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We study both small signal and nonlinear regimes of free electron laser oscillators driven by short electron
bunches. This work extends and completes a previous work, focusing the analysis first on the spectrum of the
eigenmodes of the linear problgisupermodesand on the description of the weakly nonlinear regime in terms
of these eigenmodes and second on the fully nonlinear dynamics. Using an orthogonality property of the
supermodes, we derive expressions for the amplitudes of the fundamental and secondary supermodes and we
discuss the single-supermode stable operation. Then we reconsider the superradiant regime in a quasiperfectly
synchronized, high-quality optical cavity. We show that superradiance actually is an intrinsically multi-
supermode regime, which occurs when the spectrum is nearly degenerate. Going next to the nonlinear regime,
we find the nonlinear modes of the systéstationary regimeswhich appear through successive Hopf bifur-
cations when the linear eigenmodes become unstable. We analyze the stability of the fundamental nonlinear
mode and show that it gets unstable through a new supercritical Hopf bifurcation when dissipation is de-
creased, giving rise to a limit cycle. Finally, we reconsider the routes to chaos, showing that although the
dynamical behavior of the system depends in a complicated way on the control parameters, it can be described
to a large extent by the iterations of one-dimensional mgps063-651%98)11012-1

PACS numbd(s): 41.60.Cr, 42.65.Sf

I. INTRODUCTION shorter than the slippage lengitN,,, which is the length
overtaken by radiation at a wavelengthover the electrons
Free electrons laséFEL) oscillators are a family of de- after N,, wiggler periods. A high gain FEL amplifier driven
vices able to produce tunable coherent radiation from a relady electron pulses shorter than the slippage operates in the
tivistic electron beanj1]. They are made of an accelerator superradiant regimg7,8], with the emission of intense and
delivering the driving electron bunches and a wiggler genershort radiation pulses. The slippage effect is more complex
ating a static spatially periodic magnetic field, inserted in ari" @ FEL oscillator, where the radiation, reflected by mirrors
optical cavity storing the produced radiation. Successiv@@ck to the wiggler entrance, interacts many times with new
electron pulses periodically enter the wiggler, where theye!€ctron pulses periodically injected in the cavity. In fact, by
copropagate with the stored optical pulse. The electrons o@¥ing the synchronism between the periodic beam injec-
cillate transversally and bunch on the scale of the radiatiofO" e_md the rouna-trip time of the radiation in the cavity, itis
wavelength, radiating under the action of the combined field hOSSIIble to contlrol thg o_verlappmg betv(\j/een th(_e”r]ad|at|on and
of this optical pulse and the wiggler. The generated wave- e electron puises during many roun -tr[@. e trans-
length is a continuous function of the operating parameter ort mechanism mduc_:ed by cavity detunmg and th_e losses
. . . , ) ntroduced by the cavity make the FEL oscillator driven by
(elec_trpn_mqommg energy, wiggler f|elq r_nagnltU(_1e,)e_uc) short electron pulses an interesting example of dissipative,
that it is intrinsically tunable. The amplifying medium is the

\ : nonlinear system exhibiting a large variety of nonlinear be-
electron bunches themselves, which are continuously r&55viors such as limit cycles, chaos, and superradiance
newed by the accelerator, so that FELs are expected to SUPL0,11. A number of currently existing FEL oscillators in

port high power. Tunability and high power are qualities thatthe infrared range are driven by electron pulses shorter than
make FELs promising radiation sources. Furthermore, theyhe slippage length. In particular, the the free-electron laser
have been proved to be able to generate very short superrgyr infrared experimentFELIX) experiment already showed
diant optical pulse§2]. However, the price for this versatil- poth limit cycles[6] and superradiande].

ity of FELs is their tendency to develop secondary instabili- The aim of this paper is to present analytical results on the
ties leading to unsteady radiation output: spiking in longtheory of short pulse FEL oscillators, within the framework
pulse FELS[3-5] and limit cycles in short pulse FEL$].  already introduced ifi11,12. These results contribute to the
The gain, efficiency, and stability of FELs depend on twoanalysis of the short pulse FEL instabilities and their fully
types of effects: dynamical effects due to the particle/nonlinear behavior to prepare ways of using and controlling
radiation interaction, responsible for bunching and trappinghe various possible dynamical behaviors of these systems
the electrons, and geometrical effects due to the transport ¢13]. We briefly recall our model in Sec. II. In Sec. Il we
the radiation with respect to the electrofsdippage or dif- reconsider the linear eigenvalue problem and the “orthogo-
fraction). In particular, the longitudinal overlapping effects nality” properties of the eigenmodes with a method giving a
dominate the FEL dynamics when the electron pulses arglobal view of the discrete spectrum. The limit of small cav-
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ity detuning is investigated in detail, showing how all the 3,A=va, A+ n{exd —i0])—(al2)A, (1)
eigenvalues with positive gaifsupermode$14]) converge
toward a common value. Explicit analytical expressions for 07)2(62 —{Aexdi#]+c.c}, 2

the eigenvalues and the eigenfunctions are obtained. Then, in

Sec. IV, describing the nonlinear solution in terms of superWherezn(x)=1 for 0<x<1 and7(x)=0 elsewhere, ané
modes, we calculate up to third order the radiation intensityS Such tha{A|?=4mN,,goP/Pe, with P the intracavity op-
and the frequency shift in the weakly nonlinear regime domi-ical power andP=mc?y,(I,/e) the electron beam power.
nated by a single supermode. The numerical determination of SINce the electron pulse is much shorter than the slippage
the exact amplitudes of the fundamental and secondary s ength, the electrons sweep back over the radiation pulse

permodes at saturation allows us to test the domain of validfom X=0 tox=1 during the slippage times/c. The par-

ity of the single-supermode regime and the third-orderiC!€ dynamics follows the usual pendulum equat(@bzlfor

theory. In Sec. V we demonstrate that the superradiant réhezphaseez(k+kw)z—ckt, where k=2m/\ =2k, o/ (1

gime calculated previously in the frame of an inappropriatelytay) andky,=2w/\,,. The field amplitude, driven by the
called “single-supermode approximatiorf11] in the limit electron bunchingexp(—i6)) at the resonant wavelengih

of small cavity detuning actually is a multisupermode regimedecays in the cavity at a rai@/2=(1— \/ﬁ)/g, whereR is

that occurs in the limit where all the supermodes convergéhe total reflection coefficient of the mirrors. It also drifts
toward a unique degenerate supermode. This resolves tfig@m pass to pass due to the cavity detuning
previous paradox between the observation of superradiance2(6L)/L.g, wheredL is the cavity shortening relative to
both in the single-supermode model of REf1] and in the  the vacuum synchronism between the electrons and the re-
transient evolution of a perfectly synchronized, lossless osflected optical pulses. A positive cavity shortenings nec-
cillator [15]. The second part of the paper deals with theessary to compensate for the lethargy, i.e., the tendency of
fully nonlinear regime. Section VI gives results about thethe optical pulse to move, in the small signal regime, slower
nonlinear modes, which correspond to the stationary rethan in the vacuum, due to the interaction with the electrons
gimes. In Sec. VIl we reconsider the weakly nonlinear re-{9].

