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Pulse propagation effects in a cyclotron resonance maser amplifier
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An analysis is presented of a cyclotron resonance maser amplifier operating with electron pulses. The
electrons are resonant at two frequencies of the same waveguide mode. We consider both a single resonant
frequency interaction and also a coupled two resonant frequency interaction. It is shown that, in general, the
interaction with both resonant frequencies must be taken into account. The analysis includes propagation
effects due to the difference between the axial velocity of the electrons and the group velocities of the radiation
fields. Both linear and numerical solutions to the equations are given, and superradiant emission is demon-
strated where the radiated power scales as the square of the electron pulse current. Two methods of low-
frequency suppression are presented allowing the high-frequency emission to dominate. These results may
have important consequences for the generation of short pulses of high-frequency, high-power microwave
radiation.[S1063-651X99)01001-9

PACS numbdss): 41.60—m, 52.75.Ms, 84.40.lk

I. INTRODUCTION “superradiant” regime, where the radiation power emitted
scales as the square of the electron current, is of particular
Cyclotron resonance maser€CRMs) are important interest[22,23, and has many conceptual similarities with
sources of coherent high-power microwave radiation. Theuperradiant behavior in free electron lag@4—26. Super-
radiation source of the CRM is a relativistic electron beamradiant emission offers a possible method of generating very
gyrating as it propagates along a uniform magnetic field, anghort high-power pulses of microwave radiation.
the radiation emitted by the electrons is usually contained In this paper we present results arising from a detailed
within a cylindrical waveguide structure. When the electronsanalytical and numerical investigation of CRMs operating in
interact with either their spontaneous radiation, or with anthis pulsed amplifier regime. Clearly the fact that pulses of
injected signal, a collective instability may bunch the elec-radiation are generated increases the frequency bandwidth
trons in the phase angle of the electron gyration, or the axiavhen compared with that of the steady state regime. The
electron position, or both. The bunched electrons may the@nalysis is first performed for a single resonant frequency
emit coherently. The collective instability may give an expo_interaction, _and then for simultangous interaction at the
nential growth of the radiation field until saturation, where lower and higher resonant frequencies. In both cases super-
free energy depletioril] of the electron beam and/or a radiant emission from the electron pulses is demonstrated,
dephasing of the electron bunching occurs. In general, for @d it is shown that, in general, the coupled interaction with
single waveguide mode, there exist two distinct resonant freboth resonant frequencies must be taken into account. In ad-
quencies. In most circumstances it is the lower resonant fredition, two methods of suppressing the lower resonant fre-
quency that has the larger growth rate and dominates th@uency are presented. These results may have important con-
exchange of energy from the electrons to the radiation fielgsequences for the generation of short pulses of high-
The electron source for the CRM is usually of a durationfrequency, high-power microwave radiation.
which is much greater than both the resonant radiation period The resonant frequencies of the CRM interaction may be
and the time of flight of a typical electron through the inter- determined by the intersection of the waveguide and beam
action regior[2—5]. Considerable mathematical analysis hasmodes as defined by
therefore been carried out, assuming interaction at a single

resonant frequency only, and using the “steady state” ap- 2— 2+ K22 1
CO . ! = wctkjc, (1)
proximation, which assumes a uniform current electron beam
of infinite duration[1,5-15.
More recently, an analysis of the steady state amplifier w=wy+kp|, )

interaction allowing both the lower and higher resonant fre-
guency fields to evolve has shown that it is possible to sup-
press the evolution of the lower frequency instabilify], ~ respectively, where. is the waveguide cutoff frequencly;
possibly allowing the CRM to operate at the higher fre-is the axial component of the radiation wave vectof, is
quency only. When the steady state approximation is nothe relativistic cyclotron frequency ang is the axial veloc-
valid, the relative propagation of the electron pulse with re-ity of the electrons. A typical dispersion diagram in Figa)l
spect to the radiation emitted becomes important, and maghows the intersections at the two resonant frequencies. The
give rise to new regimes of operation. With the advances inadiation at the higher resonant frequency has an axial group
accelerator technologhl7—-20, pulse dominated CRM op- velocity (vy=dJw/dk|) greater than that of the lower reso-
eration is now possible with ultrashort pulse durations of thenant frequency, and so these resonant modes are defined as
order of the radiation period being feasip®L]. The pulsed being the “fast” and “slow” resonant modes, respectively.
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o maser type. Figure(b) shows the different regimes of op-
eration as() increases from{l~1 to O~ .. For finite
values ofe the upper limitQ) ., places a more restrictive
lower limit on the value ofX than that of Eq(5), giving a
o) range of allowable valuesed/(e3+1)2<X<1.
.\ The CRM interaction may be considered at only one of
(Kies,) the resonant modes, either fast or slow. We call this the
> K, single mode model, and it has previously been the subject of
substantial interestl,5—-15. These works have been con-
ducted in the steady state regime, which neglects propagation
03 effects due to the difference between the group velocities of
4 Q=25 the radiation and the average axial velocity of the electrons.
In one of those workg13], the equations describing the
Q=13 CRM interaction were written in a scaled form in terms of
two physically meaningful scaling parameters. The first is
the fundamental CRM parameter, analogous to the Pierce
- parameter of traveling wave tubd@WT) theory [27], and
b) > determines the growth rate of the electron/radiation instabil-
ity. The second is the depletion paramejer which de-
FIG. 1. (a) Dispersion diagram showing the intersection of elec-scribes the effects of free energy depletion of the electron
tron beam and waveguide modek) Dispersion diagram illustrat-  beam[1]. The depletion parameter is a measure of the ability
ing the different operating regimes for two values of the deviceof the interaction to convert the energy associated with the
parametef) for e=2 (Qpa=4). cyclotron motion of the electrons into radiation. For small
] ] ] values of the depletion parameter, only a small fraction of
Solving Egs.(1) and(2), we obtain solutions for the fast and g energy is available. The fundamental CRM parameter

slo_w mode resonant frequencies and their correspondingnq the depletion parametgr, are related via the relation
axial wave vectors:

&

(]

(a)

[\

p
=, 7
, 3 ©=7 (7)

1i,8||\/1—X
1-pf

Wf,s= WH
wherev is the free energy parameter, and is a measure of the
oy BEV1-X transverse energy content of the electron beam relative to the
T—l_ﬁg ' 4  axial energy[13,16. Linear theory shows that there is a
I threshold value of the depletion paramejey,, above which
where the “waveguide parameterX= wﬁ/(wﬁ 7’@1 B no exponential growth of the radiation field is possible. Any

