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Ultrahigh-intensity inverse bremsstrahlung
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We study inverse bremsstrahlung in the ultrahigh intensity relativistic regime. The fully relativistic ultrahigh
intensity absorptionlemission coefficient is derived for an arbitrary scattering potential and small-angle
scattering. We find that in the Coulomb field case this absorgéamssion coefficient can be calculated as a
function of the quiver energy, drift momentum, and impact parameter in two complementary re@jnies:
remote collisions when the impact parameter is larger than the amplitude of the quiver motiqii) &md
instantaneous collisions when the scattering time is shorter than the period of the wave. Both circular and linear
polarizations are considered, and this study reveals that in this relativistic regime inverse bremsstrahlung
absorption can be viewed as a harmonic Compton resonance heating of the laser-driven electron by the virtual
photon of the ion Coulomb field. The relativistic modification of Marcuse’s effBetl Syst. Tech. J41, 1557
(1962] are also discussed, and relations with previous nonrelativistic results are elucidated.
[S1063-651%99)10701-3

PACS numbsd(s): 52.40.Nk, 34.80.Qb

I. INTRODUCTION section for electron scattering without the lase EM field, the
so-called Krall-Watson formula.

The basic physical processes involved in laser-plasma in- Relativistic quantum IB has been studied within the
teraction, up to 15 W/cn?, are now well understood; on framework of the Born approximatiof®,7] and in the low-
the other hand, a large number of issues remain open in thgequency approximatiofB]; however this quantum formal-
study of the relativistic interaction regime above ism is limited to classical perturbation expansions and is not
10'® W/cn?. Recent advances in pulse compression nowelevant to UHI-IB during laser-plasma interaction. In order
make possible an exploration of laser-plasma interactionto study UHI-IB during laser-plasma interaction, we will use
with such fluxes above ¥®Wicn?, thus there is a clear a classical relativistic formalism. Classical mechanics pro-
need to identify and analyze the issues relevant to this ultravides the right framework to describe IB for fluxes in the
high intensity(UHI) regime[1]. Among these various issues, range from 16? to 10** Wi/cn?, where the energy exchange
UHI inverse bremsstrahlun@B) is particularly important to  between electrons and EM wave exceeds the energy of one
understand energy momentum transfer from an electromadeM quantumfw (i.e., the interaction is essentially a multi-
netic (EM) laser field to a plasma during solid target experi-photon procesd9].
ments. Nonrelativistic high-frequency resistivity was evaluated

Terawatt to petawatt UHI laser pulses are now considereih the 1960s by Dawson and Obern{d®] and Silin[11]. In
as potential candidates to provide highly localized, nonlineaaddition to this Maxwellian averaged quantity, the nonrela-
energy depositiorfthrough fast electrons productipm an tivistic rate of IB for classical collisions between one elec-
inertial fusion target in order to obtain spark ignition of the tron and an ion population has been calculated in the small-
compressed fuel. Laser intensities in a range frortf 1@  angle approximatiofor “straight-line path” approximation
107 Wicn? are thus considered, and the impact of UHI-IB [12—14, but the final result remains an infinite sum of inte-
on these scenarios remains to be evaluated. Besides soligials and does not reveal the scaling of the process with
target experiments, UHI-IB is also relevant to understand théespect to the various parameters. The classical description
early stages of some recently reported efficient heating andf the instantaneous collisions has also been considered in
emission of energetic electrons from atomic clusters submitthe impact approximation, where it is assumed that the col-
ted to UHI laser pulsef2]. lisions take place on a time scale far shorter than the inter-

Up to now, two types of approximations have been usedction time between the colliding specids,16|.
to study IB in the framework of quantum mechanics: the The Coulomb field can be treated as a perturbation during
Born approximation(when the scattering potential is as- the scattering process for relativistic laser fluxesMmec
sumed to be weaK3], and the low-frequency approximation ~1, whereA is vector potential of the EM wayeprovided
(when the frequency of the EM wave is smaller than thethe minimum distance between the electron and the ion is
interaction time [4]. Krall and Watson5] combined both such that the Coulomb field remains smaller than the laser
results, and showed that the differential cross section for lafield. Given the fact that the velocity of the quiver motion
ser potential scattering has the same form for both limitingand drift motion is of the order of the velocity of light, this
cases and can be expressed in terms of the differential crossinimum distance is mi,~ Vreh (ro=€*mc is the classi-
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cal electron radiusy is the wavelength of the radiation,is  and discussed, and we summarize the main original results of
the velocity of light, ande andm are the charge and mass of our study and give our conclusions.

the electron A classical relativistic description can be used

if the de Broglie wavelength of a relativistic electron Il. ACTION-ANGLE VARIABLES FOR RELATIVISTIC
=#/p~10"° cm (p is the electron momentunis smaller SCATTERING

than the distance between two particles. For typical lasers,
rmin=10"° cm; thus classical mechanics is valid and the ion
field remain smaller than the EM field and the Coulomb field
can be treated as a perturbatidry].

In this study we shall calculate the energy exchange be
tween an EM laser field and an electron population within
the framework of the random phase approximation; that is to _ 2 2. .2
say, we average the final regults ovzrr) the initial phase of HPrU= VL Py F[ACOIX—1)+py] +pZ+U(r—r0)(,1)
electrons entering the scattering region. This averaging can
also be presented as the interaction between an infinitely najghere we have used the set of natural umits c=e= o
row electron beam and an EM field in the presence of a1 s the vector specifying the position of the Coulomb
scattering potential. Besides the fact that the experimentalgnter.
measurement is naturally phase averaged, this averaging \ye extend the phase space of this dynamical system

over scattering phases has another advantage: it essentiaflyough the introduction of a set of new canonical variables
simplifies the calculation of the energy exchange. This lattef e— _ 4 Then the Hamiltonian becomes

point was noted some time ago in the theory of the free-

The electron motion in a scattering field(r —ry) and a
linearly polarized (LP) EM wave with vector potential
A(r,t)=A cos(x/c—wt)g,, propagating along the vecter
=g¢,, is described by Hamilton’s equations derived from the
Hamiltonian:

electron laser, and formulated as Madey’s theof&8). This H(p,r,E t)= \/1+ pZ+[A CogX—1)+ py]+ p2
theorem simplifies the evaluation of the gain for fast wave B X Y z
devices[19-21]. +U(r—rq)+E. 2