gime and show the nature of the limit cycle instability. In  The evolution of the system can be approximately
Sec. VIII we reconsider the route from the stable stationarydescribed by a reduced number of macroscopic variables,
asymptotic regime to chaos, showing that the main featuregssuming an appropriate truncation in the infinite momen-
of the dynamics can be described by the iterations of onetum hierarchy [16]. Introducing B=(exp(-if)), P

dimensional return maps. Finally, conclusions are drawn in=(pexp(=i®)), Q=(p), and S={(p?), where
Sec. IX. p=3d,0=4m7N,(v— vo)vo, EQs.(1) and (2) are approxi-
mated by the following reduced model for<1:
Il. MODEL A= (vdy— al2)A+B, 3)
In a short pulse FEL oscillator, an optical pulse circulates dB=—iP, (4)
in a cavity between two reflecting mirrors and interacts at
each pass with a new electron pulse along ztexis of a dyP=—A-iSB-2iQP+2iQ?B, 6)
MwNy, long wiggler. The electron pulses delivered by the
accelerator have an effective lendth=cQ/I,,, whereQ is 9,Q=—[AB*+c.c], (6)
the pulse charge and is the peak current, considered much
9,S=—2[AP*+c.c]. @)

smaller than the slippage length=X\N,, (the distance of

which the light overtakes the electrons while traveling along . . .

the wiggley. Following Ref.[11], we describe the optical Combining Egs(3) and (6), we write the equation for the

AR . : . energy balance

field in the cavity by its complex slowly varying envelope

A(x,7) at the wiggler entrance, wheve=(ct—2z)/L; is the 3Q+(9,— va)|Al>= — al Al ®

position within the optical pulse in units of the slippage

length, z is the position along the common wiggler, beam,We assume an initial cold electron bea@{0,7) =S(0,7)

and cavity axis, andr=gn is the dimensionless coarse- =0, without prebunching3(0,7)=P(0,7)=0, and a small

grained cavity time, witm the cavity round-trip number, and uniform seed at the first pass(x,0)=A,, simulating the

g=(Lp/Ls)go, Wheregy is the usual cw small gain coeffi- spontaneous emission responsible for start-up. An analysis of

cient[1], go=4m(Ny/v0)3(1f/10) (awhwF/ry)?, 7o is the  the prebunching effect is presented in Réf7].

beam energy in rest mass unitsc?, a,, is the rms wiggler When the cavity is longer than the perfect synchronism

parameterfF is 1 for a helical wiggler andly(&) —J.(&), length, i.e., wheny<<0, the radiation is retarded from pass to

with §=a§vl2(1+ afv) for a planar wiggleryr, is the beam pass and drifts in the positivedirection, leaving the inter-

radius, 1 y=4meomci/e~17 000 is the Alfven limit cur-  action region through the boundaxy= 1. Then the condition

rent, andf is the filling factor describing the transverse over- A(0,7)=0 is assigned at the same boundaryO for the

lap between the optical and electron pulses. electronic variables, so that there is no possible gain. Con-
In the small gain approximatiogp<1 and for short elec- versely, when the cavity is shorter than perfect synchronism,

tron pulsed., <L, the evolution of the optical pulse is de- i.e., when»>0, the radiation is advanced and drifts toward

scribed by the following model, whose derivation is dis-the electrons, along the negatixalirection, leaving the in-

cussed in detail in Ref11]: teraction region through the boundaty: 0. Then the condi-
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tion A(1,7)=0 is assigned at the boundaxy=1, whereas P(x,7)—€e*7P(x,7), (13
the electronic variables have their boundary conditions at

=0. In this case an absolute instability takes place, where the Q(x,7)—Q(xX,7), (14)
backward propagation of the radiation provides the necessary

feedback for a stationary gaji8]. For a perfectly synchro- S(x,7)— S(x,7), (15)
nized cavityr=0, a transient, nonexponential growth of the

radiation intensity takes pladd5]. Indeed, as we will see al2— al2+id ¢ (7). (16)

later in more detail, the limiv— 0 is singular/the transport

term proportional t@?,A in Eq. (1) disappears at=0]. The  The interpretation of this symmetry is as follows. Let us

optical field profile at small can be analyzed as a boundary introduce in the optical cavity a device with the only effect

layer[17]. of phase shifting the optical field by.(n) at each pass.
For »>0, the field drifts out of the region ©@x<1 of  Then Eq.(3) is modified to

Ax=v7 throughx=0, decaying at a rate given by the cavity )

lossesa: A(x<0,7)=expx/2v)A(0,7+x/v). We define 3, A=[viy—al2+in(T)]A+B, (17)

the dimensionless radiation ener . .
9y wherew(7) is proportional tow.(n). Because of the cova-

1 1 riance under Eq911)—(16), the solution of the system with
&(r)= f dX A(x,7)|?= f dx|A(x,7)|? the phase shifting device differs from the unperturbed system
T 0 only by a time-dependent phase'? whered.¢=w: The
- ) phase shifting device does not affect the amplitude of the
+ Vf dr'|A0,r)|2e" 7T, (9  optical field or its phase gradient. In other words, the dynam-
0 ics of the optical field amplitude and phase gradient is not
coupled to the dynamics of the global phase. Writing
A(x,7)=p(x,7)e'*®*7 the relevant degrees of freedom of
our system are the amplitugeand the phase gradiefif¢.

The efficiency is obtained by integrating E@) on x and
using Eq.(9):

QUm) 1 +alé 10
T 2aN,  daNgldr @ (7). (10) IIl. SMALL SIGNAL REGIME

n(7)=

When the optical signal is small, Eq&)—(7) reduce to
In the form of Eqs.(3)—(7), the model has been rescaled {he Jinear system for @x<1

so that it depends only on two dimensionless operating pa-

rameterse (dissipation and v (transport. Both « and v are (0,— v+ al2)A=B, (18
inversely proportional to the electron pulse charge and are

easily controllable experimentally by varying the cavity JB

length and the outcoupling. Note that the transport also in- ra —iP, (19
duces dissipation since it steadily drives a part of the radia-

tion out of the interaction regiore[0,1]. We note that the

use of the reduced mod€&)—(7) instead of the multiparticle P _ —A, (20)

