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The propagation characteristics of an ultrashort laser pulse in a preformed plasma channel are analyzed. The
plasma channel is assumed to be parabolic and unperturbed by the laser pulse. Solutions to the wave equation
beyond the paraxial approximation are derived that include finite pulse length effects and group velocity
dispersion. When the laser pulse is mismatched within the channel, betatron oscillations arise in the laser pulse

envelope. A finite pulse length leads to a spread

in the laser wave number and consequently a spread in

betatron wave number. This results in phase mixing and damping of the betatron oscillation. The damping

distance characterizing the phase mixing of the be

tatron oscillation is derived, as is the dispersion distance

characterizing the longitudinal spreading of the pul$4063-651X99)04301-9

PACS numbgs): 52.40.Nk, 52.40.Fd, 42.79.Gn, 42.

I. INTRODUCTION

Optical guiding of intense laser pulses in plasma channe
[1] is beneficial to a variety of applications, including
plasma-based acceleratdi®|, harmonics generatiof3,4],
x-ray laserg5,6], and advanced laser-fusion scherfies9|.

65.Re

In this paper, the propagation of ultrashort pulses in long
plasma channels is examined in the low intena@y@ 1, low
IpowerP/P_ <1 limits. Solutions to the linear wave equation
are derived beyond the paraxial limit, i.e., finite pulse length
and group velocity dispersion effects are retained. A formal-
ism is developed that allows the laser field profile to be cal-

In vacuum, a laser pulse will diffractively expand after aculated in three dimensions to arbitrarily high order in the

distance on the order of a Rayleigh lengfiy= wré/)\,
wherer is the laser spot radius at focus+ 27c¢/ wg is the
laser wavelength, and, is the laser frequency. High inten-
sity requires a tight focugsmall ry) and, hence, a small
Rayleigh length, e.g.Zg=300um for ro=10um and A

parametef/L. It is found that betatron oscillations in the
laser pulse envelope, which occur when the pulse is not
matched within the channel, damp due to phase mixing with
a characteristic damping length given By=(7L/\)Zg
=(mry/N\)2L. In addition, the characteristic scale length for

=1um. A preformed plasma density channel can preventlispersive spreading of the laser pulse length within a chan-

pulse diffraction. Specifically, a plasma channel with a radi
ally parabolic density profile of the formn(r)=n,
+Anr2/r3 can guide a laser pulse of spot sizgprovided
the channel depthAn satisfies An=An;, where Ang
=1/mrr3 is the critical channel depth amgd=e?/m.c? is
the classical electron radifi40,11]. In practical units,
Ang(cm 3)=1.13x 10°Yr3(um), (1)

e.g.,An=10"® cm 2 for ro=10 um. Plasma density chan-
nels have been created in the laboratory by a variety of met
ods: (i) Passing a long laser pulse through an optic to cr

creating a radially expanding hydrodynamic sh¢tR—-18,

e
ate a line focus in a gas, which ionizes and heats the ga

-nel is found to be given b)ZD:(ygL/rO)ZZR, where yq4
=(1- %) ¥2andvy=cpy is the group velocity of the laser
pulse within the channel, i.e8y=1— w}y/20?—2¢% wjr},
assuming * B,<1. These effects are important for ul-
trashort laser pulses, and high-powerl TW) sources of
ultrashort(<20 fg) pulses are readily availab|&82)].

Solutions to the paraxial wave equation describing the
propagation of laser pulses in underdensg w,o) plasma
channels have been analyzed in defail Analysis of the
paraxial wave equation with a parabolic density channel of
he form n(r)=ny+Anr?/r2 indicates that the normalized
spot sizeR=r./r, of a long, axially uniform laser beam

(i) using a slow capillary discharge to control the plasma

profile [19-21], and (iii) using the ponderomotive force of

an intense, relativistically self-guided laser pulse in a plasma,

which creates a channel in its waK&2—-31]. These methods
have been used to guide short pulses, with intensities as hi
as 16°wicn?, over distances on the order of ZQ
—100Zg [12-24. In all experiments published to ddtE2—
24], the laser pulses guided within the preformed plasm
channels were in the regimg<1 andP/P.<1, wherea
=7.2x10 ¥ \2 (um)l (W/cn?), | is the laser intensity,
P (GW)=21.5@oro/\)? is the laser power,P. (GW)
=17(\,/\)? is the critical power for relativistic self-
focusing,\ y=2mc/ vy, is the plasma wavelength, arndg,,

= (4mnye?/my) Y2 is the electron plasma frequency.

1063-651X/99/561)/108214)/$15.00 PRE 59

P An
P, Ang

d?R 1

dz2 Z2R°

Bvolves via[1,33]
( 1- R4) , 2
gh

where Zg=mr3/\, An.=1/mr 3 is the critical channel
depth,P is the laser power, anBc=17()\f,/)\2) GW is the
&ritical power for relativistic self-focusingl,34—3§. Note

that P,=19 TW for ny=10"® cm 3 (A\,~33um) and \

=1 um. The first, second, and third terms on the right of Eq.
(2) represent the effects of vacuum diffraction, relativistic
focusing, and channel focusing, respectively. In deriving Eq.
(2), a Gaussian radial laser field profile was assumed, i.e., a
normalized laser intensity profile of the form

1082 ©1999 The American Physical Society
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|a|?=ad(r3/r2)exp —2r?/r?), (3)  Wwill introduce a spread in laser wave numbérs k,+ Jk,
where kg is the central wave number arjdk|=2/L<Kkq.

where a=eA/m.c? is the normalized vector potential. Notice that the condition for guiding a matched pulse with
The parametery is related to the laser power and peakr;=rqis An=An., which is independent of the wave num-
intensity | at the focal spotrg=r, by a3=7.2 ber. For a slight mismatch;=ry+ 8rq with orq/ro<1, the
X 107 1\2(um)l (W/cn?) and P (GW)=21.5@2r5/\%),  solution to EQ.(2) is rg=rq+ éry cosksz. Notice that the
assuming linear polarization. Furthermore, the derivation obetatron wave numbek,=2/Zz=4/krj depends on thé
Eq. (2) assumes a long laser pulse>\, and neglects pon- spectrum of the laser pulse. A spreadkirnwill lead to a
deromotive and wake-field effedt$,10,11,33,35,37,38i.e.,  spread irkg, i.e., different frequencies will undergo betatron
the parabolic density profile is assumed to be unaffected bgscillations in the channel with different periods. This will
the laser pulse. Other channel profiles, e.g., square or hollolgad to phase-mixing and damping of the betatron oscilla-
channels[39,4(, are not considered in this paper. In the tions. Roughly, damping of the betatron oscillations will oc-
limits An/An,<1 and P/P.<1, the usual solution for cur after a distanc&; given by 6kgZs=m/2, where 5kg

vacuum diffraction is recovered from Ed2), i.e., rg  =Kgdkiky. This gives Zz=(m/8)koLZg. A more accu-
=r0(1+zz/2§)1’2, assuming the initial conditions,=r rate estimate is given by averaging the betatron o#bit
anddrg/dz=0 atz=0. =ry coskzz over the k spectrum. A laser pulse with