This theorem has been demonstrated in general Hamil-
tonian form for one-dimensional cases, and extended to nealt is known [25] that the problem of electron motion in a
integrable Hamiltonian systems with arbitrary degrees oplane wave is integrable, and it is possible to introduce a set
freedom[20-22. For a perturbed classical Hamiltonian sys- of action-angles variableg,P and®,® with the help of the
tem expressed in terms of actions and angles, the statemeggnerating functio26]
of this theorem can be summarized as follow: the second

order changegdue to the perturbationin action variables _ _ PyA _
averaged over the initial phase can be expressed in terms of S(y,PLO=(Pr)=yt+ y— szm(x t
the first order perturbation, this substantially simplifies cal-
. .. . AZ
culations of second order quantities. It can be shown that this T sin2x—2t) 3)
theorem has relations with other results, such as the classical 8(y—Py) '

limit of Einstein relations between spontaneous and stimu-
lated emission[23] and the fluctuation dissipation theorem Thus the transformation from the old to the new canonical
[24]. variables is defined by the relations

In addition to this methodological issue concerning
Madey’s theorem, from a phenomenological point of view
IB can be considered as a conversion of the regular quiverpx_
motion energy into drift thermal energy as a result of the
reorientation of the quiver motion into translational motion py="P
during the collision. This efficient conversion process is due
to the occurrence of a set of resonances, identified as Comp- p,=P,,
ton resonances, induced by the beating between the laser
wave and the virtual photon of the ion Coulomb fi¢kq. P,A A2
@7)]. By R SO R Ty

The paper is organized as follows. In Sec. | the problem is YT x YT x
formulated within the framework of Hamiltonian dynamics.
In Sec. Il the expression of the energy exchange between a X= 0, — PyA SN0+ D)
relativistic electron and an UHI EM laser field is derived ! (y—P,)? !
with the help of Madey’s theorem. In Sec. lll this energy
exchange is calculated and analyzed as a function of the A?
electron momentum, impact parameter, and azimuthal angle - m
for remote collisions, when the impact parameter is larger YT x
than the amplitude of the quiver oscillations. In Sec. IV we
cpnsider the compleme_ntary sitqation of instantaneous_ colli- y=0,— A Sin(@,+®d),
sions when the scattering time is shorter than the period of (y=Py
the UHI laser wave. In Sec. V the relation with previous
results obtained with different approximations is elucidated z=0,,

A2

P,A
P+ cog0®,+®d)+ 7

——c0520,+2d),
7P, (7P, 0420:1+2%)

y:

0920 ,+2d),

SiN(20,+2®), (4)
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= o — e, o) =0 —— P e+
(y— Px)2 [7(P)_Px]2
A? _ P,A
_m5|n(2®1+2q)). +mCOil+qD),
The new Hamiltonian as a function of the new variables
becomes y=0,— msin(@ﬁd)),
H(y,P,®,0) A
— JPZM?129B(7,P,0,0) + BX7,P,0,0)— y 2=03+ i Tp,Co901+ D), ®)

—B(y,P,®,0)+U[r(y,P,®,0)-rg], (5

»,0)= @
B(P, ,®)—mcoa{ 1+ D)

P/A
B(vy,P,®,0)= cog0,+®d)

y—Px z .
———sin(0,+ D),
A2 y(P)— Py MO )
+ ——c0920,+20),
4(y-p, 082017 2P) M2=1+A2,

whereM?=1+A?/2 is the averaged electron energy in the | et us consider the unperturbed motiqm0) described

LP EM wave without drift motion. The paramet®f plays  py the HamiltonianHo(P), and integrate Hamilton's equa-
the role of an effective mass of an electron inside the EMion to obtain

field. This effective mass is an important concept of both
classical and quantum electrodynamics in a strong field. 9H(v,P,®,0)
Among other processed] is responsible for a nonlinear fre- :f -
guency shift in strong field Compton scattering, and for the

enhanced penetration of intense waves in dense plasmas. The +9Ho(P) P
corresponding Hamilton’s equations describe the evolution <10>(p, T):f AR P aly

with respect to the time, so in order to perform further o 9Py ¥(P)
calculations with the previous Hamiltonian we introduce a

new timer=® instead oft, the action conjugated t& can O TﬁHo(P)d _ TPy 9
be taken as a new Hamiltonig27]. Then expressing this 2 (Pm)=] P, P ©)
action y in terms ofH,P,®, and ® by Eq. (5), the final

Hamiltonian describing the evolution becomes

dr=r,
0 dy

dH o(P) TP,

(0) = =

H(y,P,®,0)=y(H=0P,®,0)+y. (6)

Comparing the dynamical equations of Hamiltoni&Bisand Equationq4) an(_j(9) define tht_a well-known revivalistic orbit
(6) it is easy to check that both Hamiltonia(@ describe the ~Of an électron interacting with the LP EM wave; the so-
same dynamical system. Considering the scattering field as@lled drifting “figure-eight” motion[26]. Using Eq.(4) and
perturbation,U(r —ro)=uU(r—ry), w<1, we obtain the averaging Eqgs(9) over the electron oscillations in the EM

final result to first order inu: wave, we obtain
H(y,P,®,0)=y+H(P)+uH_(P,®,0)+0(u?), ()=1V, ()=7Vy, (Z)=7V,. (10
Ho(P) = VPZ+ M2, Therefore Eqs(10) describe the drift motion of the “figure

eight” with a drift velocity V=P/y(P) and an average ki-
B(P,0,0) netic gnergyy(P): JPZ+MZ. Note that, in our formulation,
1+ ;}U[r(p@,@)_ro], (7)  the drift trajectory always passes through the center of the
¥(P) coordinate system, and the position of the scattering center is
determined byr,. For M?=1+A?, Egs.(8) and(9) define
B(P,®,0)=B[y(P),P,®,0], the relativistic orbit of an electron interacting with the CP
EM wave corresponding to drifting circular oscillatiof6].