=, lc, ,y”:(l_ﬁﬁ)—l& and subscript$ andss indicate the two of the three parametegs u, andv, defined in Sec. Il

fast and slow modes, respectively. In this paper we considel &Y be used in the scaling of the equations describing the

the case where both the fast and slow modes propagate in teractl?rr]\. If-ler((je, as '? IOLéer,)vrlewous pltjb“cat('jo?ﬁ’ v(\j/e Ta}[\./e
forward direction only. This limits the range of the wave- chosen he Tundamenta parameter an € depietion

guide parameteiX, to parameter as our primary scaling parameters.
In a two mode interaction, however, we are free to choose
1/7ﬁ<X< 1. (5  between thep and u parameters of the fast or the slow
modes, which we designate with subscrip@nds, respec-
Note that the upper limit orX implies that the relativistic tively. In this paper the fast mode scaling is chosen, conver-
cyclotron frequency, in the drift frame of the electrons, mustsion to slow mode scaling being straightforward via the re-

If.s=

be greater than the waveguide cutoff frequency. lations
The “device parameter{}, is defined as in Ref.16] to
be pi=€ps, pi=psle. ®)
2 1 Note thatp; is bounded within the interval
QZX—lZ—Z(a}f&)S— k”kaSCz), (6)
w

c 0<p;<2u;el(e3+1), 9)
and is constrained to lie within the limits I : . .
the upper limit resulting from the restrictian<c. This up-
1<Q<Qmaxs per limit on the value ofp; limits the growth rate of the
radiation and also the efficiency of the dev[d®]. Summa-
where Q.= (1+€%)/(2€%) and e3=k”f/kHS. The upper rizing, in total four parameters are required to describe the
limit on Q is for the limit w.— 0. If Q lies toward the mini- CRM coupled interaction between the fast and slow modes:
mum of the interval, then the interaction is of the gyrotronthe axial wave vector ratie; the device paramete®; the
type; conversely, if) lies toward the maximum of the inter- CRM parameter for the fast modg,; and the depletion
val then the interaction is of the cyclotron autoresonancearameter of the fast modga, .
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A linear and numerical analysis of the coupled two modealong a cylindrical waveguide containing “cold” TE
interaction has been conducted in the steady state regimgaveguide modes is assumed. The waveguide is coaxial with
where propagation effects are neglecie@]. Here the inter-  , giatic magnetic fiel&=B,2. These modes are defined by
action of the slow mode has a larger growth rate, except fof, o cylindrical components of the electric fields:

a small region of parameter space where linear theory and
numerical simulation predict no exponential growth of the

slow mode for a range of the depletion parameter This E§
range corresponds to that where, due to the scaling of Eq.
(8), the value of the depletion parameter of the fast mode is
below threshold f:<puy,), but that for the slow mode is

n__m

= o Fis(zZ)Dredn(k, 1)€Y is+c.c.,

ik :
E{%)=—F(z,)Dredi(k 1)eis+c.c.,

above thresholdgs> uy,): 2
1| [27\R  p; 27\ Y3 py (2)_
—] R _ R — Ef, _Ol
; <32) 5 <,uf<<32 5 (10 s

where

Hence choice ojx; from within this region allows for a
suppression” of the lower frequency slow mode. Vi o= wf L= MO~k o2,

In the steady state regime the radiation intensity scales as
na3, wheren, is the electron density; however, when propa- 1
gation effects are included in the model, there is another Dre= ,
regime of operation known as the superradiant rediz8, I Xmn) \/W(Xr'nzn— m?)
where the radiation intensity scales mé The purpose of
this paper is to investigate the CRM interaction for electronk, is the transverse component of the radiation wave vector,
pulses, including propagation effects, for both the single fre /. . is thenth root ofJ/,(k, R,) =0 andR, is the waveguide
quency and two frequency regimgz3,2§. Of fundamental radius. The field is assumed to obey the slowly varying en-
importance when discussing electron pulses is the coopergelope  approximation (SVEA) so that F¢(zt)
tion length. This length is the minimum distance within the =|F (z,t)|e'¢"s#" is a slowly varying complex envelope
electron pulse between which electrons may interact coopfunction determining the andt dependence of the amplitude
eratively, and may be defined as the relative slippage disand phase of the radiation field.
tance between the radiation envelope and the electron pulse The product of the transverse component of the radiation
in one gain length. An electron pulse is defined to be long oave vector, and the Larmor radius of the gyrating electrons
short with respect to a length proportional to the cooperations assumed small, i.ek, r, <1. This is an experimentally
length. However, both the slippage distance and the gaifesirable approximation which maximizes coupling with the
length are different for the two frequencies of the fast andradiation mode when the electron beam annulus is coincident
slow modes, and so the cooperation length is different fokyith the maximum of the transverse mode electric field. Fur-
each frequency. Due to this frequency dependent cooperatiaRer, it is assumed there are no space charge effects and that
length it is possible for the same electron pulse to be longhe electron beam phase evolution is slow with respect to the
with respect to the higher frequency cooperation length andyclotron period. The latter allows the Maxwell-Lorentz
short with respect to the lower frequency cooperation lengthequations to be averaged over a cyclotron period. The effect
Typically short pulses give rise to a weak superradiant interof beating between the two radiation frequencies is also ne-
action in which the intensity of the radiation emitted is lessglected by averaging the wave equations over a beat period,
than that from long pulses where strong superradiance anghich under the SVEA is valid fow;=2wg. This is in
steady state effects dominate. By choosing a scaled electrgdntrast to the work of21,22), where “group synchronism”

pulse length that is long with respect to the high-frequencibetween the beam mode and the waveguide mode is assumed
fast mode, and short with respect to the low-frequency slowvgfwng%vH)_ This minimizes the effects of the relative

mode, sqppre];ssri]on |Of the :jatt?r if possible. We call suclyinage between the fast and slow resonant modes, and puts
su&prlt_assmn 0 : € slow mode pdu sedsuppre55|oq. dthe interaction into a regime where the effects of the beating

A linear analysis Is presented and a comparison madfeyyeen these modes and waveguide dispersion cannot be
with numerical solutions of both linear and nonlinear 'nter'neglected The work presented here is therefore not appli-
actions. The two methods of slow mode SUppressioBUP-  apje to the experimental results of RE21]. With these

pression and pulse suppression, are presented using baify,oyimations the coupled Maxwell-Lorentz equations re-
short and long electron pulses. duce to the following forms:

Il. SCALED EQUATIONS d .
b, iy

— L =p; - == (A€ + AL %s—c.c), (11
dz ! ULy,

The set of scaled equations which describe the pulse evo-
lution in a CRM are the partial differential form of those
derived in the steady stafd6]. We start from the coupled
Maxwell-Lorentz equations describing the radiation and d?lf P