Equation (2) indicates that the condition for matched- an axial profile of the form a~exq—(z—ct)/L?]
beam propagatiofpropagation with a constant spot size has a k spectrum f~exp(-’.%4). Hence, (4r)
=r,) is [1,33,39 = [dkfar=dr, coskeR)exp(—k5Z/kGL?), which implies

Zs=KoL/kgo=KoLZro/2, Where Zgo=kor§/2. This result
An/An.=1-P/P.. (4 nholds provided. <Zg. Damping of the betatron oscillations
in the laser spot has been observed in nonlinear fluid simu-
lations that model the experiments of REZ1].

The remainder of this paper is organized as follows. Sec-
tion Il presents an analysis of the linear wave equation in-
cluding finite pulse length and group velocity dispersion ef-

In the absence of a channel, guiding requikes P, which

is the condition of relativistic self-guiding. As is discussed in
detail in Refs[1, 11, 33, 38, relativistic self-guiding is sub-
ject to leading-edge erosion and self-modulation instabilities

and is .ineffective in preventing the diffraction of short ¢og “so|ytions for a matched, finite length pulse within a
DUIseﬁ'c;'i" pulse Iengthfo‘s)\p. F%r IOWhPOW%rSBP<PC'h channel, including second-order dispersion, are derived in
matc e_— eam propagation can be achieved by a ¢ anngbe 1. In Sec. IV, mismatched pulse propagation is ana-
with An=An,. Matched-beam propagation requires, in ad-y, e with (Sec. IV A) and without(Sec. IV B the effects
dition to Eq.(4), that the beam be injected into the channel ¢ ispersion. Nonlinear effects, in particular the hose-
with a spot sizers satisfyingdrs/dz=0 andrs=ro at the 1,4, ation instability, are discussed in Sec. V. Section VI
channel entrance, where thaxis corresponds to the channel presents a discussion of the results. Three Appendixes are

axis. , .. ._also included that discuss the plasma source term for the
In general, the beam will not be perfectly matched within;naar wave equatior(Appendix A), the evolution of ul-

the channel, i.e., the laser envelope will undergo betatroRaghort laser pulses in the absence of a plasma channel
oscillations. The solution to Eq2) for the initial (z=0)  (Appendix B, and a generalization of the results to include

conditionsdrg/dz=0 andr¢=r; is [1,33 high-order modegAppendix O.
g: Andro — B Anrf Il. ANALYSIS OF WAVE EQUATION
r2 2Anr! Pe Angrg _ .
The propagation of an ultrashort laser pulse in a pre-
P Anr! formed plasma channel will be considered. A parabolic den-
- 1- B 2 | codkgz) |, (5 sity channel is assumed with an electron density profile of
¢ Angro the form n(r)=ny+Anr?/rZ, where An is the channel

depth and , is the channel radius. Propagation is considered
in the limits of low powerP/P.<1 and low intensityaé

<1, such that nonlinear effectge.g., relativistic self-
focusing can be neglected and the density channel can be
assumed unaffected by the laser pulse. It is convenient to use
the normalized vector potential=eA/m.c? with V-a=0.

The linear wave equation for the transverse compoagiof

the laser field is

where kﬁ:(Z/ZR)(An/AnC)l/2 is the betatron wave num-
ber andr; is the injected spot size. F&#<P, and An>0,
the spot size oscillates between?=r? and r2
=(1-P/P)Ancrg/Anr? with an oscillation period ,
=2m/Kg=mZp(An./An)Y2 A matched beam withrg=r;
=r, requiresP=P,,, wherePy=P.(1—An/An;). Notice
that for ri=ro and k3z°<1, Eq. (5) reduces tor/r§
=1+(1—P/PC—An/AnC)ZZ/Z§. This indicates that the
beam will initially focus forP>P,, or diffract for P<P, 2
with an effective Rayleigh length ofZg(1—P/P, ( 2 )ax=k
—An/Ang) Y2,

Equationg2)—(5) are solutions to the paraxial wave equa-
tion describing the evolution of long laser beams. Howeverwhere k,zj(r)=kf,0(1+Anr2/nor§), Kpo=wpo/C, and “’1230
some effects of a finite pulse lengthcan be ascertained =4wnye?/m,. Here, the source terrEszkg(r)ax repre-
from Eqgs.(2)—(5) in the limit P/P < 1. A finite pulse length  sents the normalized transverse plasma current to first order

2(1)ay, ©)
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in |a,|. Derivation of the plasma source term, along with 22r 4 Anr?
high-order corrections, is discussed in Appendix A. 25 =—=|1- S—— (120
In terms of the independent variablés z— B4,Ct andz, 9z°  K°ryg Ancry
the wave equation becomes
72 2 g0 2[1 1) ok (1- g2 (129
Vit2 (1= By P a,=k2(Na,, (7) iz k|12 2] 2 g0)»

whereByo=v4o/C andv  is the linear pulse group velocity, where k=ko,+ 8k, An.= 1/mrer is the critical channel
as is defined below. Introducing the slowly varying field en-depth, andb,, is the initial k spectrum of the laser
veloped, wherea,=4a exp(koz—imgt)+c.c., wg is the cen-  pulse atz=0. Note that for an initial Gaussian axial pulse
tral frequency of the pulse, is the central wave number, profile of the form by=ag exp(—Z4L?), by
and c.c. denotes the complex conjugate, the wave equationag(L/v2)exp(— k’L%4). In deriving Eq.(120d), the central

becomes pulse frequency and wave number are assumed to satisfy
a\ o ? 9 2/ n2_ 12 12 2
2 ; 212 Y N P wplc”—kg=Kpo+ 4/, (13
Vi+2|ikot (95) (92+(1 Bgo) (952+(922 a
_ [k,zj(r)— kS(BSO— 1)]a, ®) which implies
where 8= wo/Cky and ByoBgo=1 is assumed. Bao=Bps=1— whol 05— 4c? wir . (14)