H_(P,®,0)=

r(P,®,0)=r[y(P),P,®,0],

Ill. ULTRAHIGH INTENSITY INVERSE

where y(P)=Hq(P) [the relations between and y,P,®,0 BREMSSTRAHLUNG

are given by Eq(4)]. Similarly, for a circularly polarized
(CP EM wave A(r,t)=¢eAcosr—t)+eAsin(r—t) The calculation of the action second order change aver-
=e/A cosk—t)+eAsinx—t), Hamiltonian (7) can be de- aged over initial phases is simplified by the generalized
rived, and we obtain Madey’s theorenj22]. Usually this averaging over all initial
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angle variables is assumed for multidimensional Hamiltoniaruted along the unperturbed trajectory. Thyg/Ay is the
systemg21,23; however, this theorem can be employed inpower transferred from the EM laser field to an infinitely
the case of averaging over only one of all initial angle vari-narrow electron beam with velocity=Pc?/y and linear
ables[20,27. If we have a nonautonomous dynamic systemdensityn,,. Integrating Hamilton’s equations along the un-
with N degrees of freedom described by the Hamiltonian perturbed trajectories, we can calculate the variations of the

actions to first order inu:
H(l,0,t)=Hy(l,t) + uH_(1,6,1), (11

JtaH _[P,rom+®4,09(P,7)]

whereH(1,t) is the Hamiltonian of unperturbed problem, APY(P,ro,®q)=—u T
i

H_(l, 6,t) is the perturbation, a2 periodical function of the

T,

variable 6,. Then the change ih; to first order inu van- (14)

ishes after averaging ov@ﬁ= 0,(t=—0o0) and the change in toH _[P,rg, 7+ ®g,00 (P, 7)]

|, to second order ip averaged ove#? can be expressedin A yV(P,ry, @)= —,uf S -5 o ~——dr,
0

terms of the change ih, found to first order inu:

N SAILY where unperturbed motions ®{(P°%,7), OQ(P°, 1),
(A1Py=3 <AI§1) o >+O[,u3] (12 and OY)(P°,7) are determined by Egs(9), and P°
=1 ol =P(7=—x). In the following discussion we will use the
notationP instead ofP° unless otherwise specified.

Using the relations

Here (.--) means the averaging ovesi and 1(©
=I(t=—0), and Al{® and A1{} are the second and first

order changes of;. If Hamiltonian (11) is the periodical oH_. oH_. 9H_. odH_. JH_
function of all angle variables, then, after averaging expres- oD by’ 90, = D, - 9Xg |
sion (12) over all initial angle variables, we obtain the usual

form of Madey’s theorem: H_  H_ H.  oH_

1 N 9 (9@2 - y (9@3 B 1920 ' (15)
APYy=22> —(AIPAIYY+O[ 18], 13
(A1 221 aIiO< A0l 13 and Eq.(12), the energy exchange averaged o¥grcan be
rewritten to the second order ja as follows:
Since Hamiltonian(7) is a periodic function of®, and

assuming that the amplitude of the perturbation is weak ( A < &°T ( aT a1
’y:

<1), the theorem in forn12) can be employed to calculate N xg 0D,

P ID
the energy exchange between the electrons and the EM field

averaged ovefb, to second order in.. Herel@=[y(7= 9T PT dT T (16)
—), P(r==%)], §=®y=d(7=—), and Al;=Ay Ao IPyIDy  9zg IP,IDo/
=(y(r=+o)—y(7= —oo)>q,0. Averaging overd®, means 0
averaging over an electron population that is evenly distribwhere
|
+
T(P1r01q)0):f HN[P1r01T+q)01®§|_O)(P1 T)l®(20)(P! 7)1®(30)(P1 T)]dT' (17)

Equation(16) can also be presented in the form where, for the LP EM wave,

é’A)/(l) (9A,y(1) ﬁA)/(l)
= (1) (1) (1)
Ay < Jp AP T AP AR

@, B(P,®y,7)= )7+
(19) (P.%o (P) o]
whereA yM=gT/9d, andAPY = — 5T/ r g+ vdT/ P are A?
the first order change in energy and momentum of the elec- + 4,](|:>)C05{2f(F))TJr 2®q],
tron. Using Eqgs(4), (7), (8), and(9) the integralT [Eq. (17)]
can be rewritten
T(P rn o) = J*“’d 14+ BP0, 7) X_(Pbo,7) = — Y i (P)r+ o]
(P,rg, @)= a7 +(P) P)2
XU[P7/y(P)—r _(P,rg,®q,7)— 1], A?

9 - 77(P)Zsin[Zf(P) +2d,],  (20)
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A
y (P, ®qy,7)=— Wsir[f(P)T-i-(Do],

7(P)=y(P)— Py,

and, for the CP EM wave,

z_(P,®y,7)=0, f(P)=n(P)/P

PyA
B(P,®qy,7)= WCOS{f(P) 7+ Do

PA
- WSII’{]‘(P)T-F (I)O]:

P/A
X_(P,®qg,7)=— sin f(P) 7+ ®g]
n(P

)2

P,A
P)?

J’_

cog f(P) 7+ ®g], (21

A
y_(P,®g,7)=— Wsw{f(P)rJr(I)O],

A
2. (P.D,1)= —c0d f(P) 7+ D).

We can introduce the Fourier transformU(r)
= [U(k)exp(k-r)dk in the integralT to obtain

T(P,ro, )= > | Fa(kP)U(K)

X 8 (k-P)—n(P-»)+ny(P)]

—i(k-ra)—in®d
Xexd i(k-rg)—in O]dk

, 22
(27 (22
where, for the LP EM wave,
< (A-Q)] | (k-»)A
Fa(kP)= 2 y(P)Jn_ZS[ 7P " 8P
n(P-A) 2sn(P)
X”(A-Q)y(Pﬁ(k-v)y(P)}' 3
and, for the CP EM wave,
_ AQ
- ingy | <
Fn(k,P)=y(P)e""J, n(P)}
Ag(n+1)B . AQ
+W[P'(el+|82)]‘]n+l ﬂ(P)}
AN~ DB , AQ
+W[P'(el_leﬂ]‘]n—l[n(l:))},
(24
eh= +i =k-— POk
Qe’=(e-Q)+i(e-Q), Q= 7(P)

[. YU. KOSTYUKOV AND J. -M. RAX
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Jn(x) andJ/(x) are ordinary Bessel functions. The deriva-
tive of the integralT(P,ro,®,) with respect of®, is the
relativistic change in the energy to the first order in the scat-
tering potentia[28]. Using Eq.(18) the second order energy
exchange is finally obtained as