; . . . , ¢ - —
electron beam evolution as described in Réf3]. A thin I 1(6psj—Pfj), (12)

annular electron beam propagating in the posikiirection dzz Q-



dp;. ul
dz, (prf DA€+ _pf — €0 |Ag %5 +ec,
f H,—
13
dES_ UL — Q\— P— —
J:_ o iquv _f —_ i¢’.
d?f ? (prsj E>Afe ,+( 6ij e)ASe s+cC.C .|,
]
(14
du, _ .
1= g(Afel(/)fj'f‘ e’ AE€'?s+c.c), (15
de qu
dUHj UL o 1
— = = A+ —Ase' %s+c.c. (16)
dz qu
O Az Z)=b (17)
—_t— Zs ,Zq.)= y
7z i, f(Zf,21,) =Dy
I a0\ == =
—_— — € — AS(Zf ’Zlf)zebs’ (18)
9zp  dzy,
where
.z — Ugft — __IBft_f
i=1,...N, z=—, t=—, z3=—-—,
lgf Igf ! 1=5s
o -k z+tan |- m—1)6 -
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j is the electron index numbeN is the total number of
(macrg electrons;Ny is the number ofmacrgelectrons in
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waveguide wall

FIG. 2. A schematic of an electron beamlet showing the relevant
geometry.

the beat period centered at positpf , xj are the macro-

electron charge weightings normalized with respect to the
value evaluated at the peak currénso that 0< x;<1; sub-
scripts L and|| represent vector components perpendicular
and parallel to the waveguide axis; is the Larmor radius of

a gyrating electron;y is the electron relativistic factor;
(Rg,8) are the polar coordinates with respect to the wave-
guide axis of the electron guiding centers; (v|) are the
electron velocity componentsfi;'fyszz)”/z;%S is the ratio of

the axial electron to group velocitielsjf is the gain length
for the fast mode; and subscripts 0 indicate initial values on

entering the interaction region a{=0. The geometry of the
electron beamlet illustrating the geometric variables is shown
in Fig. 2. In all of the following work we assume an electron
pulse with a rectangular current distribution, so thgt
=1Vj. We also assume that there is no cavity feedback, so
that the system acts as a single pass amplifier.

With the exception of the scaling and the consideration of
two radiation frequencies, the derivation of Eq$1)—(18)
follows a similar course to that of previous works—13].

Use has been made of Graf's theorem for Bessel functions in
averaging the equations over a cyclotron period. An electron
is said to be resonant with a radiation field when,

pf «(z;=0)=0. Evolution of a resonant, or nearly reso-
nant, electron beam allows a “slow” exchange of energy
between the beam and the radiation. In deriving Efj§)—
(18) the independent variables have been scaled with respect
to the fast mode parameters. Scaling with respect to the slow
mode is possible via the relations

1 -
Zs=€Z; zls=§(lef—zlf), (19

wherel_ef is the length of the electron pulsgscaled in units

of ;..
f
We define the relative propagation distance of the radia-

tion envelope with respect to the electron pulse to be the
slippage distance. Furthermore, we define a cooperation
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o e A Al=AE, AL=AECF,  i= -5z,
P SO R . | _ _ o
: 1 R I _ I — . — '—pn —
<! electron pulse i $s=dsm €z, Pr=Pi~ 0 Ps=PsT %
2 \ ! and the equations are linearized about their equilibrium val-
5 %sw; S ASRQ| les
eeieimen | " | _'_“;Z . it
0 % €2 Uy it A;s=0, (e'%9)=0,
FIG. 3. Schematic representation of the electron pulse and ra- mj=l, qu= 1, pf’vsj=0 Vi,

diation field envelopes illustrating the slippage regiof&R)
(hatched and the steady stateSS region of the electron pulse. with collective variables defined by
Superradiant emission of the fast and slow modes is confined to

regions (SR and (SR), respectively. bs= _i<¢ffle*i¢f'o>, b= _i<¢éle*i¢§0>,

length to be the slippage distance in one gain length. It can Zid g

be ghown that the g(?or?eration lengths for %oth fas?and slow Pf:<pf1e o), P5=<p51e s0),

modes are given by o, o,
ULf:<uLle_l¢f0>’ ULS:<uLle_I¢SO>:

1_Bf,s

le, =
fis Bf,s

lg. . (20) o o
" Uje=(up,e o), Upe=(up,e'%s).

With these definitions the scaled length of the electron pulsell subscripts 1 referring to small changes from the equilib-

may be written as rium values subscripted 0 at=0.
Using the collective variable description and the method
T - le 21) of Laplace transforms, it is possible to reduce systéms—
®s Brsle, . (18) to two uncoupled first order linear ordinary differential

equations in the complex Laplace transformed field ampli-

Historically this formalism was developed for free eIectrontUdeSZf,s(Nf,s-t§,5)1
laser(FEL) theory where thes in the denominator of21) is

approximately oné24—26. The electron pulse was then de- dA(N 1) N IA(N) AT
fined as being either long or short with respect to the coop- dt’ (1— B)\? '
eration length. Here, howevefj; s need not be approxi- .
mately 1, and we redefine the pulse as being long or short 1 _ |b0(t’)
with respect tqB; ¢l .. . In this way we consider pulses to be “a-p Ag(t')— N (22)
short forI =1 and Iong forI >l This scaled length is wh
an |mportant measure of the total gain experienced by theere
radiation as it propagates through the electron pulse. Using R L
ry — ! ! ’ IANZ !
the scaling of Eq(19), it can be shown thai'(e =€, _and as ANt = fo A'(Z',t")er* dZ, (23
e>1, the scaled pulse length of the fast mode is greater than
that of the slow and may result in “pulse suppression” of the AN)=N3=8\2+(p—2u)N+(1—pd), (24)
latter.
with boundary conditions
lll. LINEAR ANALYSIS A'(Z =00 =A)T), b(Z=01")=by(t’). (25

A linear analysis of Eqs(11)—(18) is performed for the
case of zero spread in electron energy and transverse mahe variablesz’ =z, t’=z—ft, and thef and's subscripts
menta, using the method of “collective variables” as de-have been omitted as the form of EQ2) is identical for
scribed in Ref[29]. This shows that in the linear regime the both modes. Here we consider a constant initial field and no
fast and slow modes are decoupled and evolve indeperfitial bunching, consistent with a single pass amplifier con-
dently, as was the case for the steady sfafd. Following  figuration
the analysis of Ref$23,25, it is found that for both fast and
slow modes, in addition to the usual steady state solutions, A'(Z't'=0)=Age'”, b(z',t'=0)=0.
there exist solutions which correspond to superradiant pro
cesses, where the intensity of the electromagnetic f|eld§akIng the inverse Laplace transform of the solution to Eq.
scales as the square of the number of emitters. Such supdR2) results in a solution foA’(z,t) which can be expressed
radiant emission is confined to the slippage regions of th@s the sum of two terms:
electron pulse as defined by the shaded regions of Fig. 3. — N