For a short pulse of length propagating in a plasma
channel, the operators on the left side of the wave equ

tion, Eq. (8), scale asz follogvs. 2Vi~12/r8, olo{~1L, propagating at the matched spot size-r in a channel with
‘7/’92;1/230' and 1~ Bgo~ wpol wo + 4Kory, Where Zry  Apn—An_ . as demonstrated in Sec. Ill. Furthermore, note
=koro/2 is the Rayleigh length. The last term on the left of {hat in the limit of a long laser beam, Eq4.2a—(120) re-
Eq. (8), 9%/92?, is typically small and will be neglected in q,ce to the usual paraxial solutions whao=0.

the following analysis. This is valid provided) |5°a/d2| Equation (120 describes the evolution of the spot size
<2|f923/2(9é“(92|, which impliesL <2Zgo, and (it) |f9223/2‘922| r«(z) for a givenk=ky+ sk mode of the laser field. For a
<(1-Bgo)|#°a/9¢?|, which impliesL?/rg<(1+kpor5/4).  givenk, r, undergoes “betatron” oscillations in the density
The 27?979z and (1- B5,)3%/9¢ terms in Eq.(8) repre-  channel. For example, the solutions to EG2b—(12d) with
sent corrections to the paraxial wave equation that accounhe initial (at z=0) conditionsa=0, =0, dr,/dz=0, and

3 his is the correct group velocity for a Gaussian laser pulse

for short pulse and group velocity dispersion effects. r<=r; are given by
Equation(8) can be solved by taking a Fourier transform
with respect taf [41]. Neglecting the??/dz? term gives L2
N w .
, . al a——i(r—z—F)SIn(kBZ), (15@
VT +2i(ko+ k) —|ay Mo
Jz
=[K2(r)—k5(Bao— 1)+ k3 (1—B5y)]ax, (9) r? r ry
P oMTRO 9 rgzi' 1+ —'Z' +(1— —'Z' cogkgz) [, (15D
where " Fi
1 foc . r2 5k2r2
a=— d¢ exp(—iskd)a(g). (10 | M_ M1-pg2y| ==
<z | ( o= R 7
Notice that Eq(9) has the form of a paraxial wave equation. rf,, 7
Hence, solutions fod, can readily be found. For example, —tan™* — tar( Z_) ' (150
the lowest-order Gaussian mode is given by i RM
a=by exdifo—(1—ia)r?r?], (11)  where kg=2/Zgy is the betatron wave numberZgy
=krﬁ,|/2 is the matched Rayleigh length, andy,
where the quantitieby(k,2), 0(k,2), a(k,2), andrg(k,2),  =(rgAn./An)* is the matched spot sizey=r, for An
which represent the amplitude, phase shift, curvature, ane-An.). The normalized spot size/r, in the paraxial limit,
spot size of the field itk space, respectively, satisfy i.e., obtained from Eq(15b) with sk=0 andAn=An,, is
plotted in Fig. 1 versug/Zg for the matched case=r,
b= Dbyl s/, (128 (solid curve, and two mismatched casest;=1.5

(dashed curveandr;=0.5 (dotted curve
a=(krg2)drgloz, (12b The solution for the laser envelope is given by
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FIG. 2. Normalized intensit}a|?/a2, Eq.(21), vs Z/L along the
FIG. 1. Normalized spot sizes/r, in the paraxial limit ¢k axis (r=0) for a matched pulse a@=0 (solid curve, z=Zp,
=0), Eq.(15b), vsz/Zg for ri=r, (solid curvg, r;=1.5r( (dashed  (dashed curje andz=2Zp, (dotted curve
curve, andr;=0.5r, (dotted curvg with An=An,.

proximation k?z/k=6k?z/k, can be made(i.e., only
. 1 o o second-order dispersion effects are retainétsing this ap-
a(r,{,z)= n j dok = byo proximation, and assuming a Gaussian axial profile, the
e S Fourier inverse transform of Eq17) is given by

2
r
xex;{iékﬁie—(l—ia) 2| (16 a=ay(1l+ 7,3)—1/4
S
. r2 2 (1—iny) i
wherea(k,z), ry(k,z), andf(k,z) are given by Eqs(159— xexg — —— = 7 4ot 70|, (18
(150, andby, is the Fourier transform of the initiak& 0) i L2 (1+95) 2

axial profile of the laser pulsby({). Strictly speakingbgy
should not contain a finite amplitude &k= —k, [41], so as  where ny=2/Zp, and
to avoid singularities that may arise in the integrand of Eq.

(16). Note that a finite component @k= —k, (k=0) cor- koL 2 (7LINg)2Zro
responds to a contribution to the field envelopehat is Zpo= = ) (19
spatially uniform inz. An axially uniform contribution to the 2(1-Bgo)  (1+kpero/4)

field envelope is not physical for a realistic ultrashort laser ) ) ) )

pulse. Approximate solutions to E¢L6) can be found by is the dispersion length, wherg,=2mc/w,. Dispersion
expanding the integrand fdik|/ko<1 [41]. Solutions to Causes a bro_ade_nlng of the pulse length, i.e., the effective
Egs. (11)—(12) and (16) for the case of vacuum diffraction Pulse length is given by

(An=0) are discussed in Appendix B. Generalization of

Egs. (11)—(16) to describe high-order Laguerre-Gaussian Leo=L(1+2%/Z80)"2 (20
modes is discussed in Appendix C.

Notice that the condition for a matched bearg=r, for The normalized pulse intensity is given by
An=An,, is independent of wave numbé&r sinceAn, is
independent ok. The betatron wave number, however, does |a|?=ag(L/Leo)exp( —2r2/rg—222/L%). (21

depend ork, i.e., kB=4/kr§,|. Hence, for a short pulse, the
spread ink implies a spread irk; which leads to phase The normalized intensitha|?/a3 versusZ/L is plotted in Fig.
mixing and a subsequent damping of the betatron oscilla2 along thez axis (r=0) for z=0 (solid curve, z=Zp,
tions. (dashed curvegdandz=2Zp, (dotted curveé Notice that the
axial pulse centroid, corresponding to the position of the
Il. MATCHED PULSE peak intensity, is given by= 0. Hence, the group velocity of

_ - o . the pulse centroich g, is correctly given byv?/c?= B2,
Since the condition for guiding a pulse with a CO”SIamz1—w§0/w3—402/w§r3.

radiusrs=r, for An=An_ is independent of wave number,
matched pulse solutions are possible. Consider a matched
pulse withAn=An, andr,=r,. Equationg12)—(15) imply IV. MISMATCHED PULSE

bi=byo, @=0, andf=—(8k*/2k) (1~ o)z Hence, Consider the case of a pulse injected into a chadel
A =An; with a slightly mismatched radius, i.edrs/dz=0
— _ 2 2_ 2 _ 2 C S
a=Dbio exl —r/ro—(SkT2K) (1= Bgo)z].  (17) andr =rq+ &ry atz=0 with 6r3/r3<1. To leading order in