Ay(Pro)= 2 fU(k)U(k’)nF_n(k'-P)ﬁ
X[(k"-P)+n(P-»)—ny(P)]

><eX|c[—i(k-ro)—i(k’-fo)]
(2m)*

(25

{F.(k,P)S[(k-P)—n(P-»)+ny(P)]}dkdk’.

k' 7
9P
The problem of scattering in the plane wave is symmetrical
with respect to the translation of the scattering center along
direction P, and we can choose {-P)=0. In this casep
= \/Fg is the impact parameter that is the minimal distance of
the drift (unperturbegl trajectory from the scattering center.
Averaging this expression over the initial position of the
electrons relative to the position of the scattering cemtgr,

we obtain the IB emission-absorption coefficient in the UHI
regime:

Ay(P)=f d?roAy(P,ro)

we obtain the IB emission-absorption coefficient in the UHI
regime

Ay(P)= _2 Uk)U(K")nF_,(k",P)s[(k"-P)
Sk, +k)[
+n(P-v)—ny(P)](ZT k ﬁ)

X{Fn(k,P)&[ (k-P)—n(P-»)+ny(P)]}dk dk’,
(26)

wherek, andk| are the componentsandk’, perpendicular
to P. Integrating this equation ovéx’, the final expression
of the UHI emission-absorption coefficient is thus

. U(k)zn( i)
Ay_n—EwJZ(ZW)4P <o

X{|Fn(k,P)|28] (k-P)—n(P-»)+ny(P)]}dk.
(27)

The facts thaF _,(—k,P)=Fy (k,P) andU(k) is isotropic
were used to derive Eq27). This result is indeed interest-
ing, and is relevant to an arbitrary scattering potential and an
arbitrary intense laser field. In Sec. IV we will evaluate this
integral in order to study the Coulomb scattering case rel-
evant to UHI laser-plasma interaction.

The Dirac distribution involved in Eq27) clearly dis-
plays the origin of the energy exchange mechanism: this ex-
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change mechanism is resonant, and these resonances are har- eZexp — Kpinh )[1—exp — Kmas )]
monic Compton resonances identified in REI6]. In the ur)= . (30
nonrelativistic limits expressiori22) for T(P,ry,®,) be-
comes Even for this classical Coulomb potential the integral
4o T(p,rq,P) is rather complicated to evaluate, and the scal-
T(P,rg,®g) = E f Jn(k-A)U(K) 8(k-P—n) iljg of thel process with respect to the various parameter dif-
n=—o ficult to display. Nevertheles§(P,ry,®) can be calculated

in two complementary limiting cases which are physically

y exp[—i(k-ro)—incbo]dk relevant: for remote collisions when the amplitude of the

(2m)2 ' (28) electron oscillations in the EM field is smaller than the im-
pact parameter,
so that coefficienfA y becomes
p>r~(P1(I)Oit)1 (31)
1 g , P _ N _
v= 2 nJa(k-A)k2U?%(k) 27K and for instantaneous collisions when the duration of the
2(2m)"n=== p? d scattering process is smaller than the wave period,
X 8(k-P—n)dk. (29
w(y—P-v)
This nonrelativistic expression has been obtained without p= pc2 (32

Madey’s theorem in previous studifk3,14 so the fact that
the low energy limit agrees with these results gives confi- |n typical laser-plasma experiments the drift energy of the
dence in this result, and formui®7) can be viewed as a fast electrons is of the order of a few keV, so that both
generalization of the expression of the energy exchange faiegimes can overlap betweep;, andr ., and the relative
nonrelativistic small-angle classical collisiofq. (29)] to  importance of the two regimes is determined by the value of
the UHI relativistic regime. the Debye length.

Let us now consider the Coulomb potential as the scatter-
ing potential. We assume that this Coulomb scattering poten- |\, ENERGY EXCHANGE FOR REMOTE COLLISIONS
tial is screened above distanaesr 5= 1/K,, 0N the order
of the Debye length, and to avoid divergence near the scat- In this section we will perform an integration of the pre-
tering center we use the classical procedure of Coulomb po#ous formulas for remote collision emission and absorption
tential “softening” below distances <r ,i,=1/Kmnax Of the  [Eq. (27)]. In the UHI regimeA>1, the amplitude of the
order of the Landau length which approaches the classicallectron oscillations is of the order of the wavelength, and
electron radius in the relativistic case. Then the classicanequality (31) means that the impact parameter is larger
screened and softened Coulomb potential can be written dban the wavelength. Expanding integ(a®) to the first or-
[29,14 der inr_ we obtain, for the linear polarization,

|
T(P,ro,®o,Kmin:Kmax) = gL,O(ParOakminakmax) + gL,l(P)Kl(Paroikminikmax)cos{q)0+ B(P,ro)]
9 ,2(P,ro) k2( P10, Knin s Kmax) SIN @ o+ B(P, 1) ]+ g 3(P) k3(P,r o, Kmin s Kmax)

Xcog 2P+ 2B(P,rg)]1+ 9L 4(P,ro) ka(P,1 o, Kmin,Kmax SIL 2P+ 2B(P,ro) ], (33
[
where the coefficientg and k are given by b APyM2
(P)=——"71,
k2(PF 0 Ko Kima) = Kol NP K)o (PoT0) S PP
~Kolkmap(P.To) ], oL o(Pro) = ZAYPILP.r0) Y(P) = Yom(P) ~ Py¥o]
k(P o Kemin » Kmaw) = (P, Kmin) K 1[ NP, Kmin) p(P,T o) ] ’ 7(P)P?p(P,ro)N(P,Kmin)
—KmaK1[Kmap(P,10)], ZA[y(P)Py—P?]
9L 3(P)= 40P P3
k3P, 0, Kmin:Kma) = Kol 2N(P, ki) p (P, g)] 7(P)
2 _
— Kol Kmax0(Piro) s gL oPro)= ZAZy(P)[to(P,ro)Px—Xol