For convenience the following variables are introduced: A'(2,1)=Asd2) +Ay(z,). (26)
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The first term depends only upan and is determined by the =2+ 2N~ pABPY 2= 1 - 83214121, - p)/31)
residues of the three simple polks, ; which are the roots
of the dispersion relatioA (\)=0. Forz=1 the form ofAgg
is therefore just that of the steady stdtks], which for
é,p,u<<1 gives the scaled field intensity

_ |A2 [ \3z
lss=|Asd2)[*~ g AT (27) ) _ -
g FIG. 4. Region of no exponential growilshaded within the

. . . . slippage regionsghatched of the fast and slow modes.
The gain length is therefore the distance over which the

field intensity increases by factor Gfg in this linear regime. S|ippage regions of both the fast and slow modes and occurs

When free energy depletion effects are included in the analyyithin the regions of the pulse defined bfygnds subscripts
sis, it is found that there is a threshold value of the depletioyssumep

parameter ug= (%) Y3+ p/2 above which no exponential
growth of the field occurs. N z

. . — . <z <—F—3.
The second term in Eq26) is both spaceZ), and time =4 1 2u—p 29
(1), dependent, and so may describe a pulse structure. Con- * 3

tributions to this term come from the residues of the three
simple poles\; , 3 and from the residue of an essential sin- These regions of the pulse are shown, using fast-scaled vari-
gularity atA =0. Defining a new variable ables, in Fig. 4. It is seen, recalling the upper limitoofrom
Eq. (9), that this region disappears in the FEL limpit—0.
The rate at which the boundary of the exponential insta-

2221_B(t_z) bility moves within the slippage region is given by
so thatz=z, + z,, the second term in E¢26) can be written dz _ -1
as dz 2p—p\®
N 1+ 2 )
,— = GAG L [=ic @2 ((cih+Cp)
Ax21.2) == on e 1J_w_igm(W whereas that for the boundary between the slippage region
and the steady state is
[ C1 Co|=— _
xex;{—l YJFP Zy |dX. (28 %:1

dz
wherecy=1—pd andc,=p—2u. When;2< 0, the contri-
bution fromAj(z,,2,) is zero, and the resultant field ampli-
tude is just that due to the steady state. Conversely, if

Hence the shaded regions of Fig. 4 expand as the interaction
proceeds with increasing In the high gain regimez>1)

= — L= — the shaded nonexponential regions will lie out with the elec-
>0, thenAy(z1,25) = — Asd2) + Asr(21,2,), and the result-  ron pulse, and so do not affect the interaction, for scaled
ant field will be A’ (z,,2,) = ASR(Z1,2,), whereAx(z;,2,) pulse lengths

arises from the essential singularity 2&=0 alone. When

z,>0 and?2>0, evolution is due to a different process from — 1

. . > le<———3,
that which produces steady state evolution and gives rise to 2u—p
superradiance. From the definitionszmfandz,, the regions 1+ 3

where superradiance may occur are the slippage regions
shown in Fig. 3. The slippage region for the fast mode is aind it would be expected that there will be little suppression

the electron pulse tail defined by the regioﬁﬁf<?f' and ©of the exponential instability. For long pulses, however,

for the slow mode at the front of the pulse defined by theWhere

region Ief—e3zf<zlf<lef. Between the two slippage re- o 1

gions is an area where steady state emission occursEfmtil l > 2u—p 3
>le /(14 €°) when the two slippage regions overlap. It was 1+( 3 )

previously shown in Ref[16] that for long electron pulses
(I>1), and for the steady state region within the pulse, theand for larger values of, the effects of the nonexponential
slow mode growth can be suppressed using thé€gion would be expected to be more pronounced. It will be
M-suppression condition of EC(].O), and the fast mode Se€€n from Computational simulations into the non-linear re-
dominates the interaction. gime that this is the case. . o

A threshold condition for exponential growth of the radia-  In the limit of x<1 an asymptotic approximation for the
tion fields, analogous to that of the steady state, applies to theolution toAgg(z,,2,) can be obtained using the method of
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stationary phase as described in R28]. The linear solution

slow mode may experience less gain than the fast mode. It

for the complex field can then be approximated in the limitwill be shown that this mechanism provides a method for

of largex by
A Ao
228\ BaxQ(z,,2;)

i

suppressing the growth of the slow mode in short electron
pulses, allowing the higher frequency fast mode to dominate.

IV. NUMERICAL MODEL

In order to describe the evolution of the coupled radiation

3 X —
><exp<§(\/§+i)7/3+i521— 1—) (30  fields and electrons numerically, the method of finite ele-
2 ments is applied30]. This method assigns radiation field
values to a set of nodal grid points, allowing a pulse structure
to be described. The value of the fields at each node evolves
due to the interaction with the electrons. Between nodes,
interpolation is used to calculate the fields so that they vary
- continuously throughout the pulse. Furthermore, the driving
z=72,+117;, terms of the wave equations are also assigned to nodal grid

where

— 2)1
x=(2,25)"",

_ _ points.
- — Z; 23 imT\ 2z, In the case considered here, where there are two copropa-
Q(z1,2)=1+6 = exXp 3~ - gating radiation fields, two sets of nodal grid points are re-
2 2

quired, one set for each field. The scaled radiation fields and
Using Eg.(30), the ratio of the scaled intensities of the ra- driving terms at thenth node are defined a&; s (z;) and
diation for the fast and slow modes as they exit the electrorgf’sﬂ(;f), respectively.

pulse of lengthl, (at the leading edge of the electron pulse 'Fo; positions intermediate to these nodes the field is re-
for the higher frequency and at the trailing edge for theconstructed by interpolation from the nodal values as shown

lower) is in Fig. 6(@). For the case illustrated a linear interpolation
- a3 —  — o function is shown. For higher order interpolation extra nodes
le(zy,=le,2p) zi— g, €z;— 3l e internal to the elements will be requirg8]. Both the scaled
== = | = T S 3l fields and driving terms may be approximated by a sum over
Is(21,=02) €2t~ e €(zi=3le) the elements of the interpolated nodal values,
% exr{ 3\/—371/3( (;f _|_e )23 Ne
5 _ -
223 % f Ars(z1,21)~ 2, ILis(z)lelArs(z0te, (39

