(Ay) b’ time = may be considered as a directly measured quantity

Ay=0 [T~ (vpacklciust ]- As already mentioned in Sec. lll, this

If this condition is not satisfied, then the homogeneous flowyields the value ofr about 1.7 s, which is compatible with

is unstable at— 1, since in this case/, (1)>w_(1) holds. the value 1.5 s obtained in this section by matching the ex-
As a consequence, the existence of the second phase trangérimental and the theoretical fundamental diagrams. It is
tion depends on the specific choice of the optimal velocityalso interesting to compare the interaction distanddsl
function. in any case is defined by,,(d)=1/2], d=2.167 and
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the maximum of theoretical curve for an infinite system. The
theoretical curves for an infinite system represented by the
first and the second formulas in EQ2) are shown in Fig. 4

by a(smooth thin solid line and a dashed line, respectively.
The thin solid line corresponds to homogeneous flow without
congestions, whereas the dashed line reflects the congested
traffic flow. The experimental data shown in Fig. 4 by sepa-
rate points correspond to homogeneous traffic flow. The ho-
mogeneous situation in the considered experiments is ob-
served at densities slightly larger than, as can be seen
from the figure. In such a way, the separated experimental
points above the maximum of the theoretical curve can be

~ interpreted as metastable homogeneous flow.

0.0 ‘ \ 0 IX. CONCLUSIONS
0.0 0.3 0.6

C The stochastic Master equation approach to describe traf-
fic flow developed in Refd.16,23 is extended allowing that
cars in a jam are not close to each other and that they are
moving. The stationary probability distribution over jam
sizes and the fundamentélux-density diagram is calcu-
lated on the basis of the developed model depending on total
density of cars on a circular one-lane road. The evolution of
Hrobability distribution, showing formation of a jam on a
road, is investigated on the basis of the time-dependent Mas-
ter equation solved by the Monte Carlo method.

The obtained results indicates the existence of three dif-
ferent regimes of traffic flow, i.e., free flow at small densities
d=2.643, following from Egs.(1) and (2), respectively. Of cars, congested traffic or coexisting phase, where a car
These values are compatible. The agreement is satisfactor§luster coexists with a region of free traffic, at intermediate
taking into account that different models and different ex-densities, and a highly viscous overcrowded situation, where
perimental data have been used to determine the values 8fe density of the cars is large and their velocity is small over
the control parameters in these two equations. the whole road, at high densities.

The values of the dimensionless parameters are rather The obtained results represented in the flux-density plane
close to those used in Sec. VIb€10, d=7/3=2.333, allow us to interpret the main features of traffic flow ob-
Ay us=0). Therefore qualitatively similar behavior of the Served experimentally. The analytical solution of the funda-
system is expected_ The fundamental diagram Caicuiateﬂ]ental diagram for an infinite road, as well as solutions for
with these parameters for a circular road of length finite roads of different lengths, are in qualitative agreement
=5000 m is shown by the thick solid line in Fig. 4, where With experimental data. A good quantitative agreement with
the experimental data of RéfL8] corresponding to free traf- €Xperimental dat§l7-19, especially with Fig. 3 from Ref.
fic flow are shown by separate points. The experimentall8]. is obtained at appropriate realistic values of control
points measured inside the region of wide traffic jams ardParametersTable . It is shown that the experimental points
connected by a thin solid line. Since data, taken from Fig. Forresponding to free traffic are in good agreement with the
in [18] (with the same notation are measured in a nonsta- analytical curve for homogeneous flow. Besides, the largest
tionary Situation’ a hysteresis appe&wints Starting from eXperImental Va|ueS of ﬂUX Qorrespond to a metastable hO'
upper ones are connected in a sequence of measureméh@geneous state. The experimental values of flux measured
time). It is necessary to make an averaging over a sufficientlyn @ region of wide jams on average correspond to the theo-
large time interval to get the value of flux defined by Etp)  retical (straighy line of the coexisting phase. _
Corresponding to an averagmtai) density of cars. Accord- In COI"IClUSIOﬂ, we summarize that the |nterpretat|0n of
ing to this, there are some difficulties in comparing the ex-raffic measurements by physically motivated car models
perimentally measured nonstationary values of the flux witf?ased on particle interaction gives support to the current un-
our theoretical results. In the first approximation we havederstanding of traffic behavior of real road networks.
assumed that the result of averaging of nonstationary mea-
surements at a given density corresponds to the value of flux
calculated at this density from our theoretical model. This is
a criterion we have used to find the values of parameters One of us(J.K,) gratefully acknowledges support under
corresponding to the experimental data optimally. The theoProject No. 0023 0040/97Kultusministerium des Landes
retical line in Fig. 4 is in good agreement with the averagedMecklenburg—Vorpommepnduring the stay at the Physics
experimental values of flux at both small densities and aDepartment of Rostock University. The authors thank Nicola
high densities. The most significant difference is at densitie®ieret, Marcel Ausloo$Liege), and Boris KernefStuttgarj
slightly above the first critical density; corresponding to for fruitful discussions.

FIG. 4. Comparison of the fundamental diagram of traffic flow
calculated at fitted parameter values6 m, v,,,=34 m/s, 7
=15 s,D=13 m, and AX¢usi=1 m (b=8.5, d=13/6, and
Ay ust= 1/6) with experimental data of R€fL8] (denoted by sepa-
rate points and a thin solid line connecting measured poifiitse
thick solid line shows the solution for the finite road of lendth
=5000 m; the theoretical curves for an infinite system represente
by the first and the second formulas in E§2) are shown by a
smooth thin solid line and a dashed line, respectively.
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