2 2 h(P,K)
ka(P. o Krnin-Kma) = 2D (P, Kin) K 1L 20( P, Kpuin) p(P.F0) KNGS

—KmaK 1l Kmax (P,F )], h(P,Kmin) =V 7(P)?/ P?+ Kiyios
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the timeto(P,ro) = (P-ro)/P? is the instant of time when the the timeto(P,r,). We will not present the expression for
electron is at the minimal distance from the Coulomb centerg, (P,rq,Kmin.kmay, DeCaUse the first term in E¢B3) does

and p(P,ro)=\r2—(P-ry)?/P? is the impact parameter. not depend onb, and, therefore, does not give any contri-
K,(x) is a modified Bessel function onth order, and bution to Ay. Similarly, for circular polarization, we
B(P,ro)= n(P)to(P,rg) is the value of thex—t phase at obtain

J
T( P1r0 v(DO:kminakmax) = gC,O(P!rO vkmin vkmax) + [gC,l( P)Kl(Per:kmin:kmax) + gC,Z(P!rO) KZ(P!rovkmin vkmax)]

X cos[@y+B(P,rg) 1+ [9c a(P) k1(P.r o, Kmin:Kmax) + 9c a(P.1 o) k2(P.r o, Kmin s Kmax) |
Xsin[®y+B(P,rg)], (34

where the coefficientg are given by
ZAP,M?

9e.(P) == D

ZAy(P)[to(P,ro) ¥(P) =yon(P)—PyXo]

(Pro)= ,
Je2Blo 7(P)P2p(P.ro) (P Kn)
oy AR
Oc,8 2(P)P3
 ZAY(P)[to(P,ro) ¥(P)— 2o7(P)— P xo]
Oc4(P,ro)= )

7(P)PZp(P,0)h(P,Kpin)

Given these two results we can explicitly calculg@8] the energy transfer from a LP EM wave to one electron resulting from
remote Coulomb collisions whek,,, is set to zero, because, as we will see below, our approach provides a natural cutoff:

Ay(Pr )__K%<hp>y 2q? L 9EM?| | Kithp)y gE,2P2c2_92 . Kothp)Ka(hp)wynp
YiFlo 2p2 L1 72 2p2 \ 2 L1 c2p3
» o M2 M2 c?P)) - v2nPIctPPgl L) 2KE(hp)y[MPgl s
X192t 90— > 2052 - 2 | +29 4
(wpym) 2(wpm)°M“Py P 4
2K3(hp)y[ gL4P?? |  8Ko(hp)Ku(hp)oymp[ ,  ,  €PZ2AMY2PG+(Pi—P?)p?]
+ 2 > 93|t >3 Oist 04t 7 2 7 ,
P2 |y c?P \ 27wP*(7p)
(35
|
where From this point on, the results come in usual physical unities.

The parameteh= w7 has a simple physical meaning in the
nonrelativistic limit as the ratio of the period of the EM field
7P%p to the scattering time:#(= p/V). We see from Eq(35) that

the expression foh y for IB is expressed in term of modified

g _ DiM?P, O D1y(PyXo+Yon)
L= 3+ GLo=—
nP

2__ 2
oL SZM’ L4=— M, Bessel function as well of the spontaneous bremsstrahlung
' 47P3 ' 49P%p [31] and has the following asymptotic valuesAy
> > xexp(—h) at h—o and AyxIn(h)/h? at h—0. Therefore,
h= /27 12 2_ M2+ c2p2 Ay has the natural cutoff=cP/w#n (V/w in the nonrela-
402 min? Y ' e ey .
c*P tivistic limit) in the approach used even fiof,—.
272 Note that in the nonrelativistic limit we recover the clas-
M2=m2c*+ € . p=y—CcP,, sical linear bremsstrahlurig4], so that we conclude that the
2 nonrelativistic approximation always take place in the re-
3 Ao h2 mote collision case. This is quite logical, as the quiver mo-
1_8 ZA“" 2:e A w tion is supposed to be small with respect to all the other
c* c® energy scales of the problefm=1, (k-A)<1, J;(k-A)
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~(k-A)/2]. In the relativistic case IB is nonlinear even un- Where

der condition(31), because of the dependence of the relativ- D2+2(P2 72— M2P2 D M2
istic massM on the intensity of the EM field. (92 )= o (P7m y), (92 )= (P2 ),
In order to discuss the previous results, we introduce a set 27°P® ’ 3277%P°

of polar coordinatesW¥,p) in a plane perpendicular tB,
which go through the position of the Coulomb centsee ~ and, for the CP EM wave,

Fig. 1): Kihp)y[ ,  ,  (9&,+ 02 M2
Ay(Prro)=——-—|9c11t9c3 2
pP,P, PPy . P 2
Xo=—F=—= COS¥V — —— sinV¥, ) ) 2
P\PZ+ Py2 JPZ+ Py N Ki(hp) 7’/ (92t 9c.P?c? — g2, —g?
PP it PP G 9 2p? | 292 o
Yo= S =05 COSV + —=—— sin¥/,
PVP+Py VPP Ko(hp)Ky(hp)wynp

+
VP;+P;p cos¥ c2p3

ZO= -

P
X((9¢.2* 984 + 981+ 98, (38)
In this case the impact parameter becorpﬂes\/?z, andV is her
the azimuthal angle corresponding to a polar axis parallel tg/nere
P. After averaging over this azimuthal angle for the LP DiM4(P2+ P2)
. 2 2 _ y 4
EM wave we obtain gcat 9c,3—T-
K&(hp)y 9f IM?
Ay(Prg)=———"| gt 1+ % , o . DIY[2P?p*~M2(P;+P3)]
P 2'}’ <gC,2+ gC,4>: 2 206 ’
7P
Kf(hp)y/(ng)PZCZ_gEl M2=m?2c*+e?A2,
2P2 | 242 | | | |
The averaging ovel can be considered as the classical
Ko(hp)Ki(hp)wynp random phase approximation in the context of weak turbu-
o2p3 lence plasma theory, or as classical phase averaging in the
context of beam-wave interaction theory. Note that when
X ((gf 2)+gf - KS(th) is averaged over the azimuthal angfeit has the asymptotic
’ ' valuesA y=1/h? ath—0. Since the perturbation theory with
2M¥g? ) 4yol, respect to the Coulomb potential is developed the validity
P2 + p3 condition of the used approximation is
2.~2 < 2 > > GZZ’}/ (39)
2¢7y9is  2(9i4 P 22~
+Ki(2hp)| — =y P“c
1 P)( p2 y
Similarly the general expression &fy(P,p, W, Kmax.Kmin)
+Ko(2hp)Ky1(2hp) can be calculated for the general softened and screened Cou-
2 2 lomb potential with Kpax=1/f min,s Kmin=21/f max- HOwever,
8yw7mpdis 87’“”)7<9L’4>) (37)  the final result is rather cumbersome for the relativistic re-
c?p3 c?p3 gime, and we present the result in the nonrelativistic limit
ZZ 6A2 a4
AY(P,p Kimad = Sty 2 —2Ki(pa)code—K§(pa)(4 code+sirfe) +paKy(pa)K(pa)(4 code+2 sirfep)
ax_ Kinax, Kinas
- 2Kl(pkmax)C032‘P g(pkmax)?smz(;o_"PkmaxKl(pkmax)Kl(pkmax)?Sinz‘P