, (3D) N,
by o(21,21)~ 2, IL1o(2)lelbrs(z0le, (39

1
——(e3zf— )2/3
€2 €t
where use has been made of the relation

- = 1 — where[Lf,S(?lf)Je is a row vector of functions used to inter-
Lo = €4 ?(Ief_zlf)’ (32) polate the fields and driving terms of tle¢h element from
their nodal values as defined by the column vectors
and equal initial scaled intensities for the fast and slowfA; (1)} and{bs «(z;)}e. The interpolation functions for
modes with no initial bunching have been assum#g, ( theeth element are defined to be zero out with the range of

=As,bs =bs =0). Note from the scaling that the ratio of 21 of the element.
real, unscaled, intensities is given by In the electron frame of reference the slow mode is coun-
terpropagating to the fast mode, and so the nodes are num-

I E0-1 |_f bered in the opposite sense to those of the fast nibig
R (33 6(b)]. At each fast/slow node the driving terr‘ns,Sn are cal-
s e(e-Q) s culated from the sum over the number of electrons within a

In Fig. 5 a plot of ratio(31) as a function of scaled electron beat p(_anod, as illustrated In Fig(@, consistent W'th the
averaging of the wave equations over a beat period.

pulse lengthle, is shown. Itis seen that as the electron pulse ¢ nider the fields in theth element only, and substitute
length increases so the ratio decreases. This shows that fpgs. (34) and (35) into wave equationg17) and (18) and
sufficiently short electron pulses, emission at the higher freapply the “Galerkin criterion” [30], which assumes that
quency fast mode can be substantially greater than in th@ith the approximation for field¢34), the left hand side of
steady state where, without suppression, the slow mode Egs.(17) and(18) must be equal to the right hand side “in
dominates. We call this pulse suppression of the slow modesome average sense.” This average is taken by using the
Although the slow mode has a higher growth rate than thenterpolation functions as weighting functions for the aver-
fast mode, its scaled pulse Iengtl:,l5 is shorter. Thus the age. Premultiplying both sides of the wave equations by



PRE 59 PULSE PROPAGATION EFFECTS IN A CYCLOTR®. .. 1159

0.8}

0.4}

0.2}
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lef
FIG. 5. The scaled intensity ratE /I_S as a function of scaled
electron pulse Iengtlhef for z;=20 ande®=4. The intensityl ; is
that of the higher frequency; on exiting the electron pulse at its
leading edgez; =l . The intensityls is that of the lower fre-

quency wg on exiting the electron pulse at its trailing edg_gf
=0.

{Lf,s(?lf)}e, and integrating over a range-«,~] of Zf,
yields the elemental wave equations

dA; _
[Cf]e[ dt} :{Bf}e_[Kf]e{Af}ev (36)
Zs e
dA _
[Cs]e{ T] = {Bs}e+ 53[ Ks]e{As}e ) (37
dz .

where the matricepC;]. and[Ks], are given by

(Coale= | {Lis@mldLimldz, @9

0 _ d o .
[Kf,s]e: f {I-f,s(zlf)}eT“-f,s(Zlf)Jelef (39)
—® lef
and
{Bf}e:[cf]e{gf}ei (40

{Bste= G[Cs]e{gs}e- (41

element
>,

(@)
°
(b)
beat length
0| A ; K 4 L )
(C) b fn-l b fn b fn+1

—>Zlf

FIG. 6. (8 The interpolation func’[ionia1f and Lz, for the nth
element of the fast modé€b) The interpolation functionﬂilS and
L, for the nth element of the slow modéc) The nodal driving

termEn is found by averaging over the contributions of the elec-
trons contained within a beat period.

Construction of the full wave equation from the elemental
equations and application of the boundary conditions of the
wave equation yields a system of ordinary differential equa-

tions in the scaled nodal field amplitudggsn(?f):

dAi(z0)| _ -
[Ct] o ={Be} —[K¢l{As}, (42

dAy(z; _
[Cs][ 'Zsézf)] ={Bg}+ eg[Ks]{As}- (43

f

Here{B; ¢} are the source terms due to the macroparticles,
each field node being driven only by the macroparticles con-
tained within the average over a beat centered at the node.
The set of ordinary differential equatiori42) and (43

together with the particle equatiori$1)—(16) constitute a
large system of ordinary differential equations which may be
solved for the derivatives using standard sparse matrix solv-
ers, and then integrated iy using, for example, a fourth
order Runge-Kutta routine. The above model can be easily
adapted to study one mode evolution when there is only one
resonant frequency.

V. ANALYSIS

The wave equations describing the evolution of the entire In this section numerical solutions of the above model
fields are constructed from the elemental wave equations devill be given for single mode and two mode interactions, and
scribing the field evolution in each element. The coupling offor long and short electron pulses. We begin by comparing
one element to another arises from the common nodal fielthe results of the linear analysis of Sec. Ill with numerical
values of adjacent elements. The construction process arablutions from the model of Sec. IV. The analysis of the
the application of the boundary conditions are clearly dedinear regime showed that the fast and slow modes decouple.

scribed in the literaturg30].

In order to compare this analysis with the numerical model,
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it is sufficient therefore to model two single mode interac- 16
tions numerically with the appropriate fast and slow param-
eters.

A single mode interaction, either fast or slow, is then 10
modeled numerically for both short and long electron pulses
into the nonlinear regime. We demonstrate the superradiant 162 |
scaling of the radiation emitted by a short electron pulse,
termed “weak superradiance” in close analogy with that of 4
FEL theory[26]. It is shown that the effect of increasing free .
energy depletion can destroy the superradiant nature of the —<*

emitted radiation. Furthermore, it is shown that the superra- 16°|
diant intensity emitted by a short electron pulse has an ex-
ponentially decaying dependence upon the depletion param- o

eter . This rate of decay becomes more pronounced on
increasing the real length of the electron pulse. For long

electron pulses the regime of ‘“strong superradiance” is 16"

demonstrated(Again this terminology is directly analogous

to that of FEL theory. The radiation emitted in the steady 16" ) ) ) . ) .

state region of a long pulse may be suppressed by choosing a 0 10 20 30 40 50 60 70
value of the depletion parametarabove the threshold value z_f

M- In the slippage region of the pulse where superradiant

emission may occur, and for larger valuesyaf we demon- FIG. 7. A comparison of the lined(a) fast; (b) slow] and nu-
strate that superradiant emission exists but is significantlynerical[(c) fast; (d) slow] scaled field intensities, for a single mode
reduced. interaction: e>=4, =2.0125,1, =0.26, p;=u;=0.01, andAs_