equations(1) and (2) is essentially motivated by computer 2
time saving and easier analytical treatment. It has been .
shown[16] that the reduced model gives the necessary qualiith the boundary conditionA(1,7)=0 for »>0 and
tative behavior to discuss the main physical aspects of th&(0,7)=0 for »<0. In this section we will characterize the
problem. spectrum of the linear regime, study the eigenstates of the
It is noteworthy that the system is invariant under a globaProblem(supermode$14J), and give an accurate description
phase shift: Indeed, we consider the dynamics of the opticelf their behavior as a function of cavity detunimg In par-
field envelope and the incoming electrons beam is supposéigular, we will show an othogonality property of the super-
to be unbunchediB(x=0)=0]. It is therefore natural that modgs, which will b_e used in Sec._ IV to expand the general
the dynamics does not depend on the choice of the phag@lution of the nonlinear problem in terms of supermodes.
origin. The situation would be different with a prebunched  We SetA(x,7) =exfl(u—a/2)7]A,(X) (and similarly for
electron beanfB(x=0)+#0]: Then the relative phase be- B andP), whereu is the complex eigenvalue amd,(x) is
tween the optical field and the initial bunching factor would the associated eigenfunction. Amplification occurs only
play a role. One may go one step further: Our system is nohen 2 Re.>« and the phase of each eigenfunction drifts at
invariant under a time-dependent phase shift. For examplé constant rate Im. Integrating Egs.(19) and (20) with
the imaginary part of the eigenvalue of an eigenmode has Boundary condition8,(0)=0 andP ,(0)=0 and substitut-
definite value and represents the phase drift of the opticdnd in Eg.(18), we obtain
field from pass to pass in the optical cavity in the linear

regime of Sec. lll. However, our system is “covariant” un- GA +i fxdx’ Y—XA (X" )= uA 21
der the transformations YO 0 ( A=Ay @y
A(x,7)— e *IA(X, 1), (1)) In the caser<0, i.e., for a cavity longer than the synchro-

_ nism length, the boundary condition imposgs,(x)=0.
B(x,7)— € *"B(x,7), (120 Hence, as we already stated, no amplification can occur for
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r<0. We will assumer>0 in the rest of the paper. The v =0.0205
general solution of Eq21) is then

AL (X) :AN[ki(kz— kg)e™ KX k%(kg— ky)e Tk

+K3(ky—kp)e ¥, (22) 0.2

whereAy is a constant and;, with j=1,2,3, are the com-
plex roots of the characteristic equation Re(w) o

vk3—iuk?+1=0. (23

The eigenvalueg are determined by the boundary condition
A,(1)=0, i.e., by the equation

Clu)=Ki(ks—ks)e 1+ Kj(ks—ky)e ™2

(K, —kp)e *a=0. (24) ma
FIG. 1. Eigenvalue chart for=0.0205. Solid line, RE€(u)
The spectrum is the set of zeros of the complex function=0; dash-dotted line, Ir€(x)=0. The eigenvalues are located at
C(u) and is therefore discrete. Sin€& ) is a complicated the intersections of the two sets of lines.
oscillating function, the zeros must be found using a numeri-
cal algorithm. A part of the spectrum has already been foundjiven v, but this number increases ferdecreasing toward
in Ref. [11] by an iterative method. For eaah we first  zero(small cavity detuning or high current limit
approached numerically the minimum of the real, positive Figure 2 shows the behavior, as a functionigfof the
function|C(i w)| by scanning the real argumesat this way real and imaginary parts of the eigenvalugs for n
we determined the eigenvalues with zero real part at sgme =1, ... ,5(solid lineg andn=—-1,—2,—3 (dashed lines
corresponding to the gain threshold. Then, varyinffom
the threshold, the eigenvalye was determined by continu- L L B S S S B B B
ity, investigating the vicinity in the complex plane. Although
this method allowed us to identify the three most unstable
eigenvalues, it has several drawbacks. First, it does not allow —
one to find the eigenvalues whose real part does not vanisr%
for somev. Second, it does not give a global view of the
spectrum in the complex. plane. Third, it is difficult to
follow a given eigenvalue in the smail region, where the
eigenvalues get very close to each other.

We present here a different method to search the eigen-
values, which gives a global view of the spectrum at fixed
We calculate the complex functiofi(x) and plot the con-
tour lines ReC(u)=0 and ImC(u)=0 in the complexu
plane. The intersections of these lines satisfy@4) and are
the desired eigenvalues. Once the global view of the spec-
trum at the givenv is obtained, it is possible to determine B A e e e N
with any desired accuracy each eigenmode by a local searct ] ]
of the zero of|C(u)|. The reason why it is preferable to ] (b) et ]
consider first separately the real and imaginary part(ef) 101 ]
is because they change sign around their zeros, in contradis .— ] ]
tinction to the amplitudéC(u)|, which is always positive:
This makes it much easier to find the contour lines
ReC(u)=0 and ImC(u«)=0 than the vanishing minima of
|C(u)|. Figure 1 shows an example of the spectrum in the ]
complex u plane fory=0.0205: The solid lines represent g -7 mmmmmee n=1 ]
ReC(u) =0, the dash-dotted lines 18(ux)=0, and the in- T e T s .
tersections between the two sets of lines are the eigenvalues ] el T ]
The spectrum is twofold: The first set of eigenvalues has _10_3
negative real parts and negative imaginary pdi9];
we number these eigenvalues with a negative index,

[(3*%/2)(v

e(w) /

o

000 002 004 006 008 040  0.12

(W/[(3/2)(vi2)®

0.00 0.02 0.04 0.06 0.08 0.10 0.12

=—1,—-2,... . Thesecond set of eigenvalues has positive v
imaginary parts and real parts positive only for@<wy; FIG. 2. (a) Real part andb) imaginary part of the eigenvalues
we number them with a positive index=1,2,... .Hence with a positive index(solid line§ and a negative indexdashed

there are only a finite number of unstable eigenvalues for #ines versus the cavity detuning,.
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e R A We will make the assumption that the set of the supermodes
A, is complete and write the time-dependent solutions of the
] ] nonlinear problem as a combinatié®7). Then the relation
0.15 n=i 4 (28) will be used to study the time-dependent amplitudes of
] ] the solution.
In order to find an approximate solution for the eigenval-
= 010 ] ues in the case of small, positive we observe that fop
o 1 1 =0 the solution is identically zero. Furthermore, E24) is
o ] ] - . : <
Y ] ] verified when two roots of the cubic equation coincide, e.g.,
0.05.] n=2 ] k,=ks, with the solution(22) identically zero. Then we ex-
. n=3 ] pect that, in the case of small all the eigenvalues will be
o5 ] close to the degenerate valpg for which two of the three
] . roots of the cubic equation are eqkalk k5. This occurs for
0'000.00' 002 004 006 008 010 0.2 po=1(27/4)%, with k=k;=(2i/3v) o and ky=—(i/
3v)ug. Two of the three possible complex values @f,
wo=3(v2)?%' ™ and wo=—i3(v/2)?®, respectively, are
FIG. 3. Positive reduced gai®/g=2 Re(u) for the first five  observed to be the limit for smail of the eigenvalues with
supermodes versus positive and negative indices, as can be observed in Fig. 2.
Expanding k and u around their degenerate valudg
scaled with (@ Re(w)/[(3V3/2)@/2)?] and (b =(2i/Bv)ug and uo in Eq. (23), we obtain kyz=ko
Im(w)/[ (3/2)(v/2)?°]. The eigenmodes with Re>a/2 will = (2i/3v) Vol — po) + O(p— o). Inserting these values
be amplified in the small signal regime. The linear dynamicdgnto the expression of the eigenfuncti¢22) and neglecting
is dominated by the fundamental supermodel, with a net ~ the nondegenerate rok{, we obtain
gain of G=g(2Reu— a). Figure 3 shows the positive val-