Kha
Kol pkmadKy(pa)sirfe

kma

p
4= K1 pKman) K1(p@) 008 @ — 2K K1 (ki Kol pa) =

k2
+ 7 Kol pkmad Ko pa)sirfe |, (40)
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. FIG. 2. The domains of the angles (the angle between the
z N, initial momentum of the electron and the wave polarization direc-

tion) and ¢ (the azimuthal angle with the polar axis along the wave
. polarization direction where the LP EM wave is amplified by the
electrons(gray region, and where the LP EM wave is absorbed by
FIG. 1. Coordinate system used in the description of the scatthe electrongwhite region for Pc/M=0.2 and Ink,/2h) = 10.
tering processes? is the drift momentum of the electroA is the  The angles are given in rad.
vector potential of the LP EM wavae; is the direction of the wave
propagationr is the radius vector of the Coulomb center, gn8  \vhere r,;,=1/kx Can be either the Landau length
the distance between the Coulomb center and electron trajectorzezy/chz for classical collisions or the de Broglie length
ine). Inthe lane.perpencictar o the it ajectory and extending. 7 (07 AUaIUM, COIISIONS, &Nta=Lkyy 1 the Debye
’ P Perp Y y i gIengthrDe= JAme?n, T, of a plasma with a electron density
through the Coulomb center, the polar coordinatésy) are intro- . . .
n. and electron temperatufie,. Using this expression fa@
duced. . X o .
the rate of IB in plasma with an electron distribution function
F(P) can be expressed as

wherea=w/V, V=P/m is the electron velocity and is
the angle betweeA andP. Note thatAy does not depend
on ¥ in the nonrelativistic limit because the electron motion neJ Q(P,Kmax:Kmin) F(P)dP

in weak EM wave is one dimensional. We have integrated Vprem™ , (43
this expression fo y(P,p, ¥, Kmax.Kmin) Over¥ andp and w

the final result for the power transférfrom the laser field to
an electron population with density, for a LP EM wave is
given by the expression

where W= w?A?/8mc?+n,(y—md?) is the energy density
of an EM wave in plasma.
In the nonrelativistic limitM2~mc?, D2=0, and for

Q(P, Ko Kinir) Fmin~A/P, ImasVieo Eq. (41) becomes

e (27 e®Z%A%ny,
= nbe f AY(P,p, ¥ Kmax: Kmin) pd pd ¥ Q= W{z cogp+(1-3 cogo)[IN(P?/mwh)+1]},
0 0 w C
2 2 2p2 = (44)
mC N, 9 1Y C +cC
=7 > |_,12 +gf,3—<gfy4>2—nx which coincides with the quantum-mechanical formula de-
2hP\ M my scribing the so called Marcuse effd&2], and obtained in
7TC2nb
2 2 2
+ oh2p 19t 2 =90 D[1+In(Kpax/N)] 7
3
+((9f &~ oF DL+ In(kmaf20) 1}, (4D Z
and, for the CP EM wave, v x
7Ny ) 3
Q(P,Kmax, Kmin) = W(gc,l+ gC,S)
Wcznb 0 3 -1
T3 {[{9% 2+ 098 )~ (921108 a)] 0 4 2 7 ¢
2h<“P %)

X[1+In(Kmnax/h) 1}, (42 FIG. 3. The same as Fig. Bc/M=0.8.
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ZZE
e
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34? 4 FIG. 6. The dependence of the power of the CP EM wave ab-
sorbed by the electron®), scaled byD?n,c?/2h?PM?, on the
anglese, and ¢ for In(knha/2h) =10. The angles are given in rad.

RSN

FIG. 4. The same as Fig. B.c/M=1.2.

the azimuthal angle/ when we consider an electron distri-

the first Born approximation. Heke is the angle between the pution function such tha®c>mc (see Figs. 2—4, where we
vectorsA andP. We see from Eq(44) that negative absorp- introduce the  spherical coordinate  systemP,
tion is possible for a LP EM wave if the beam velocifyies = p sing cos),P,=Pcosp, and P,= P singsiny). We see in
inside a cone whose axis coincides with the wave polarizagijgs. 2—4 in thep, ¢ plane that the region where negative
tion directione,, and whose generatrices take an angle absorption is possible decreases with respect to the classical
~arccos(14/3) with this axis. For a CP EM wave this con- nonrelativistic case, and is located near the direction of the
dition requires that the beam velocity lies outside a conavave propagation if the kinetic energy of the electron drift
whose axis coincides with the wave propagation directton motion increases and becomes larger than the electron rest
and whose generatrices make an angle arccos(1{3) mass. We see in Fig. 5 that in the case of a CP EM wave, the
with this axis. value of the anglep between the electron momentum and

Formula (40) can be considered as a generalization ofthe direction of the wave propagation where negative absorp-
Marcuse’s effect to take into account the dependence on thi#on of a CP EM wave is possible is determined by the ratio
impact parametep. Note that in the nonrelativistic limit we of the electron momentum to the electromagnetic mass
recover the classical linear bremsstrahlfibg], and the con- Pc/M. The maximum wave absorption takes place when
dition (n=1, (k-A)<1, Ji(k-A)=(k-A)/2 for Eq.(29) in both the relativistic electron beam and the wave are propa-
k space is equivalent to the condition for a remote collisiongating in the same directiofsee Figs. 6 and)7
[Eq. (3D)] in r space. This is quite logical, as the quiver The relativistic Marcuse effect has been investigated for a
motion is supposed to be small with respect to scale of theveak EM wave[33,34] in the framework of quantum me-
problem. IB in the relativistic limit is nonlinear even under chanics. To compare our result with the result obtained, for
condition (31) because of the dependence of the effectiveexample, in Ref[34], let us introduce the notation used in
massM on the intensity of EM field. Ref. [34]. P,=Pcos), P/=Psindcosp, and P,