The full numerical model is then used to study the_a_—105.
coupled interaction between fast and slow modes, and for
short and long electron pulses. The linear theory of Sec. llI ) — — . T
suggested that a suppression of the slow mode may be podPProximately equal,~1s. This is verified in Fig. 7, where
sible by the choice of a suitably short electron pulse. Simuyve_plot the scaled intensities for the two modes as functions
lations demonstrate that this pulse suppression of the slo@f z; as calculated by the linear theory, and directly compare
mode is enhanced when the interaction becomes nonlinear. With single mode numerical solutions for a short pulse of
is shown that the higher frequency fast mode may in fact ef=0.26. As with Fig. 5, the scaled intensities are those as
domlr]ate the coupled interaction, yielding a true pulse SUpfhey exit the electron pulse into vacuum, i.d_.,(?l
pression of the lower frequency slow mode. Furthermore, for ~° _~ _ _ f
short electron pulses weak superradiance is shown to existle,,zs) andly(z; =0z). The near equality of these fast
for both slow and fast modes. On increasing the electromnd slow mode intensities can be seen from the superposition
pulse length, and for sufficiently low free energy depletion,of the two linear theory plots, and the near superposition of
the slow mode becomes dominant with significantly reducegne two numerical solutions in the linear regimes 30. The

emission of the fast mode. In addition, strong superradiantjiscrepancy between the linear and numerical solutions may

emission of the slow mode is observable. Increasing the efe ascribed to the asymptotic form of the linear solution and
fects of free energy depletion by increasing steady state  the nonlinear effects in the numerical solution for larger val-

suppression of the slow mode only is possible using th(:ﬁes ofz_f. We stress here that the numerical solutions are for

u-suppression condition of Eq10). In this case the fast _. '
) . single mode uncoupled evolution, for the purposes of com-
mode becomes dominant, and strong superradiance of thjs

mode is observable. Increasing further also suppresses parison With linear theory. It will bg seen in Sec. VC that.
' e when coupling between the modes is included in the numeri-
steady state fast mode growth, and significantly reduce

) gal model, this uncoupled linear theory quickly breaks down
strong superradiance. L —
for significantly smaller values of; .

A. Comparison of numerical solutions with short pulse
linear theory B. Single mode superradiance

Previous work has given both linear and numerical solu- The emission from electron pulses is now investigated for
tions for the two mode interaction in the steady sfA®). As @ single mode interaction into the nonlinear regime. This is
with this previous work, the linear analysis for pulses of Seccarried out using the single mode numerical model described
Il showed that the fast and slow modes are decoupled. lin Sec. V A. We call the limitu<1 the FEL limit as, for
order to compare our numerical solutions with this linearsingle mode interaction only, the scaled equations reduce to
theory, we use a single mode model for the fast and slowhose describing the Compton FEL3]. The similarities be-
modes. By single mode model, we mean that the electroriveen the CRM and FEL theory extends to that of pulse
radiation interaction with either the fast or the slow modeinteraction where, under specified conditions, radiation emit-
may be artificially switched off in the numerical simulation. ted may be superradiant. In superradiance the radiation in-

The above linear theory of Fig. 5 shows that for shorttensity scales as the square of the number of emitters,
pulses the scaled intensities of the fast and slow modes aren?, wheren, is the electron density. In the steady state
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FIG. 8. Typical weak superradiant emission of the lower fre-  FIG. 9. Peak intensity as a function of for two different
quency slow mode by a short electron pulse and for single modgajyes ofy,: (a) v,=0.25 and(b) vs=0.1. The solid lines give the
interaction:lef:0.26, ps=0.04, u,=0.16, ASO:10‘5, z;=51, € results of the equivalent steady state numerical simulation.
=4, and()=2.0125.

superradiant emission. As the scaled electron pulse length

regime, and in the FEL limit of the CRM, radiation intensi- increases so the superradiant proportionality betvEéaand

ties scale aﬂg’3. It is easily shown that for the scaling used

here, wherepo né’3, superradiant emission occurs when theTgs breaks down. On increasing the scaled length further it is

scaled intensityl =|A|?xp? and in the steady state FEL seen that_sp tends to that of the steady state value, indicated

limit, | is p independent. When free energy depletion effectyy the solid line which scales als «1/usx1/l,, corre-
o] S

bekcome m:rortan:,ﬂovv/ever, thehsteady st]:ate scaled m:ens'%onding to a real intensity scaling kaf=n... On decreasing
takes on the scaling> 1/u. For the case of a constant free the value ofwg, in Fig. 9b), it is seen that the increased

energy parameter this scaling corresponds to a real inten- ) —
effects of free energy depletion reduces the rangeesmver

sity lecng.
which superradiant scaling is observed. Decreasing the val-
1. Short pulses ues ofvg further, the suppression of superradiant emission is

As in the FEL, weak superradiance in a CRM is characobserved fol o <1.

terized by the emission of a pulse of radiation with a peak The scaling of the peak intensit_)gp as a function of the

intensity significantly less than the saturation intensity of thedepletion parametet, is now investigated for three differ-
steady state. Typical weak superradiant emission by a shog[m short-scaled elecstron ulse len tF@ The value of
electron pulsdef=0.26 ( egzO.lO) is shown in Fig. 8. The P g, Ps

. . . for each graph is a constant, so that the variatiopdmesults
case shown here is for an interaction at the lower frequenc grap ad

) CAUENCY om a variation in the free energy parametgronly. It is
slow mode only, 5o that the group velocity Of the radiation 'Sseen from Fig. 10 that there is a near exponentially decreas-
less than that of the electrons and the radiation propagat

. . . - i ?r‘cl'g dependence of the intensity with depletion paramgter

from right to left in the figure, ag; increases. Depending ang that the longer pulses have a larger saturation intensity
upon the value ofus the first peak of the scaled intensity, than the shorter pulses. These larger intensities result in the
Isp, here atzy ~—65, may have a superradiant scaling. electrons becoming energy depleted more readily, and the

This is demonstrated in Fig. 9, where we pﬁg as a 'ate of decrease with is more pronounced.

function of the scaled IengtES for two different values of 2. Long pulses and p suppression

the free energy parameter;. The following two points In addition to weak superradiance, a regime called strong
should be noted with regard to t-he scaling. First, it has bee@uperradiance may also exist in the slippage regions of long
assumed that the pulse lendthis a constant, so thdle.  electron pulsesi¢>1), and can give rise to radiation spikes
«ps and superradiant scaling will occur Whepocl_g_ Sec- Wwith peak intensities significantly greater than that of the
ond, from the definition ofu following Eq. (183, itis seen Steady state. Previous descriptions of strong superradiance
that if changes im; are due to the electron current only, then Nave been given for the FEL, where it has been described in
the value ofucxps. Hence, for a constant,, each graph of terms of the weak superradiance emitted by the slippage re-
the figure has a value gi which is in proportion to the 9" of the electron pulse which has been amplified on