ues of 2R@ vs v for n=1,...,5: Nogain occurs fory A, (X)=(3Ay/v)e ko¥{e(23)roln=ro) — g~ (2/3)roln=1o)
>p,;=0.13, whereas then=2,...,5 eigenvalues have a
positive real part fon<wv,,, wherev,=0.02, v3=0.01, v, +O(V(1— o) o)}

=0.005, andvs=0.003. We observe in Fig. 2 at smalthat N _ _
the eigenvalues with n>0 behave like u Then the condition A, (1)=0 is fulfilled when

=3(v/2)?Pexp(wl6), whereas the eigenvalues with<0  (2/3v)Vuo(n— o) =imn, wherenis an integer, i.e., when

behave likeu= — 3i(v/2)?". w=uo—97°n%v?/4u,, and the eigenfunctions are
The integro-differential operator defined by BEQ1) is .
neither self-adjoint nor normdit does not commute with its A(X)=Ag [ “*sinnmx+ O(v¥3)]. (29

adjoint and as a consequence the eigenmodes belonging to

different eigenvalues are not orthogonal in the usual “enHence the eigenvalues with positive index are

ergy’” scalar product(|g)1zfédxf(x)*g(x). It is possible,

however, to show that the supermodas satisfy the or- wn="3(vI2)?q & ™0 — 72n2(p[2)%%~176],  (30)
thogonality relatior{20]

with eigenfunctions

(Mn_ﬂm)(An|Am)2:0 (25
for the pseudoscalar product An(X)=(3\3/n2m2y) Mo (W3 DA Zginn .
(31
1
(f19)2= JO dx f(x)g(1—x), (26)  The eigenvalues with a negative index are
— _ Qi 2/ 2.2 2/3
wheref and g are two complex functions defined on the pn==3i(vI2)" 1+ w*n*(v12)*), (32
interval [ 0,1]. We note that the produc®6) is not a scalar ith eigent :
product becausef{g),=(g|f), and (f|f), is not in general WIth eigenfunctions
real and positive. Nevertheless, using the propé2§), one s _
can extract the componeras of any combination of super- An(x) = /26! 2" 1 sinnrx. (33
modes: If
The normalization constants have been chosen in order to
have
A(X,7)= ; an(7)An(X), (27
1
then the components, are fo dx|Aqg(x)[*=1. (34)
_ (An|A)2

= (28) We observe that the approximated expresgi2®) satisfies
(AnlAn)2 the orthogonality relation
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1 X
(An|Am)2=J dx Ay(1—X)An(X) Q<2>:—f dx'[A*BM +c.c]=BYPD* +c.c., (40
0 0

=8y m(— 1)"(AS,/2)e ko, (35) X
S2= —2f dxX'[A*PW+c.c]=2|PY2, (41
For v sufficiently small, the exponential factor in the expres- 0
sion of the supermodg81) is large and the function is ap-
preciably different from zero only in the trailing edge region
close tox=1, with a width o,~ (¢/2)*® (boundary layex

whereB™®) and P! are the solutions of the linear equations
(19) and (20). Using Egs.(27) and (21) in Eqg. (39), we

Hence we may assume gimx=nm(1—Xx) and obtain
An(X)=(3\3/v) YA 1—x)e K179, (36) 2 A =2 (un—al2aA,— > Agamata,
n n m,k,|
wherek=(2/v)Y3(\/3+i)/2. The associated expressions for (42)

the bunching and the momentum bunching are, respective%here the overdot stands for a derivative with respect,to

Bn(X)=(3/3/v) YA v/2)2% ™%(1— x+ 2/k)e K1), )
(37) A= 2JO dx’ (x=x"){PnP B+ PmBy P +ByPy P},

P (X)=(3y3/1) Y4 1/2) Y3576 1 — x+ 1) e~ K1), (43

38 and we have s8M=> a,B, andPM=3 a,P,. We ob-
serve thatA ;= A \km - Using the orthogonality relatiof25)

w hat in the limit of ing the ; !
e observe that in the limit of very smaill and using the in Eq. (42), we obtain

normalization(34), the supermodes are independentnof
The maximum of the intensity is located at=1—(2/
V3)(#12)YR with |A|2 .= (2V/3/€?)(2/v)-. an=(pn—al2a,— >, Bt .amara, (44)
Figures 4 and 5 show the profiles of the supermqddes m.k,!

for n=1,3,5 (solid line), compared with the approximated
expressiong31) (dashed ling and (36) (dotted ling for v where
=2.5x10"2 (Fig. 4 and v=2.5x10"* (Fig. 5, together AJA (BoJA” )
with their phase derivativep’. The dashed line represents n kI:( n m"')zz_i nl**mkl’2.
the approximated valug’ = (1/2)(2k)*3, derived from Eq. M (AnlAn)2 (AnlAn)2
(31). Naturally, we observe that the express{86), which is . . )
independent oh, approximates better the exact expressionn the expressiori45) we have integrated twice per part us-

for smallerv andn. ing A,=—iB,. Equation(44) is an exact result of the third-
order theory and rules the temporal evolution of all the su-
permode amplitudea,(7).
When the real part of the eigenvalne=1 is close to the
loss «/2, the first supermode is close to the gain threshold
We have determined the eigenmodes of the linear syste@nd the other supermodes are strongly damped. If we sup-
(supermodes and the complex internal produ¢®5) for pose that the component of the fundamental supermode re-
which the eigenmodes are orthogonal. In this section we us@ains always much larger than the components of the others
the supermodes to describe saturation by expanding in ternggipermodesa,|<|a;|<1 for n=2, then
of supermodes the solution of an approximated model at the )
third order in the field amplitude. The determination of the an=(un— al2)a,— Bnlas|?ay, (46)
evolution equations for the amplitudeg(7) of the expan-
sion (27) up to third order will allow us to characterize the where B,=1;;. Equation (46) for n=1 is the usual
weakly nonlinear regime, testing the domain of validity of Landau-Ginzburg equatiofEq. (42) of Ref. [11]] for the
the model. After deriving the exact equations for the coupledsingle-supermode regime, generalized for all the secondary
supermode amplitudes, we will focus our analysis on thesupermodesn(=2) driven by the fundamental supermode
single-supermode approximation, comparing the analyticah=1. Equation(46) has been obtained from the exact solu-
result fora, with the value calculated from the numerical tion using the orthogonality relatiof25). Conversely, Eq.
solution of Eqs.(3)—(7). (42) of Ref.[11] was derived assuming the single-supermode
The reduced model of Eq&3)—(7) can be approximated approximation before extracting the fundamental component
in the weakly nonlinear regime retaining the nonlinear termsand the saturation coefficient was calculated using the energy
up to the third order in the field amplitudi scalar product for which the supermodes are not orthogonal,
as B1=(A1|A11)1=J5dx A¥ (x) A114(X). Hence it was ac-
tually not a true single-supermode regime, but, as we will see
below, a limit regime for cavity detuning close to zero,
where all the supermodes tend to the same expreg8@n
+2Q@p1y, (399 independent oh. This is referred to as the superradiant re-