Here, the last term on the right, proportionaldk?z/k, rep- dro/ro, Egs.(12) and(19) indicate

resents the effects of group velocity dispersion. For a

Gaussian axial pulse profildy,=ag(L/v2)exp(— k’L%4) a:_zﬁ sin(k 2) (229
and | 8k|~1/L<k,. Hence, in the dispersion term the ap- lo P



1086 E.

org
rs=rg 1+r—cos(kﬁz) , (22b
0
org
bk:bko 1-— COikBZ) , (22C)
o
Srg } ok? 1 g2 -
H—KS“’K p2) = o (17 Bgo)z. (220
Thus, to leading order idrq/rg,
A=y 1— 2 [1 2" ik
a,=byo Y rg exp(—ikg2)
r2 iok® - 03
X ex —r—g—W( ~ Bgo)z|. (23)

This can be written as$y,=3a,,+ 64,, where 4,4 is the
matched fundamentdim=0 andp=0) mode andsa, (the
term proportional todry/rg) is the matched first-ordeim

=1 andp=0) Laguerre-Gaussian mode, as discussed in Ap- a3

pendix C.

A. No dispersion

First consider the limit in which second-order group ve-
locity dispersion effects are neglected, i.e., the term propor-

tional to sk?z/k is neglected in the exponent of E@3). To
evaluate Eq(23), k; is expanded to first order ifvk|/ky,
assumingsk?/kj<1, i.e., kg=kgo(1— dk/ko), where kg

=2/Zgo and ZRozkorglz. The Fourier inverse transform of

ESAREY AND W. P. LEEMANS
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FIG. 3. Surface plots ofa) fundamental fielda,, Eqg.(24), and

Eqg. (23), including terms in the exponent to first order in (b) normalized perturbed field, = 5a/(r /1), given by Eq(25),

o6kikg, is given bya=2a,+ 6a, where

8="bo()exp(—r/rd) (24)

is the matched pulse solution in the absence of second-order

group velocity dispersion, e.g., given by E&8) in the limit

vs {/L andr/ry at z=5wZg, for a Gaussian axial profile with

By1=Bgo(1+Kgo/Ko) =1~ wiy/2w)— 6c2/w3r3,( )
26

Z55=0. The perturbation to the pulse envelope due to thavhich is less than that of the unperturbed field by an amount

mismatch is given by

52 5r0b(£) L 2r? r? "
a=-—— ——|expg — = —ikgoz|,
ro Ot r r po
(25

where {1={+Kgoz/Ky. Here, by({) is the initial axial
field profile, which for a Gaussian is given blyy(¢)
=a, exp(—{4L?). The fundamental field,, Eq. (24), and
the normalized perturbed field,= 6a/(drq/ry), given by
Eq. (25), versus/L andr/ry are shown in Figs. @& and
3(b), respectively, az=5nwZgy for a Gaussian axial profile

with L/Ag=5. In Fig. 3, note that the centroid of the per-
turbed field lags behind the fundamental by an amount

The centroid of the perturbed fielth (given by¢;=0) is
shifted behind that of the unperturbed fiedg (given by ¢
=0) by an amountA{={—{;=—Kkgoz/ky. This indicates
that the group velocity 4, =cBy; associated with the cen-
troid of the perturbed field is given by

Bgo— Bgr=4/K5r§, wherew)o/ wi<1 andc?/ wfirj<1 have
been assumed. The perturbed field, E2p), can be inter-
preted as a matched first-ordem€1,p=0) Laguerre-
Gaussian mode in the absence of dispersg@e Appendix
C). The effective axial wave-number shiftk, associated
with a Laguerre-Gaussian mode is given hyk,/Kkg
=—2(2m+p+1)c? warj, which is agreement with the
third term on the left of Eq(14) for (m=0,p=0) and of Eq.
(26) for (m=1,p=0).
To analyze the behavior of the pulse radius, consider the

local intensity-weighted mean-squared radi{r) defined

fadr rjal

ry="———. 27)
r fodr r|al? (

To first order inéry/rg, the normalized pulse intensity is
given by |a|?=1q+ 6l with To=|a0|?=b35(¢)exp(2r3/r3)
and 8l =a,6a* +a% 64, where the asterisk signifies the
complex conjugate, i.e.,
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. 8o 2r?
ol = —=2bo()bo(L1) — o 1- 2

Mo

1 -

2r2)
xXexp — — | cogKgoZ). (28
1% 3 V VAR
. . 05 .
Hence, to first order idry/rg,
" r2 -1k -
J dr r|é|2=z b3(), (29 5 20
0 Z/ZRO
which indicates that the perturbation does not alter the pulse 3
power. Furthermore, Do s ' '
2} Gk (b) -
2 :
5 Do(£1)
o To Ol Dol41 _
r - —— cogkgp2) |, 30
< > rO bo(g) i B0 ) ( ) .
which for a Gaussian axial profildy,(Z)=a, exp(—L?), ]
gives :
p :
ro 5ro 1 I 1 )
(r’)==|1+2— AR ({,2) |, (31) 10 20 30 40
o
Z/ZR()
where
1 N 1 T T ]
2z, 72 ﬂ ” (c)
AR =ex _ﬂ_? cogKgo2) (32 0.5 /\ /\ .
B
~ 0 \VAAVAA
is the normalized local intensity-weighted RMS betatron ra- < V \/ V
dius. Asymptotically, for a fixed' andz>Zz, the betatron _os i
oscillation damps via exp(zzlzf;) where U U
-1E ! ) L]
2= (KoL 12) Zgo= (mLIN0) Zgo (33 20 30 40
is the betatron damping distance. Furthermore, note that z/Zro

there is a front-to-back asymmetry in the betatron oscillation,
i.e., the magnitude of the betatron oscillation at the front of

the pulse {=L/2) is smaller than it is at the back of the
pulse ¢{=—L/2). The normalized local RMS radius of the
betatron oscillatiomAR, (£,z), Eq. (32), is plotted in Figs.
4(a) and 4b) versusz/Zg, for the parametersg=1 um, L
=5um, andro=10um (Zg=57Zgy and Zgy=310um).
Figure 4a) showsAR, (¢,z) at the pulse centef=0 (solid
curve and the front of the pulsg€=L (dashed curve
whereas Fig. @) showsAR, (z) at the pulse centef=0
(solid curve and the back of the pulsé=—L (dotted
curve. Note that AR (z) obtains a maximum ofAR,
=exp®L? at z/Zz=—¢/L, e.g., a maximum ofAR,
=2.82 atz=Zg4 for {=—L. The physical interpretation of
Egs. (27) and (30)—(32) for the local betatron radius be-
comes ambiguous wheff>L?, since the pulse intensity
becomes vanishingly small in these regions.