— . propagating further through the electron pulgd—2§. Es-
value ofles. For the shorter electron pulses the linear depen'sentially the same mechanism may occur in the CRM with

dence oﬂ_Sp with I_gS is clearly seen in Fig. @), indicating the added feature of free energy depletion. A typical strong
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U FIG. 12. Suppression of the steady state evolutionuforuyy, :

1¢,=100, ps=0.04, us=1.03, A, =10 °, =15, =4, and Q)
FIG. 10. Peak intensity as a function pf for three different =2.0125.
short pulse lengthga) ps=0.08;|_9f=3; (b) ps=0.04,|_ef=l; (©)
pS:0.02,|_ef:O.5, e¥=4, andQ =2.0125. For the same long pulse we now set the depletion param-
eter above the threshold value,=1.03> uy,. In this case

superradiant emission is demonstrated in Fig. 11. As with thgict))lexpor}entlalr:r}cr:r?i? lnltzheAstei:;l]dy Stv?/fteh Itr;]tensr:tyrtls plos-
short pulse example, interaction with the slow mode is con>'P'€. 8s IS Seen 1ro g. 1c. Agan, as 1€ short puise
sidered. The slippage region is now at the front of the elecCdse: thls_ th_rgshold does not apply t(_) t_he _sllppa_ge_regmn

' g where a significant evolution of the radiation intensity is ob-

. ) FRrved. The superradiant evolution of the pulse is seen to be
of above, the radiation propagates from right to left as thesigniﬁcantly reduced from that of Fig. 11. This may be at-

interaction progresses. The radiation in this figure may Dgp 1eq not only to the increase in the effect of free energy
broken down into three regions which are, from left to r'ghtdepletion asu, has been increased by a factor of 6.5, but
. . . . s ) s ~y

in the figure, the vacuum region, where the radiation has s, (4 the increase in the region of nonexponential interac-
propagated outside of the electron pulse into vacuum; th'ﬁon shown in Fig. 4 and defined by E9). The region of
steady state region, which has an intensity whichjitnde-  no exponential instability, in the nonsuppressed case of Fig.

pendent; and the slippage region where strong superradiamﬁ, is 40.64:?1 <40.69, and for the suppressed case of Fig.
may be observed. On propagating into vacuum the radiation f

from the steady state no longer interacts and merely propal2 is extended to 40.64z; <54.53. Not only is there no
gates. Hence the vacuum radiation describes a “history” ofexponential instability in this region of the pulse, but the
the steady state evolution, and the usual steady state intensiyisting superradiant pulse is unable to propagate into this
evolution, of exponential growth followed by saturation andregion. This is clearly demonstrated by comparing the posi-
oscillation, is clearly seen. In the slippage region the strondions of the peaks of the superradiant pulses between Figs. 11
superradiant spiking is observed with an intensity signifi-and 12.

cantly greater than that of the steady state saturation value.

C. Coupled mode superradiance

The full numerical model is now used to investigate the
coupled evolution of both the fast and slow modes with the
electron pulse. These results therefore supersede those of the
single mode analysis of previous sections. The electron pulse
1l now emits two distinct radiation pulses: a slow mode pulse
described in Sec. V B 1 that propagates in the direction of

negative;lf, and a fast mode pulse that propagates in the

1.5}

0.5} direction of positive?lf. An example of a full numerical

solution to the coupled evolution equations demonstrating
such emission is shown in Fig. 13. The peak of the slow

0 ) . mode emission is z;tlfm — 18, and that of the fast mode is at
100 -50 0 50 100 7. ~5
Zy 1~
FIG. 11. Typical strong superradiant emission from a long elec-  1- Short pulses and pulse suppression of the slow mode
tron pulse:lq =100, p=0.04, us=0.16, A, =107°, z;=15, € The linear theory of Sec. Ill suggested that it may be

=4, andQ)=2.0125. possible to suppress the growth of the slow mode by choos-
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FIG. 13. Coupled interaction showing both slow and fast mode
emission: =4, (1=2.0125,1,,=2.61, p;=0.08, u1=0.08, A 0.1
=0, Ay=10"%, andz;=20.

ing an electron pulse that is sufficiently short. Furthermore,
the radiation emitted may also exhibit superradiant scaling. g, 15 pemonstration of pulse suppression showing the peak
A full numerical solution to the coupled evolution equationsscaled intensities of the fast and slow modes énd | respec-

is shown in Fig. 14. An identical set of parameters as thos P P
used to obtain the uncoupled results of Fig. 7 were used, wit _ e _
the exception that in the coupled mode evolution of Fig. 14=2:0125, »i=1, »s=0.25, A;p=10"" (uncoupled, A;=0

i N —5
the initial field for the fast mode was set to zewd(=0). (coupled, andAs=10"". (a) Coupled fast mode(b) Uncoupled

fast mode(c) Uncoupled slow modegd) Coupled slow mode.
The results demonstrate that not only does the peak scaled

intensity of the fast mode approach that of the slow, as sugto the electron phase bunching of the slow mode interaction.
gested by the linear theory, but that in the nonlinear regim&his nonlinear parametric coupling is also observed in the
the fast mode actually dominates the interaction, the fastteady state evolution, where no pulse effects are present
mode scaled peak intensity being greater than one order §16], and accounts for the rapid growth of the fast mode from
magnitude above that of the slow mode. This fast modezero initial intensity in Fig. 14. We note that the ability of the
domination of the interaction may be understood in terms ofast mode to dominate the interaction is sensitive to the ini-
two distinct mechanisms. The first is that of pulse supprestial values of the magnitudes of both the fast and slow fields

sion, which results from the shorter scaled length of the elecra, | and|A, |. If the latter is too large, it has been observed
. . fo Sol - '
tron pulse in the case of the slow mode as described above,

The second is the “enhanced emission” of the fast mode du?n

ively) as functions ofl 2 (and 1% on the upper axjs =4, O

at the fast mode may not attain dominance before the slow

ode reaches saturation. This sensitivity to initial values will
be investigated further in future work.