(45)

IV. THIRD-ORDER NONLINEAR THEORY
AND SINGLE-SUPERMODE OPERATION

X
(9,— viy+ al2)A=BY — f dx’ (x—x")[SPBY
0
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X X

FIG. 4. Left column: supermodes profilp&,(x)| (solid line) for n=1,3,5 andv=2.5x10"3%; dashed lines, Eq31); dotted lines, Eq.
(36). Right column: phase derivativg’ (x); dashed linesg’ = (1/2)(2/)*3.

gime, already demonstrated analytically in a perfectly syn- w1s= |m(M1‘BlP§s)- (48)
chronized, lossless FEL oscillatft5].
In the steady state, the amplitude of the fundamental suvhere
gﬁ/rerr;ode can be writtea; = p1.eXplw;s7). Then Eq.(46) gn=2 Reu,—a (49)
is the net gain of thath supermode. In the single-supermode
regime, the steady-state efficiency is therefore, from Es.

p1s= V91/2 Refy, (47 and(10),
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FIG. 5. Same as Fig. 4, but for=2.5x 104,
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P1s — P1sBn
= +v|AL(0)]?], 50 Ape=————————=. 51
7 47TNW[C( V| 1( )l ] ( ) ns /»Ln_lw_‘]_s_ a/z ( )

where the second term in the square brackets is due to thEigures 6-8 showa,| vs v for the first supermodes fax
radiation freely propagating in the regienvr<x<0. Equa-  =0.18,«=0.16, anda=0.05, respectively, calculated using
tion (46) for n=2 determines the amplitudes of the second-Eq. (28), i.e., by projecting the numerical solution obtained
ary supermodes driveﬂ by the fundamental in the stationargy integration of Eqs(3)—(7) on the supermoda,, . In Figs.
regime. Defininga,=a,&xpiwisr) for n=2, we obtain 6 and 7 the solid lines represent the analytical values given
from Eq. (46) by Egs. (47) and (51). We first note the agreemeitand
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FIG. 6. |a,| vs v for the supermodes=1 andn=2 for &
=0.18; solid lines, analytical values; circles and squares, (),
whereA(x,7) is the numerical solution.

FIG. 8. |a,| vs v for the supermodes=1, n=2, andn=3 for
a=0.05, calculated using E@28), whereA(x,7) is the numerical
solution.

therefore cross validatigmetween numerical simulation and . ) ) .
third-order theory, where the conditida,|<|a,|<1 for n evaluation of the saturated intensity. Instead of the expansion
=2 is satisfied. We furthermore observe that the amplitud@q' (27), which is now useless because it would require a
of the fundamental is much larger than the amplitudes of thd?’9€ number of ~components, we assum&(x,7)
other modes, so the single-supermode approximation is 8s(7)As(X), where Ag(x) is the approximate solution
good. On the contrary, in Figure 8 at small the first two  (36), which is the common approximate shape of all the
supermodes have comparable amplitudes and the singl8€&rly degenerate supermodes. Then(&4) reduces to the
supermode approximation is irrelevant. Figure 9 shows th&MmPler equation

scaled efficiency 4N, 7 vs v for «=0.18 anda=0.16 as _

obtained from the numerical solution of E¢8)—(7) (circles as=(us— al2)ag— Bgag’as, (52

and squares compared with the analytical result of E§0Q)
(SOlld IIHeS. WhereMS: 3(1//2)2/3€i 71'/6,
V. SUPERRADIANT REGIME

_ l * — fl n
We have seen that the single-supermode approximation Bs= fo dx As()™ Ag(x) =i 0 dx Bs(x) As(x)
fails nearr=0 anda=0, where the amplitudess, are of the
same order of magnitude and tend toward a common value. —[P5(1)A(1)+iBS(1)Ag(1)], (53
This is consistent with our results of Sec. Ill, where we have

shown that the eigenmodes for smallbecome degenerate andA g has the same form as E@3), with Bg and P given
and tend to a common expression given by B§), inde- by Eqgs.(37) and (39). In order to evaluate the limit of the

pendent ofn. In this limit case, we can use the explicit ex- saturation coefficiengs for small v, it is convenient to in-
pressions of the eigenmodes to obtain again an analytic

4.0 v T g T T T T T T T v T
4 2.04 ]
3.5 - --w---0=0.16
] e =0.18
3.01 1 1.5 .
2.5 B =
] Zs 1.0
— 2.0+ E =
KA. <
1.5 E
A 0.5 1 E
1.0 .
0.5 1 4
4 0.0 T
0.0 0.00 0.08 0.10
0.01 0.08 v

FIG. 9. Scaled efficiency #N,,n vs v for «=0.18 and«
FIG. 7. Same as Fig. 6, but far=0.16. =0.16. Solid lines, analytical solution, E0).
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troduce the new integration variabje= (2/v)*3(1—x) and n——7—
extend the upper integration limit fo=c. Then Eqs(36)— ]
(38 can be written as 5 : 0=0.05 ]
As=(vI2) VA(y), (54) i
Bs=(v/2)"B(y), C B *‘g _
Ps=(112)B(y), CO
where
Aly)=(3+3/2)"ye ¥, (57
B(y)=(3\312"42+cy)e?, (58) y
P(y)=(3\3/2Y3(1+cy)e? ™R, (59) FIG. 10. Scaled efficiency #N,,% vs v for a=0.05 from the

numerical solution(circles and from the analytical solution, Eq.
andc=e ™. We observe thah, B, andP are independent (62) (solid line).

of v. Using Egs.(55—(59) in Eg. (53), we obtain
the emission is equivalent to the single-pass high gain inter-

* - . action of the radiation with a beam of “effective” length
Bs=(v/2>5’3{ fo dy K(y)[iB* (y)— P*(0)y—iB*(0)] oL,. J
In Fig. 10 we compare the efficiency far=0.05 vsv as
=(v/2)%%4.09-14.59], (60)  obtained from the numerical integration of E¢®—(7), with

the expressior{62) obtained under the assumption that for

where small cavity detuningy all the eigenmodes are equal. For

- _ - - this value ofa, the amplitudes of the first two supermodes
K(y)=2[2[P(y)|?B(y)+P*(y)B*(y)] (61)  are almost equal, as may be seen in Fig. 8. The agreement
) _ . with the superradiant limit is good enough near the peak at
and the integral in Eq60) has been evaluated numerically. gmg)|, considering that there are only two eigenvalues al-
Then the steady-state efficiency for small cavity detuning isyost equal. Indeed we see from E80) that the eigenvalues
23 wn, become equal for<2/(nw)3, that is, for very small
__ ¢ 2 Rms_az a 3\/§(V/2) Ta whenn= 3. Unfortunately, decreasing and », the station-
g 47N,, 2 ReBg 47N, 8(pf2)%R ary superradiant solution is in general unstaske Sec. VI
(62) and the superradiant limit can be reached only in an average
sense or in a narrow region nea+=0 anda=0.