What we have found here is the relativistic formula for = P sindsin¢. Then the rate for IB can be presented as fol-
the Marcuse’s effect. For a LP EM wawv@,also depends on lows [33,34: Ay= 7"|CO$2¢>+ 7,Sirf¢. In the approximation
used in Ref.[34—eA/mP<1, 6~y/mP<l—we have
93~094~0, y=~Pc, and n~m?c*(1+u?)/2y, where u
= @y/mc and, using the general expressid), we obtain

‘\\\ 522 22
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FIG. 5. The domains of the angl¢$ (the angle between the FIG. 7. The dependence of the power of the CP EM wave ab-
initial momentum of the electron and the wave propagation direcsorbed by the electrong), scaled byDianZIZhZPMZ, on the nor-
tion ») and of the normalized momentum of the electron beammalized momentum of the electroBc/M, and on the angle be-
Pc/M, where the CP EM wave is amplified by the electrogsay  tween the initial momentum of the electrons and the CP wave
region) and where the CP EM wave is absorbed by the electrongropagation directiong, for In(k,,,/2h) =10. The angle is given in
(white region for In(ky,,/2h) =10. The angle is given in rad. rad.
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(1-u?? 4u?

—(1+—u2)4[1+ln(2y2/hwmc2)]—(1+—u2)4, [1+In(2y*/homc?)], (45)

THOC T &

C(1+u?)?
that coincide with Eqs(17) and(18) in Ref.[34].

If the drift energy is nonrelativistic or much less than the energy of the oscillating mBfichic M?, then»~ y~M, and
Eq. (41) gives

QP Ko ki) mD1%nyc™” [__2c0de +(1-3 coge)[ 1= IN(r i@/ V) ] (46)
' 1Kmin) = —3co = In(r pinw
max M MAVB W2 (VE w2r2 1) | V2wl et 1 ¢ min
and, for the CP EM wave,
QP Koo ki) mDUN? [ 20080 oo ing V)] (47)
, , )= — —3CO —IN(I mipnw .
M AMAVR WAV w2t 1) | W w2t 1 mn

After averagingQ in Egs. (46) and (47) over an isotropic B(Py,®y,7=0)
electron distribution function, the terms that are proportional T(Pg,ro,®o)= P(P—CD){KO[kminp(rO-PO-(DO)]
to the logarithm vanish. As a result the averaged rate of IB in 0:0
the relativistic UHI regime is reduceid ® times as compared —KolKmax?(r0,Po, Po) 1}, (49)
with one obtained in the case of a weak EM wave.
where
V. RELATIVISTIC EMISSION AND ABSORPTION FOR

INSTANTANEOUS COLLISIONS
P(Pg,®g) =P+ P~(Py,®y),

Let us now calculate integrdl9) for instantaneous colli-
sions[Eq. (32)]. Within the framework of this approximation 5
the scattering events is instantaneous and take place at time p(Po.To,Po) = r“(Po,ro,®o),
7. In this case the expression for[Py,® g+ 7f(Pg)] in
integral (19) can be expanded above the scattering momenty(p r, . ®o)=ro+r~(Py,®q) — P(Py,®o)to(Po.r o, o),
To- (50)

I [(Po,®o+ 7f(Po) |=r"[Po,®o+ 70 (Pg) ]+ (7— 70)

~ P(Pg,®g) - (ro+r~
[Py, B0+ 7o (Po)] to(Pp. 1o, g) = o0 (0T
FTon P=(Pg,®o)

=1"[Pg, P+ 7of(Po)]

+ (7= 19)P~[Pg,®o+ 70f(Pg)].
48  r(Po,rg,®o), ro, andr-(Py,®,) are the total distance,
_ _ - drift, and oscillating component of the distance, respectively,
Here we will again use the unities=m=c=w=1 for alge-  between the electron and the Coulomb center at the scatter-
braic manipulations, and will distinguish among the electronng  phase ®,. Then the energy exchange
momentum at the scattering, the oscillating component of A y(P,p, ¥ Kyaknin) Can be calculated by the addition of
the electron momentum at the scatteriflg, and the drift  Eq. (16).

Do=P(+f(Py) 7o,

component of the electron momentum at the scattefjg, We restrict ourselves to the nonrelativistic limit because
Then integral(19) for T(Pgy,ro,®Py) can be calculated for of the complexity of the algebraic manipulation. In the non-
scattering potential30) relativistic approximation, we obtain

B(Po,(Do,T:O):l, f(Po):l,

I (Po,Po)=r"(Pg), P~(Py,®g)=P~(Dy), (51)

1Kol Kmine(Po 10, P o] = Kol Kmax(Po,r o, Po])}

T(POerquO): P(Po q)o)
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In order to calculaté\ v integrated over impact paramejeand azimuthal angl@, it is more convenient to employ ER9).
The expression of the sum of the Bessel function vditfunctions in Eq.(29) can be presented as follows:

< P, @
2 o2 P
n;m nJ(k-A) =~ ak)&(k Po—n)
k 9 k-Po)t+(k-A)[sin(t+®) —sind,
(X fqu_( o)t +( )Lm o) ol (52)
k® 9PodDg| sy !
o "0 D,
|
Expanding sin(+®,) above the scattering momety, Eq. Eé=eAcmV<1. (55

(52) can be rewritten as follows for instantaneous collisions:
Using the expression derived in the impact approximation

te Py in Ref. [16] [Egs.(2.24) and (2.29] for the change in elec-
> ndk-A) P2 7k S(k-Py—n) tron energy due to the scattering in EM and Coulomb fields,
n=—w o
u(e,®g) |
P o Ay(x,@)=mV2———=¢sin®d[(1—cosy)
w<(k~A)cosﬁ>o(§- %) 5(k-P)> ) X v 0 X
% X (cosp+ £sind ) + siny sing cosV ],
Then inserting this expression into E@9) and integrating (56)

overk for the scattering potenti#B0) the wave energy trans-
fer to the electrons can be calculated for the instantaneo
collisions in the nonrelativistic limit