100 . . . In Fig. 15, the peak scaled intensities of the coupled fast

and slow modes] iy andl_ps, respectively, are plotted as
functions of the square of the scaled electron pulse length
(a Ef. The square of the scaled electron pulse length for the

b) slow model_f,,S is shown on the upper axis, the two being

— related vialefzezles. The solid lines show the result of a
full coupled numerical solution, whereas the dashed lines
1679 show the corresponding single mode evolutions of the fast
and slow modes. Note that for the single fast mode evolution
the initial field amplitude is nonzero%ozlofg), whereas
that for the coupled mode is zero, the initial fast mode field
0 10 20 30 40 growth occurring due to the enhanced emission described
Z above. The results of Fig. 15 are the two mode equivalent of
Fig. 9 but for only one value of free energy parameter
The same scaling applies: superradiant scaling is demon-
strated when the peak intensltyf . of an emitted pulse has a

FIG. 14. Scaled intensitie&) I_f and (b) I_S for the coupled
numerical model. The intensiﬂ is that of the higher frequenay;
on exiting the electron pulse at its leading edapf,zl_ef. The in- ] ]
tensityl_S is that of the lower frequencypg on exiting the electron linear dependence WltEf'
pulse at its trailing edge?lf=0. Here =4, Q=2.0125,|_ef For the longer pulse lengths of the figu@fzso, it is

=0.26,p;=0.1, uy=0.1, A¢p=0, andA,=10""°. seen that the slow mode dominates the coupled interaction so
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that the fast mode intensities are significantly less than thosexplained by the emission process in the slow mode slippage
for evolution of the fast mode alone. This is consistent withregion, including enhanced emission of the fast mode. This
previous results for the coupled steady state interadti6h  region initially evolves in a similar way to that of a shorter
to which the pulsed interaction tends in the limit of very long electron pulse as described in Sec. V C 1, and we observe a
pulsesl_ >1. fast mode pulse which is of similar intensity to the maximum
Cts of Fig. 15a). The analysis of Sec. V C 1 discussed the sen-
For the shorter pulse interactioﬁéfs30 (|_5555), the  sitivity of this emission of the fast mode to the initial fields
electron pulse is long with respect to the fast mode but shoiftA; | and|Ag |. As there, if the latter field is too large, it has

with respect to the slow mode. This, and the enhanced emigeen observed that the fast mode pulse of Figa)l®ay not

sion of the fast mode, allows the latter to dominate the interhecome dominant before the slow mode reaches saturation.
action significantly. Using the relatio(83) and the param- In the fast mode slippage region there is no enhanced
eters of this interactione®=4 andQ)=2.0125), then for a emission of the slow mode, and this region evolves similarly
scaled electron pulse length ~4 the unscaled intensity of {0 that of the coupled steady state, which dominates any fast
the fast mode is approximately 40 times greater than that Orinode superradiant emission. Hence as with the single mode

the slow mode. Furthermore, the intensities of the fast modevolutlon, the slow mode radiation propagating into vacuum

interaction in this regime are actually greater than those a?ﬂescnbes the history of its evolution. Figure(ishows

tained for the single mode evolution of the fast mode. WeSrong superradiant emission of the slow modezt=25,
call this mechanism of suppression of the lower frequencyVith a peak intensity greater than that of the steady state
slow mode pulse suppression. ig}gﬁﬂo? Va|Ue-:tfcaft"hbefsefn b()j’ comparing Flgéa)tjr?\dl
) ) at, except for the fast mode emission from the slow
For pulse lengths glefS4 (0<|6‘551)’ and for the mode slippage Eegion, the slow mode clearly dominates the
coupled interaction, superradiant scaling of both the fast anghteraction and the fast mode does not exhibit any strong
slow modes is observed. Note that the slow mode coupleduperradiant behavior.

results are almost coincident with those of the single slow For a coupled interaction, it is possible to use the
mode in this region. This has similarities with the evolution ;-suppression conditiorf10) to suppress the exponential

of superradiant pulses in atomic systems, where for suffigrowth of the slow mode. An identical set of parameters to
ciently short systems, the counterpropagating radiationhose of Fig. 16 are used, with the exception that the deple-

pulses evolve independen{l@1]. tion parameter is set t@;=0.65. It is observed in Figs. 13
and 17b) that the slow mode is suppressed and the fast mode
2. Long pulses and p suppression of the slow mode is now dominant. Again, as with the one mode case,the

Long electron pulses give rise to steady state evolutioﬁUppressmn dogs not appl_y in the slow mode slippage region
within the main body of the pulse and possible strong super\!"her.e sqpe.r_rad|ant evolution of the.slow mode IS observed,
radiant evolution in the slippage regions, as was discussed P]ut IIS s||gn|f|car&tly rfeguced\./ BASZ Wr':h sudpprecsisnl)n of tr:je
Sec. V B 2 for the single mode interaction. Inspection of Fig.s'ng € slow mode of Sec. , the reduced slow mode
3, however, shows that for a coupled interaction it is notcMISsion may be attributed not only to the_mcrease in the
possible for the steady state radiation to propagate intgepletlon parameter, but a_lso to t_he expansion of the region
vacuum without first propagating through a slippage regio f n.onexponentlal Interaction (Ijefmed. by E@9). The for- .
of the electron pulse. Hence the radiation propagating ir{natlon_of the strong superradiant spike of the fast mode is
vacuum does not necessarily describe the history of théeen aiz; =10. The spike has a peak intensity greater than
coupled steady state evolution, as occurred for the singléhat of the steady state saturation value, and is amplified as it
mode as described in Sec. VB 2. propagates through the electron pulse in the direction of

A typical plot of the intensities of the fast and slow mode positive?lf.
coupled interaction for a long electron puld;gf:lOO is

shown in Fig. 16. The fast mode radiatiffig. 16a)] has a VI. CONCLUSIONS

peak in the intensity az; ~110 which is higher than ex-  \e have presented a detailed analytical and numerical
pected for the steady state coupled interaction. This may bevestigation of CRM’s operating in the pulsed amplifier re-
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gime which has yielded significant results. Superradianpulses is weak superradiant evolution at both of the resonant
emission has been demonstrated, and it was shown that, frequencies. For long pulses a strong superradiant evolution
general, the coupled interaction between both resonant fresf the radiation is observed in the simulations.

guencies must be taken into account. Both an analytic linear The model presented here has suggested regimes of op-
and a nonlinear numerical analysis of the equations of evoeration of the CRM with significant practical potential, i.e.,
lution were given, the former suggesting two possible meththe generation of short pulses of high-frequency, high-power
ods of suppressing the lower frequency interaction which, irmicrowave radiation. Further work is now required to extend
the steady state, usually dominates the interaction. A numerthe model to include effects such as energy spread and space-
cal solution of the evolution equations showed that these twaharge in the electron beam, and waveguide dispersion.
methods,u suppression and pulse suppression, extend into
the nonlinear regime of evolution. Pulse suppression may
occur for short electron pulse lengths. Nonlinear evolution
enhances the effects of pulse suppression predicted by the The authors would like to thank the EPSRC for support of
linear analysis, so that the higher frequency interaction domiP.A. and B.W.J.McN., and the Royal Society of Edinburgh
nates. Another feature of the interaction with short electrorfor support of G.R.M.R.
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