The maximum efficiencynmale.43/47-rNW\/E occurs at

Vopt= 22(5a/9J§)3_’2~o.363a3’2, with a peak powqumaX V1. NONLINEAR MODES

=1.2/e? and a widtho,~0.56\a. Hence the optical pulse _ _ _ _
is Ng= ngxzo_seNW\/Z optical wavelengths long, the ef- An important step in the study of a dynamical system is
ficiency is »=1/57Ng, and the peak power isP, the determination of its stationary regimes. Time-dependent
=1.2(€%c/ megrd) fla,F/(1+a2)1?Q%(&/m?)?,  where numerical simulation§l11] have already shown that for cav-
Q=1/ga is the quality factor of the cavity and, ity lossesa and detuning in region O of the phase diagram
=P4(Ly/c) is the beam energy. The emission is Fig- 11, the system converges to a stable equilibrium. This
superradiant with the peak power proportional to the square€gion is limited on one side by the lasing threshold that has
of the beam current and the width inversely proportional todlréady been analyzed and on the other side by a limit cycle
the Square root of the beam current. Fonowing the notatioﬁnstab"ny threshold. HOWeVer, the tlme-dependent numencal

of Ref. [8] and introducing the high gain FEL parameter asSimulations do not indicate what happens to the equilibrium
p=g(1)’3/47rNW and the cooperation length.=\/4mp, the at the limit cycle instability threshold or whether or not other

optimum efficiency and the peak power can be written reStationary regimes exist.

spectively as  7=143%OLy/L, and P, In our case, it can be shown easily that the solutions of

= 1.20P,(OL, /L) These expressions relate the superradi-i?; (3)=(7) with constant amplitude are necessarily of the

ant emission in high gain, single-pass FEL amplifiers to th
superradiant emission in short pulse FEL oscillaj@21]. .
Actually, in the first case the superradiant analysis has the A(X, 7)=e"“TA(x), (63
same expressions for the efficiency and peak power, with

Q=1. If we image the emission in the perfectly tuned cavitywherew is some constant phase drift. Inserting E&p) into

as produced by a train of many electron pulses interactinggs. (3)—(7) with the appropriate boundary conditions, one
with the radiation in the cavity fon~ Q round-trips, then gets the equations for the nonlinear modes
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FIG. 11. Phase diagram giving the asymptotic behavior as a 8
function of the operating parametess and v. Region 0, stable
stationary regime; region 1, limit cycle. For smalland v see Fig. |A] ©
15.
4
vA'=(iw+ al2)A—B, (64) )
B'=—iP, (65) o
) ) ) 0 0.2 0.4 0.6 0.8 1
P'=—A—-iSB-2iQP+2iQ°B, (66) X
FIG. 12. Nonlinear mode foryv=a=0.022. Top: map
_ *
Q'=—-2RdAB*), (67 A (Ag,w): solid lines, ReA,)=0; dash-dotted lines, In#(,)=0.
The amplitudeA, at x=0 and the phase drifb of the nonlinear
_ *
S'=—-4RdAP"), (68) mode are given by the intersection of solid and dash-dotted lines.

x=0—B=P=Q=5=0, 69) Bottom: shape of the nonlinear mode.
cal integration of Eqs(64)—(68). This allows one to find the
x=1-A=0, (70 |evel lines ReA; =0 and ImA; =0. The nonlinear modes are
at the intersections of these two sets of lines.
Two examples are given in Figs. 12 and 13. Although for
=a=0.022 the system does not evolve to an equilibrium

where the prime represents the derivation with respeat to
Due to the global phase invariance, this mixed boundary
value problem is overdetermined and has no solution in gerﬁ - . o
eral, except for specifiow values. Thesev values play the ut to a limit cycle(see Fig. 11, we find in the top part of

same role in our nonlinear stationary problem as the eigenEig' 12 that an equilibr_ium. sl _exists: Its phase drifts_ with
values in the linear evolution problem. One way of finding‘*’go'l5 and its shape is given in the bottom part of Fig. 12.

(numerically the w’'s and the corresponding nonlinear This shap(_a allows an exact .compensation between lethargy
modes is as follows. For every value of the phase driétnd and detuning, but is very different from the sh_ape _Of the
for every A,, one can solve the differential system Eqs.fundamentlal mode at the samre=0.022: The optical field
(64)—(68), from x=0 tox= 1, with the initial conditiong69) has a maximum close to the head, so the electrons strongly

: " ; _ bunch in the first part of the wiggler.
and with a condition at the optical pulse heA@0)=A,. e .
The solution is an actual nonlinear mode if it also satisfiesﬁnIn the second example, for=a=0.015(see Fig. 1§ we

s ; ; d two coexisting stationary solutions. Both their phases
the boundary condition at the optical pulse tail E4f). Now o - . .
the valueA(1) at the tail is a function of the phase drist drift with 0~ 0.15. Although their shapes and amplitudes are

and the initial valueA,: Let us noteA(1)=A,(w,A,). The quite different, they both realize an exact compensation be-
0- —n1 1/M0J -

search for nonlinear modes finally reduces to solving théween Ie_thargy and detunlng. .
nonlinear equation We give now a general picture of what is observed mov-

ing from largea and v down to the more nonlinear regimes
A(w,Ag)=0. (71 of smallera and v. For largea and v, the only stationary

regime is the basic statt=0 and it is stable: Large dissi-
It seems hopeless to obtain closed form solutions of thipation and fast transport out of the interaction region prevent
problem. However, it can be handled numerically in the fol-laser amplification. The first nontrivial nonlinear mode,
lowing way. First, due to the global phase invariance, we canvhich we call the fundamental nonlinear mode, appears
restrict ourselves toA, real. Then the complex quantity when the basic statt=0 loses its stability. This happens at
Ai(w,Ap) can be calculated on the(Ag) plane by numeri-  the thresholdv=2 Reu(v), whereu(v) is the eigenvalue
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a =0.015, v=0.015 serves successively the following behaviors.