It is also insightful to define thglobal intensity-weighted
mean-squared radius for the entire pulse via

[Z.df5dr r3|a)?
2 =
= erzar vl (39

FIG. 4. Normalized localAR ({,z), Eqg. (32), and global
ARg(2), Eq.(37), RMS radius of the betatron oscillation 267,
for Z;=57Zg,. (&) showsAR at the centeg=0 (solid curve
and the frontZ=L (dashed curveof the pulse;b) showsAR, at
the cente =0 (solid curve and the back' = — L (dotted curve of
the pulse; andc) showsARg .

This quantity is of relevance to a diagnostic that measures
the time-integrated pulse intensity profile. For a Gaussian
axial profile,

f dgf drrlaj2=| 2
— 0

1/2 I'(Z) )
E) Lzao, (35)

which indicates that the total pulse energy is constant, and

2
((r2))= —° (36)

oo
1+2r— ARg(2) |,
0

where
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72 250 S I

ARg=exp — —5|codKgo2) (37 SN

22 2t .
is the normalized global intensity-weighted RMS betatron 3 15k N
radius. Hence, for the entire pulse, the betatron oscillation /5 ;!
damps via exp(—zzlzzfg). The normalized global RMS ra- < s
dius of the betatron oscillatiod Rs(z), Eg. (37), is plotted .
in Figs. 4c) versusz/Zg, for the parameters =1 um, L B
=5um, andry=10um (Zz=5mZgy andZgy=310um). « . ; ‘

20 40 60 80 100 120 140

B. Second-order dispersion

For the case of an axial Gaussian profilbg(¢)
=ay exp(—Z%/L?), the inverse Fourier transform to E(3)

can be obtained while retaining terms in the exponen

to order 5k2/k§. Specifically, the approximationsk,
~kgo(1— Skiko+ sk?/k3) and sk?z/k=sk?z/k, are made
in the exponent of Eq(23). This indicatesa=&,+ 54,
whered,, is the matched pulse solution given by E§8) and

Sr 2r?
sa=—ao— | 1- = |(1+ 7))
Fo rs
P {i(l-igy) i
Xexg ——5——————ztan ~ p1—ikgz|,
p[ r2 L2 (1+72) 2 ?
(38)
Where§1=§+kﬁoz/ko, 771:Z/ZD1, and
koL2%/2 (mLINg)?Zro
Zpy= = (39

(1= B+ 2Kgolke)  (3+K3oro/d)

is the dispersion length for the perturbed field. Equati®s)
can be interpreted as a matched first-order=(1,p=0)

Z/ZRO

FIG. 5. Normalized local RMS betatron amplitudéz, ,(¢,2),

Fq. (44), vs z/Zg, at the center=0 (solid curve, the front ¢

=Lo(2) (dashed curve and the back' = —Ly(z) (dotted curve
of the pulse, folZ ;=57Zrg, Zpo=46Zrg, andZp,=33Zgy.

order dispersiolfsee Appendix € Notice that the dispersion
length for the perturbatioZ, is shorter than that for the
matched solutiorzp,, i.e.,

Z51—Zpg=4Kgo IK5L?=2Z 0 1Z5. (40)
This is a result of the reduced group velocity of the pertur-
bation, B41<fBg40, Since, as beforesa is a first-order
Laguerre-Gaussian mode. In particular, E2f) can be writ-
ten asZp ;= (koL %/2)(1— B85,) "%, wherepy, is given by Eq.
(26). The effective axial pulse length associated with the
perturbed field, Eq(38), is

Le=L(1+2%/Z3)Y2 (41)

The intensity profile, to first order iéry/rq, is given by
|aj?=1,+ &1, wherel,=|a|? is the matched pulse solution

Laguerre-Gaussian mode, including the effects of secondgiven by Eq.(21), and 5T=305a*+ag fa, i.e.,

- 2a5L &, (
12 112
eoler TO Mo

whereno=2/Zpg and p1=2/Zp, .

. 2r2) 212 2 2
I3 rg Lgo Lgl

The local intensity-weighted mean-squared radius, as defined byZg,. is given by

2
0

N org
(r )zE 1+2KARL1(§,Z)CO Kgoz+

where

(44)

Leo)llz é~2 L2 (é’ z )2
AR :(_ expg—-——5|—+=
w e Leo La 'L Ze

n0l?

2 2
708" M _ _
cos{ Koz + T — -z tan etz tant g, (42
e0 el
2
741 _ _
. ——2—%tan1no+§tan1nl], (43)
e0 el

(20) and (41), respectively. At the pulse centér=0, the
betatron oscillation damps via exptzlzfﬂ), where
Z 1= (koL e1/2)Zpo. (45)

Notice that the damping distance is increased due to disper-
sion, Zgy=Zgo(1+2%/25;)*2 The normalized local RMS

is the normalized amplitude of the local RMS radius of thebetatron amplitudd R, 1(¢,z), Eq. (44), is plotted in Fig. 5

betatron oscillation, and.(z) andL;(z) are given by Egs.

versusz/Zg, at the pulse centef=0 (solid curve, as well
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as at the front{=Lg(2z) (dashed curve and the back{
=—Lg(z) (dotted curvg of the pulse, for the parameters

No=1um, L=5um, ro=10um, and A\p=15um (Zg4
=16Zrg, Zpo=46Zgg, andZp,=33Zge). Again, there is a

head-tail asymmetry. This asymmetry is complicated by the
fact that the matched solution and the perturbed solution are

characterized by different dispersion lengti%;o>2Zp;.
Asymptotically, for 22>22D0, the local RMS amplitude
AR, ;1(2) damps to a finite value. Specifically, at the pulse

center{=0,
1/2
ex ,

whereas at the front and back of the pufse =L (2),
) 2
(47)

For the parameters of Fig. 5AR;(0)—9.3x10 3,
AR 1(Leg)—6.7X104, and AR ;(—Leg)—0.33. As be-
fore, the physical interpretation ¢f2) becomes ambiguous
in the region{?s Lgo, since the intensity in that region is
vanishingly small.

2
ZDl

T o2
Zj

ZDl

ZDO

ARLl(O)—>( (46)

D1

Z 1/2
|
DO

4

Zo1, Zo1

+ -
ARLl(—LeO)*)( ZB ~Zoo
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ARg

L ==
40 80

Z/ZRO
FIG. 6. Normalized global RMS betatron amplituddis,(2),

Eq. (49), vs z/Zg, for the parameterZ ;=5wZg, (solid curve,
Z;=10Zg, (dashed curve andZ;=30Zg, (dotted curve.