L}ghereu(q;,(bo)=V\/1+ 2¢ sindgcosp+ £sinfd is the total
velocity of an electron in a LP EM wave, after averaging
over ®,, and ¥ and with assumption55), Ay can be

reduced to the form
A (Pk Ko )=_2 (P'PN)[In(kmax/kmin)"'l]
¥(P, Kimax: Kimin ™ PoP? . Ay(x,9)=mV2y2£3(1-3 CO§¢)[1+O(§,6,X)].( )
0 5
(54)
In the case of remote collisiond y(x,¢) can be obtained
where from Eq. (37) with assumptiong55)
P=Py+P~, P =Acosb,. Ay(x,@)=—mVPx?2cose[1+0(¢,€,x)].  (59)

Equation(54) coincides with the expression for the energy _This expression can be _also calculated by the straightforward
exchange of IB obtained in the impact approximation'”tegrat'O”.Of the equations of _the electron mot|dor ex-
[15,16. The validity of the impact approximation for small- @mple, by integration of Eq44) in Ref.[14] overk andk,
angle collisions was also shown as an asymptotic limit of thé!nder conditior(55)]. The possible reason for the difference

Born approximatior[35]. between the dependence &f(x.¢) on ¢ in Egs.(57) and
It is interesting to note that, although the impact approxi-(58) can be found by analyzing the impact approximation.
mation and the approximation for small-angle collisia@r It is assumed in the context of the impact approximation

“straight path approximation) lead to the same expression [16] that the electron interacts with only an EM wave before
for the IB rate averaged over the impact paramétathin ~ @nd after the scattering, while the scattering is elate

the overlap of the regions of their validifgee Eq.(54) and eIect.romagnenc f|eld. does not affect the_scatterlng process
Ref. [35]]) they give different expressions for the IB rate as and instantaneous with respect to the period of the EM wave.
a function of the impact parameter and the angle between thEn€ absorption from the EM field to the thermal energy is
wave polarization direction and the initial electron momen-identified with the reorientation of the quiver into transla-
tum, . Let us consider this fact in more detail. For simplic- ional motion in an elastic collision. Although the model is
ity, we assume that the collision is nonrelativistic, instanta-SimPle, it cannot be considered rigorous. The condition that
neous €= wp/V<1), and remoted Amcw<p). Electrons the collisions are instantaneous implies that scattering takes

suffer small-angle scattering=eZ/pmV2<1, the LP EM place in the static magnetic and electric fie{t®e “frozen”
wave is weak €=V_/V=eAcmV<1) ’ and V/e EM field of the wave. If these fields are sufficiently intense,

dhey can modify the elastic scattering. This means that the
condition wp/V<1 is not a sufficient condition for the im-
pact approximatiof36] to be valid. It should be noted that
eA 07 Vv the expa_nsion in the small parameter defined as 'Fhe EM fre-
—— T _] <P —<I maxs guency times on the factor which depends on the intensity of
MCw 2 w the EM field are used in various versions of the Krall-

<I'max Tmin<<p- These hypothesis can be summarized in th
form
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Watson theorenj9], and that these expansions will break  The expression for a frequency spectr@@nergy per unit
down at sufficiently intense EM field. Another reason is thatarea frequency intervahs a function of the impact param-
the action of the component of the Coulomb force that iseter is known for spontaneous bremsstrahl{®t. The re-
longitudinal to the electron velocity at the scattering is notsults we have obtained in using this allowed us to study the
taken into account in this approximation, because this comscaling of the stimulated bremsstrahlung with respect to the
ponent does not affect the electron deflection at the elastitnpact parameter, the quiver, and the drift momentum, and
scattering. As a result, in this model, the energy exchange ialso to explore the relativistic regime. This latter study re-
absent at the scattering by the one-dimensional short-rangealed some profound modifications of the gain function in
potential that is also the problem in the general case. this relativistic regime.

This difference in resultgbetween Eqs(57) and 58] is We have integrated these coefficients over the impact pa-
not important for practical purposes, because the IB rate awameter, and derived the power transfer from a laser wave to
eraged over the impact parameter is interesting for atomian electron distribution. Taking the nonrelativistic limit of
physics. It is more important that, according to Es¥) (see  our results, we have recovered the well known nonrelativistic
also Ref.[35]), the impact approximation gives the correct result. However, in doing so we discover a very subtle dif-
result for the IB rate averaged over the impact parameter, derence between the averaged and nonaverémest the im-
least for small-angle nonrelativistic scattering in the presencpact parametg¢icoefficients in the impact approximation. We

of an intense EM wave. resolved this point and discussed the relevance of the various
approximations.
VI. CONCLUSION Finally, besides the results presented, from a method-

. ~ ological point of view we have shown that Madey’s theorem
In this study we have addressed and solved several issu@snot only useful to study free electron lasers but can be very
relevant to the problem of collisional absorption of ultrahigh helpful for all relativistic radiation problems. Indeed,
intensity relativistic laser pulses. We have set up this probyjadey’s theorem is usually used to calculate small signal
lem with the help of a relativistic Hamiltonian formalism.  gain in the theory of free electron lasers and microwave de-
_ W|Fh|n this framework the collisional absorpho(renjls- vices[18,21]. In this weak EM wave approximation, the en-
sion) is clearly due to a set of resonandé&). (27)] which gy gainA y is proportional to the squared amplitude of an
can be identified as harmonic Compton resonances inducgeh field, and is nonlinear with respect to the external static
by'V|rtuaI' photons of the Coulomb field. From a physmal field. In this paper we have used Madey’s theorem in the
point of view these Compton resonances are relativistic Langgnosite limiting case: when the external static scatter-
dau resonances between the drift motion of the electron a g) field is weak and the EM wave can have an arbitrary
the beating of the laser wave with the Coulomb Iongitudinalimensity_ In this approximatior\y is proportional to the

virtual photon(the Fourier component of the Coulomb po- squared scattering potential and is nonlinear with respect to

tentia). In order to calculate the energy exchange betweef,e amplitude of EM fieldsee Eqs(27) and (29)].
the wave and the electron, we have to sum and integrate all

the interaction matrix elements corresponding to each of ACKNOWLEDGMENTS

these resonances. We were able to perform such a complete
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