; . The development of the limit cycle instability is exempli-
fied in Fig. 14, which shows the evolution of the optical field
amplitude profile|A(x)| calculated from Eqgs(3)—(7) and
the trajectory of the system in the phase space of the ampli-

tudes of the first two linear modeg{ anda,; see below
Close to the lasing threshold, the energy steadily increases
up to saturation: When the optical field gets large enough,
the electron beam cannot bunch proportionally any longer.
Since the bunching is a cumulative effect along the wiggler,
this saturation appears first at the wiggler €ki., at the tail
of the optical pulsex=1). As a consequence, the gain drops
0.3 at the tail of the pulse and the pulse peak slightly slips ahead
(i.e., the lethargy drops This slight forward deformation
a =0.015, v=0.015 tends to increase the electron bunching and therefore com-
pensates for the gain drop, thus leading to a steady saturated
regime. See the right-hand side of Fig.(a4
14 Further from the lasing threshold, the system reaches
12 saturation after damped oscillations: Just like before, satura-
10 tion starts at the pulse tailx(&1). However, due to the
Al smaller cavity detuning, the transport towards the pulse
head k~0) of this nonlinear effect is slower and the gain at
6 the tail drops under the cavity losses before the pulse has the
4 time to slip ahead to compensate. Therefore, the optical field
at the tail decreases. This perturbation is finally transported
to the pulse head by the cavity detuning, leading to a slight
5 3 52 g ) 1 increase of the bunching and the gain at the tail. The process
X is then repeated, producing damped oscillations propagating
FIG. 13. Two coexisting nonlinear modes for=a=0.015. from th_e tail to the head of the optical pulse. See the right-
Top: mapA, (A, »). Bottom: shapes of the nonlinear modes. hand side of Fig. 1¢b). _

Still further from the lasing threshold, the system never
with the largest real part of the linearized problem. At this'éaches a stationary regime and evolves towards a limit
bifurcation point,A,=0 andw= Im u;(»). As long as one Cycle: Again, the gain drops first at the pulse tail, while the
remains close to threshold, the nonlinear mode remaingPtical field still grows at the head, reaches a high level, and
stable, small, and nearly proportional to the fundamental lini$ finally evacuated forward by the cavity detuning, thus al-
ear mode, as shown by the third-order study of the weakljowing a new start-up of the gain at the tail. The process is
nonlinear regime. Further from threshold, the nonlinearterated, but the losses are now too low and the transport too
mode becomes larger, changes its shape, and eventuaffiPW to damp the oscillations and a limit cycle instead of a
loses its stability(see Sec. VI, but continues to exist as Stationary saturated regime occurs. See the right-hand side of

observed in Fig. 12. At threshold for the second linear modefig. 140). ) )
i.e., for @=2 Reu,(v), whereu,(v) is the eigenvalue with In order to understand these different behaviors, together

second larger real part, the basic stAte 0 become again with the fact that the fundamental nonlinear mode continues
unstable in a second direction, corresponding to the secorf@ €Xist, as shown by the analysis of Sec. VI, we reconsider
linear mode. A new bifurcation occurs and a new nontrivialthe third-order two-mode weakly nonlinear approximation,
nonlinear mode emerges, withy=0 andw= Im u,(v), as introduced in Ref[11]. Keeping the leading nonlinear terms
shown by Fig. 13along the bisector of the phase diagram,for the first two modes in the approximati¢a,|<|a,|<1,

the threshold for the second linear mode occursyaty ~ EUS-(27) and(46) reduce to

=0.0157). This nonlinear mode is itself unstable and will

Ap 15

16

typically never be observed. In a similar way, a new bifur- A(X, 1) =3 (7)Ag(X) +az( 1) Ax(X), (72)
cation occurs at every threshote=2 Reu,(v), leading to .

the emergence of a new unstable nonlinear mode close to the a;=(u1— al2)a;— Bilaq/?ay, (73
basic stateéA;=0 andw=Imu, and associated with theth

linear mode. Finally, at very smadt and v, the system has é2=(,uz— al2)a,— B,la;|?a; . (74)

an increasing number dfinstable stationary regimes.
The solution of Eq(73) is (up to a constant phagse
VII. LIMIT CYCLE INSTABILITY

. . . a;=p.€' %1, (79
We consider now the stability of the fundamental nonlin-

ear mode. We already know from experiments and previous
numerical simulationg11] that for operating parametets pi(7)= P1s , (76)
and « decreasing away from the lasing threshold, one ob- V1+Texp —g.7)
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FIG. 14. Development of the limit cycle instability. On the right is the evolution of the optical field amplitude grsfitg calculated

from Egs.(3)—(7). On the left is the trajectory in the phase spacepf|a,| and§2=a2exp(—i¢1). (a) Weakly nonlinear master-slave
regime.(b) Damped oscillations to stable stationary regirfeg.Unstable equilibrium and limit cycle.

¢1Ew1(7): Im wq—

2
Im B1p7s

Ji+Texp—gi7)

(77

where I'=(p%— p30)/ps, p10=p1(0), and thesaturated
amplitudep,, the phase drifw,, and the net gain of the
first two supermodeg, , are given by Eqs(47)—(49). Since

a global phase of the system in irrelevant to the dynamics, it

a,=a,e'®
so that Eq(74) becomes

dy=(py—iw1— al2)a,— Bop}.

(78

(79

is useful to factor out the phase of the fundamental mode ant the second mode is strongly damped while the net gain of
write

the fundamental is positive €g;<—g,), we may assume
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the adiabatic approximation, which neglects the time deriva- 0.03
tive in EqQ.(79), so that the second modslave is driven by
the fundamentaimastey

— Bap3
a,= m ) (80) 0.02 -
which at saturation goes 523, given by Eq.(51). We ob- o

serve, from Eqs(76) and(80), a monotonic evolution of the
system from low signal up to saturation. This behavior is 0.01 4
observed on the left-hand side of Fig.(44 showing the
trajectory of the system foe=0.12 andv=0.013, in the

three-di@ensional phase space of the amplituﬁesRegz,

and Ima, (a, is complex and represents two degrees of
freedon). The amplitudesa; and a, are calculated by Eq.
(28). The net gains of the first two modes ayg~0.013 and
g,~ —0.095, respectively. v

If the net gain of the second mode is still negative but not g 15 phase diagram giving the asymptotic behavior as a
much larger in amplitude than the net gain of the fundamensynction of the operating parametessand » in the smalla and »
tal mode @,<0<g,), the evolution ofa, is no longer adia- region. Regions 1, limit cycle; regions 2, period-2 limit cycle; re-
batic. However, once the fundamental component hagions 4, period-4 limit cycle; regionBl: chaos or period-larger-
reached its stationary value, thg spirals down to the equi- than-4 limit cycle; see the text and Fig. 16 for poiras(»

brium o We theref b q q ilati be.~ 0-018, @=0.0145),b (1=0.007,@=0.0145), ¢ (v=0.005,
ibrium a,s: We therefore observe damped oscillations be-_ 557y~ 4 (,-0.012, 4=0.0067), ande (r=0011, a
fore saturation. Indeed, a simple linear stability analysis Of:0.0026).