60 100

(50

whereP/P =kirgag/32. Note that the number @foldings
scales with poweP, densityng, and pulse length. as N,
~(PnjL?)™. In terms of the betatron damping lengZh
the number ofe-foldings at the end of the pulsg|=L is
given by

The global intensity-weighted mean-squared radius, as

defined by Eq.(34), including the effects of second-order
dispersion is given by

2

rg Sro
<<r2>>:§(1+2?AR61(Z)
o k Z(1+3ZZZ§0/2Z4B) . n-l(ZZR")
P71+ 222zl t zZ ||
(48
where
252 \ —1/4 2972
z°/2Z
ARG =| 1+ 4R°) exp[—z—zﬁ4 (49)
p (1+2°Z30/Z5)

p L3 2\

T\ Pe 7\)\,2) Zﬁ

Ne= (51

It is insightful to estimate how much growth of the hose-
modulation instability one might expect after propagating a
distance equal to a betatron damping distaze& ;. For a
plasma density oh,=10" cm ™3 and a laser pulse with
=1pum andL=5 um (a full width at half maximum inten-
sity duration of 20 f§ the number ofe-foldings is Ng
=0.25 forP=1TW andN.=0.54 for P=10 TW. Hence,
no appreciable growth of the instability is expected at this
density. As another example, the density range for which the
laser-hose instability will be amplified by less than a factor
of 100 can be estimated. Requirihg<4.6 afterz=2Zz im-
plies nyg<7.9x10®¥cm™3 for P=1TW and ny<2.5

is the normalized amplitude of the global RMS betatron os-x 10" cm ™ for P=10 TW.

cillation and the relatiom; — 7702222R0/Zfg has been used.
The normalized global RMS betatron amplitull®g4(2) is
plotted in Fig. 6 for the parameterg;=5wZg, (solid
curve), Zg=10Zg, (dashed curve andZ;=30Zg, (dotted
curve.

V. NONLINEAR EFFECTS

The above theory assumad<1 andP/P.<1, i.e., non-
linear effects were neglected. At high intensity and/or power

It is also important to note that the growth rate E50)
for the hose-modulation instability was obtained from a
paraxial theory, i.e., the cross derivative teffid/dz in the
wave equation for the slowly varying amplitude E§) has
been neglected. The effects of the dispersive tefhadz
become very important for ultrashort pulses. This paper has
addressed the effects of this term in the limits of low power
and low intensity. Theories of laser-plasma instabilities that
are valid for finite profile, ultrashort pulses that include the
effects of the dispersive term are currently lacking in the

nonlinear effects could play an important role in pulse propaliterature. Based on the results obtained in this paper, how-
gation in channels. For example, intense laser pulses are suver, some dispersive effects on instabilities of ultrashort

ject to various instabilities. Two important instabilities are pulses can be estimated. When a matched, fundamental
the self-modulation and the laser-hose instabil?y33,42—  Gaussian pulsécharacterized by the mode numbens=0

46]. In the short pulse regime, these instabilities will undergoand p=0 as discussed in Appendix) @oes unstable in a
exponential growth exp{) with the number ofe-foldings  plasma channel, it will generate higher-order modes, e.g., the
given by[2,46] m=1,p=0 mode in the case of self-modulation or the
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=0,p=1 mode in the case of the laser hose. As noted irif at the channel entrance,(z=0)=ry+ éry, and drg/dz
Appendix C, these modes propagate at different group ve=0 with 6ry/ry<1, then the spot size associated with a
locities, givenk=ky+ 6k mode undergoes betatron oscillations about
the matched spot sizg, of the formrg=rq+ 6r coskgz,
where kz=2/Zr is the betatron wave number andg

_ 2 . u .
Hence, the excited modes will propagate out of the region of” Kfo/2- A finite pulse lengthL leads to a spread in laser
the fundamental pulse when the group velocity slippage disave numbergsk|~1/L and, hence, a spread in betatron

tance becomes Comparable to the pump pu|se |ength, i_é/.\{ave numbers. This results in phase miXing and damplng of
ZABy=L, where ABy =By~ By and Bg=By(Mm=0p the betatron oscillations. In particular, for a slight mismatch

By=1—K3/2k5—2(2m+p+1)/kr5. (52)

=0). This occurs after a propagation distance 5r§/r§<1, the RMS radius of the pulse exhibits betatron
oscillations of the form given by Eq$30)—(32) and (36)—
z=koLZgo/(2m+p), (53  (37). The global RMS betatron amplitude damps via

_ exp(—2/2Z5), where Zg=(koL/2)Zro= (Kol o/2)?L is the
|.e.,z~Z_,3 for_m~1_(_)r p~_1. Hence, the groy\{th of the hose- petatron damping distance.
modulation instability will become significantly altered  an aiternative interpretation for the laser envelope beta-
and/or suppressed after a distance on the order of the betgy oscillations and their subsequent damping is the follow-
tron damping distance=Z. ing. To lowest order inSr,/ry, a mismatched laser pulse in
a channel is a superposition of two matched modes: a funda-
V1. DISCUSSION mental Gaussian mod@&,, and a first-order, axisymmetric

The propagation characteristics of an ultrashort |ase|,.aguerre-GaUSS|an modaa, the amplitude of which is pro-

pulse in a preformed plasma channel have been analyze prtional 10 dTo/To. The relativg axial wave-numk_)er .Shift

The plasma channel is assumed to be parabolic with a de )etween the fundamental and higher-order mode is given by
, - 2.2 Ak,=—2(2m+p)/kor2= —kgo for m=1 andp=0, i.e., a

sity profile of the formn(r)=ng+Anr</rg. The laser pulse z 00 80 S

was assumed to haw/P_ <1 anda(2)< 1, such that nonlin- relative phase shift o 6=—kgyz. Hence, the first-order

ear effectse.g., relativistic self-focusingzould be neglected correction to the field envelope oscillates relative to the fun-

and the channel could be assumed unperturbed by the Ias%ﬁmﬁ;tﬂo?é t{;]ee giitgltrorr;uwa\ysoréﬁmgftrr’]é‘%};lﬁﬁzfﬁo de
pulse. Solutions to the wave equation beyond the paraxia X group y

approximation were derived that include finite pulse lengtl A gllzc(iﬁ’+A}(Z)/w°b is less than tthat _Of thf _finff?kmen'
effects and group velocity dispersion. The laser field isf‘k 'Blglg_CkO wo by an amount Bgo— Bg= z' 10
=Kpo/Ko-

iven by a,=a exp(koz—iwgt)+c.c., where the field enve- . I .
?ope a(ryz :,) evol\%sovia Ec:q)(S) The field envelope is ob- The amplitude r?f fjhe betatrodn osmflla:]lon, a}s defmgd by
: v : S : A the intensity-weighted RMS radius of the pulse, is deter-
tained by performing a single integral ovedk, a mined by the interference between the two modes, i.e., de-

=(2m) Y21” _dék exp(dkd)a,, whered, is given by Eq. o o ) _
. S ; pendent on the produé,sa. As the first-order mode slips
(11) along with the definitions in Eq¢123—(12d. For com- behind the fundamental, the relative contribution of the first-

pleteness, the plasma source current is discussed in Appen- .
dix A, the evolution of ultrashort laser pulses in the absence8rder mode to the spot size decreases at the fipal)) and

of a density channelAn=0) is discussed in Appendix B, increases at the back €0) of the pulse. This results in an

and a generalization of the results to include hi h_orderasymmetry in the betatron oscillation, i.e., the apparent am-
gen : ) 9 plitude initially decreases at the front and increases at the
modes is discussed in Appendix C.

. e o : back of the pulse. As the slippage continues, the two modes
Smce.the condition for gwdlmg_a pf?‘”'“.“*": Ko+ ok overlap less and less, resulting in an overall decrease in the
mode with a zconstz_;mF spot sizg=r, is given by An betatron amplitude, i.e., damping. The characteristic damp-
=Ang=1/mrrg and is independent &6 matched beam so- 4 istance is determined by when the slippage distance
lutions exist wherein the entire pulse can propagate with g = (Bo0— Ba1)Z becomes comparable to the pulse length,
nonevolving radial profile, i.e., a normalized intensity pmf”ei.e.,sALsiL, which givesz~KoL/kgo=Z. In terms of the
|a2~ag exp(—2r?irg). Group velocity dispersion effects ;i pulse profileby(¢), the local RMS ‘betatron amplitude

were included in the matched beam solution to second ordgg proportional tobo(£1)/be(£), Wherel=z— Byoct and ¢,

in the parametedk/ky. This results in spreading of the pulse =7— B,,ct. For Gaussian axial profiles, this gives the damp-
length, i.e.,|a|2~a3(L/Le)exp(—2£24L2), wherel is the ing behavior indicated by Eq$30)—(32).

initial - pulse length, Leo=L(1+2%/Z50)"% and Zpo The effects of second-order group velocity dispersion
=7§okoL2/2 is the dispersion length for a matched pulse.were also included in the analysis of mismatched propaga-
Here,yéo=(1—,3§o)*l andv go=Cfy is the group velocity tion in a channel. It was found that the perturbed component
of a matched pulse in a channel, i.e:)(éo=(a)0/ of the radiation field, proportional t&rq/ry, undergoes
wp)2(1+4/k20rg ~1. In terms of the group velocity disper- €nhanced dispersive spreading that is characterized

p . .
sion parameter3, often quoted in fiber optic§47], Zp, by the dispersion lengthZy,= y5;koL%/2, where ¥5,

=L%/2| 8,|c?, whereg,= —v *dvy/dw andv is the group = (wo/wpo)2(1+12K2r§) 1. The decrease in the disper-
velocity. For a plasmg8,= — (1_530)/%(;_ Since3,<0,  sion length is due to a decrease in the group velocity associ-
the dispersion is anomalous. ated with the first-order mode of the perturbed field, 'r;éi,

A pulse which is not properly matched into a channel=(1—ﬁ§1)*l.
undergoes betatron oscillations in its envelope. For example, Experimentally, for a long channel>Zz, the high-order
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modes representing the envelope mismatch should be obvheren is the plasma densityn, is the ambient density
served to emerge behind the fundamental Gaussian pulsalong the channel axisj,=4mnee?/mec?, B=vic is the
The first-order mode will become “well-separated” from the normalized plasma fluid velocity, aneh/n,) B, is the nor-
fundamental when the slippage length exceeds the sum @falized transverse plasma current in the fluid approximation.
the dispersively broadened pulse lengths, i&L>Le,  Here,n and B are assumed to obey the relativistic cold fluid
+Le1, Which gives z/Z5>(Leg+Lei)/L, Where Lo,  equations

=L(1+2/Zpo)Y? and Zpy, are the dispersion lengths.

Since typicallyZ;<Zp,<Zpo, the modes should become (9lact+ B-V)u=daldct+V p— BX(VXa), (A3)
well-separated for>2Z;. To correctly determine the tem-
poral intensity profile emerging from a long channel, correc- anlgct+V-(nB)=0, (A4)
tions of ordersrZ/r3 (or highe) need to be retained in the
determination of the perturbed fieléd, which can be ac- V2¢=kso(n—ne)/n0, (A5)

complished by retaining higher-order terms in the expansion

of Egs. (11)—(16). In addition, experimentally realizable Whereu=yg, y=(1— %) Y2 andn(r) is the equilibrium
channel profiles can be “leaky” and less apt to guide high-plasma density, which is assumed to be a parabolic channel
order modes[13,14,48. This leakage of the higher-order of the formng=ngy+Anr?/r3,

modes constituting the envelope mismatch can lead to an Assuminga®<1, the perturbed fluid quantitiesn, &8,

enhanced damping of the betatron oscillation. and 8¢, to first order in|al, obey the equations

The damping of betatron oscillations in the pulse enve-
lope and the dispersive spreading of the pulse length are d6pldct=agal dct+V o, (A6)
important for short pulses propagating in long channels.
Consider arg=1 um laser with a matched spot radius of aon/act+V-(n.6B)=0, (A7)
ro=10um and a Gaussian axial profile with=5 um,
which corresponds to a full width at half maximum of the V25¢=k§05n/n0. (A8)

intensity profile of Lpyum=(2In 2)Y?2 L=5.9um (20 f9).

The plasma channel is parabolin= n0+Anr2/r§, with  Combining Eqs(A6)—(A8) yields
An=An,=1.1x10"®¥cm? and ny=4.9x10"®¥cm3 (A, P ,

=15um). The matched Rayleigh length Bro=mr2/\, (0°19ct°+kp)V¢+ (dal det+V o) - Vky=0,  (A9)
=310um and the betatron wavelength isz=27/Kg > 12 ) 5 o )
= mZpo=990um. The betatron damping length &z  WNEre Ky =Kpone(r)/No=kpo(1+Anr</nerg). Assuminga
~(mLo/Ng)Zro=5mZro=0.49 cm, e.g., afterz=1cm ~exp(koz—iwgt) and 6¢~exp(koz—iawgt), it is straightfor-
(32Zg,) the global betatron amplitude would be damped byWard to find the leading-order contribution &8, and ¢,
a factor exp{-Z/225,)=0.12. Hence, for a long channel, "€~