the system of eq@tior(%) and(74) around the equilibrium

p1=p1s and a,=a,s shows that it is stable as long @  to this point to show that other types of bifurcations also
< 0. This behavior is observed on the left-hand side of Figoccur (basin boundary crossing, type-lil intermittencyhat
14(b) for «=0.07 andv=0.013. In this case the net gains of the phase diagram, which is the separation of the parameter
the first two modes arg,;~0.063 andy,~ —0.045, respec- plane (@,v) into regions of definite asymptotic behavior, is
tively. much more intricate than previously stated, and finally that
Finally, if the net gain of the second mode is not negativethe dynamics can be described, to a large extent, by the mere
(0<g,<g,), the equilibriuma,s is now the center of an iterations of a one-dimensional map. This description in
unstable spiral. The asymptotic behavior of the system theterms of the iterations of a one-dimensional map is important
depends on the nonlinearities in the vicinity of the equilib-because it allows us to identify the nature of the observed
rium. Numerical simulations show that these nonlinearitiedifurcations in an easier and safer way. It may also be useful
stabilize the system, so we observe a small limit cycleto devise future control strategies.
around the unstable equilibrium. This description of the dy- The results presented in this section are obtained by nu-
namics within the third-order two-mode approximation is merical integration of the modé8)—(7) and projection in the
rather crude, but it shows that the fundamental nonlineathree-dimensional &,,p,) phase space. They are summa-
mode becomes unstable via a supercritical Hopf bifurcatiomized in Fig. 15, which shows the asymptotic behavior of the
when pushing the operating parameterandv in the region  FEL depending on the reduced operating parameteasid
where secondary linear modes can be excited. Note that ip, starting from a low signal initial conditioA~0.
the nonlinear regime, the actual gain of the second mode is For decreasingr and v, one first recognizes a standard
affected by the amplitude of the fundamental, so the limitperiod doubling cascadeegions 1, 2, and)eading to high
cycle instability threshold is not accurately given 9y=0  periodicity and chaotic regime§egion N). The essential
(i.e., =2 Reuy), but is already reached f@,<0, so the features of this cascade of bifurcations are captured by the
domain of stability is actually smaller than expected fromdiscrete dynamics of the successive maxima of the signal,
simple third-order two-mode approximation. This can begiven to a good approximation by the iterations of a one-
seen in Fig. 1&) for «=0.04 andv=0.013, where the net dimensional return map as shown in Fig.(@6for param-

0.00
0.00 0.01 0.02

gains of the first two modes arg;~0.093 andg,~ eters given by the poina of Fig. 15. We observe that the
—0.0015, respectively. attractor has the simple structure of asRler band22], with
a “one-bump” return map.
VIIl. ROUTE TO CHAOS The phase diagram also presents other kinds of bifurca-

tions, which can be also analyzed by plotting first return
The stability of the limit cycles themselves and the dy-maps of the successive maxima of the amplitpgeof the
namical behavior for parametessand v going very close to fundamental mode. For example, pomin Fig. 15 is close
zero have already been consideredllii,11 within different  to a bifurcation line between period-1 limit cycles and chaos.
approaches. Both period doubling and type-l intermittencyThis is a subcritical period doubling bifurcation where the
[10] were observed in numerical simulations. We come agairslope of the return map goes from slightly larger thad
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FIG. 16. Dynamics in theq; ,a,) amplitudes phase space and the corresponding return maps giving each maximum of the fundamental
amplitudep, as a function of the previous one @ the chaotic point of Fig. 15, close to the period doubling bifurcation cascabethe
chaotic pointb of Fig. 15, close to the type-IIl intermittency subcritical bifurcation; dofthe periodic pointc of Fig. 15, where two
period-1 limit cycles coexist, each one with its own basin of attraction.

(stable limit cycle of the system corresponding to a stable Another type of bifurcation of the system occurs in the
fixed point of the mapto slightly smaller than—-1 (weakly  region of pointc of Fig. 15, where two period-1 limit cycles
unstable limit cycle and fixed pointThis leads to type-lll  coexist, each one with its own basin of attraction. Figure
intermittency[23,24]: Nearly periodic episode&lose to the  16(c) shows, on the left-hand side, the two stable limit cycles
weakly unstable limit cycleare separated by chaotic bursts corresponding to two stable fixed points of the return map
(over the whole attractor Each chaotic burst eventually and, on the right-hand side, the return map including the
brings the system back to the weakly unstable limit cycletransients, the unstable fixed poilissope larger than)Land
ready for a new nearly periodic episode. See FigblL6 the stable fixed pointgpositive slope smaller than).1At
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pointc and on the corresponding bifurcation line, the frontierdetuningr, where all the supermodes converge and become
between the basins of attraction of the two cycles sweepsearly degenerate. In this sense, the superradiant regime in
over the low signal initial conditionA~0, which then oscillators occurs when many supermodes of similar profile
changes from one basin to the other, thus leading to ongontribute to the total radiation field. In contrast, the single-
cycle or the other. Note that in this region, slow changes okypermode regime occurs for relatively largeclose to the
the operating parameters during the macropulse would leaghgamental supermode threshajg=0. We first showed
to hysteresis phenomena. In a similar way, the bifurcationpat gt smalle and v, i.e., small cavity losses and detuning
occurring at pointd is a subcritical destabilization of a o pigh current, the system had several possible stationary
period-2 limit cycle, leading to a type-lil intermittent chaos o, iong put all unstable due to the “emancipation” of sec-
\k’)Vl'Jtrhstger;?%'zthnee%ri%r‘;z;:gg'coggfrﬁges sepaya_ted bg ChaOt'Sndary modes. We found that the phase diagf&igs. 11
' . . rring at pomts a basin and 15 of the system is quite intricated, making a fine con-
boundary crossing with a coexistence of a period-1 limit ; . . i i
cycle and a period-2 limit cycle. trol of the different dynamical behaviors in these devices
difficult in practice. However, we also showed that the analy-
sis of the transitions between the various possible unsteady
regimes was made easier by the fact that the attractor of the
In this paper we reconsidered the linear, weakly nonlin-system remains low dimensional, so that the dynamics on the
ear, and nonlinear dynamics of short pulse free electron lasettractor can be understood, to a large extent, in terms of
oscillators from a dynamical system point of view. The su-iterations of one-dimensional return maps. This might help in
perradiant behavior appears in the limit of very small cavitythe future for the design of control or stabilization schemes.

IX. CONCLUSIONS
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