7°>72%,, a mismatched pulse would emerge at essentially ;
8O’ : : ) 8B, =a +iV Sdlk,, A10
the matched radius,. For these parameters, the dispersion BL=a,+1V, 94lko (A10)
(2] 2/)2 )
length for a matched laser puls&po=(7°L"/\p) 5¢z|(al~Vlkf))/k(3). (A11)

X (1+a?r§IN]) ™ Zro is Zpo=46Zgo= 1.4 cm. Hence, after
propagating a distance af=100Zgo=3.1cm, the pulse gimijlarly, the leading-order correction to the source term,
length would spread to a lengthy=2.4L=12 um (a dura- Eq. (A2), is given by
tion of 47 f9.
S, =k3a, —iko(1—Ki/k5)V, 8¢
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Hence, the correction to the source teﬁﬁ‘m=SL—k§aL
APPENDIX A: PLASMA SOURCE TERM scales as
This appendix concerns corrections that may arise in the 8S, =V, (a, - Vlkg)/k(2)~4aL /1<(2)r(‘;~aL /zéo, (A13)

plasma source ter8, due to the effects of a finite normal-
. . . _ 2
ized electrostatic poFentlai—e(I)/mec .In Coulomp gauge, WhereZRc,:korg/Z is the Rayleigh length.
V-a=0, the normalized transverse wave equation is given .
The correction to the source terds, can be neglected

by provided that it is small in comparison to the terms retained
in the wave equation for the pulse enveldpeEg. (8), which

a =S, (A1) is written in terms of the independent variablés-z
—Bgoct and z. Since the termd®a/dz’~a/Z%, was ne-
glected in Eq(8), so can the terndS, ~a/Z2, be neglected.

S =K2 n B+ i V. ¢ (A2) The conditions for validity of neglecting this term are dis-

L0y P get AT cussed in the paragraph following E@). Specifically, this
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requires (i) |(92a/522|<2|02a/a§(92| which implies L where

<2Zpo, and(ii) |(92a/(922|<(1 Bao)| %8947, which im- 22

plies L2/r2<(1+k3,r3/4). _ 1 2 Mo
b =3 N(L+a®)— s

APPENDIX B: DIFFRACTING PULSES

Coo 1y 2204 02 &
In this appendix, the evolution of short laser pulses in ti(a—tan® a)—iokrg(1-Bg) 7. (BY)

uniform plasmas is analyzed. In the absence of a channel, the
evolution of the Fourier transform of the pulse envelépés  Since|sk|~1/L<Kk,, the inverse Fourier transform to Eq.
described by Eq(9) with An=0, i.e., (B8) can be found by expanding,(k,+ k) aboutky, i.e.,

b=+ Sk+ " 5k?12, (B10)

Vf+2ik& =[K3o—K§(Bho— 1)+ Sk (1~ B3o) 1y,

where = (6k=0), ' =(dy,/dsk)(sk=0), and ¢

BD = (d?y, /d5k?) (8k=0). Specifically,
wherek=Kk,+ sk and thed?/ 9z term has been neglected in 2,2
the wave operator. The total transverse laser fieldh,is __1 2 Mo Lo
=2 exp(koz—iwgt)+c.c., where the laser field envelope is ¥==2In(1+ap) (1+iag) Filap—tan = ap), (B1Y)
given by
1 ; e &) ag ir?/rg (B12)
é(r,z,§)=\/7_77f_ dok exp(i ok)a(r,z,k). (B2) Ko | (1+iao) (1+iag)?]

Qg

.2 252 :
Here, {=z—BgoCt, Where B2y=B,¢=1— whylwj—A4c? n_ _ (3“0’%2"“0)_ 2"_”0 +I—k(2)r8(1—,320) ,
/woro, with the pulse central frequency and wave number (1+iag)? (I+iag)® 2 g
satisfying w3/c?—ki=k3,+4/r 5. As is shown belowp 4 (B13
=Cpfyo is the group velocny of the pulse centroid at the focal
point (z=0).

Since Eq.(B1) has the form of a paraxial wave equation,
solutions ford, can readily be found, e.g., the lowest-order
Gaussian mode is given by 1. Zeroth-order solution

The zeroth-ordefparaxia) solution is given by

ap=Dbo()exp )

where ag=27/Zgy and Zgy= korglz. Solutions fora(¢) can
be found order by order in the parameték|/ko~ 1/k,L .

a=by exdifo—(1—ia)r?r?], (B3)

where the quantitieb,(k,z), 0(k,z2), a(k,z), andr(k,z),

which represent the amplitude, phase shift, curvature, and ro _ r’e
spot size of the field irk space, respectively, satisfy Egs. =0o() —exg —(1-iao) — +i(ap—tan ! ag) |,
(12a8—(12d). In the absence of a channehn=0, Egs. s0 I'so
(128—(12d) can be solved to describe a diffracting field. In (B14)
particular, for the initial £=0) conditionsrg=rq, drs/dz
=0, =0, 6=0, andb,=b,,, the solutions to Eqs(lza— where rg=ro(1+af)*=ro(1+2%/Z%,) " is the zeroth-
(12d) are order (paraxia) laser spot size. Furthermore, note that the
effective axial wave number associated with the laser field is
a=12/7g, (B4)  given byk,=ko+ dii/dz, wherey;=Im(y), i.e.,
by=byor s/T o, (BS) 1 ad (1 ao)2 2
k,=ky+ 7 3 2 (B15)
r0(1+a2)1/2’ (BG) RO (1+ C!O) (1+ ao)
=a—tan ! a—(5k2r3/4)(1—,850)a, (B7) 2. First-order solution

To first order,a,=b,q exp@+ ' k). The inverse trans-

whereZg=krg/2 is the Rayleigh length associated with theform of this yields

total wave numbek=kgy+ 8k, rq is the minimum spot size
at the focal point(assumed to be ar=0), and by is a=bo(Z—iy )exp ). (B16)

the initial 6k spectrum of the laser pulse &t 0. Note that

for an initial Gaussian axial pulse profile of the foring For a Gaussian axial profileyy(¢)=a, exp(—Z%/L?), the
=a, exp(—L?), b=ag(L/v2)exp(—&2L%4). Further- normalized laser pulse intensity profile associated with the

more, note that in the limit of a long laser beam, E@)— first-order solution is
(B7) reduce to the usual paraxial solutions whea=0.
It is convenient to writéh in the form r(z) 2r2
|a2~aj —- ex ————(§+1,b,) ,  (B17)
ék: ka EXF( (//k), (88) I'so sO
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plus corrections of ordgR; “IL2~ 1/k3L? (second order in
the parametelrsk|/ko). Here,y; andy; refer to the real and
imaginary parts of)’, respectively, i.e.,

" ag ZFZ} (B18)
" ko(1+ad) | TR
2
/ @o 2 2 '
== ——— | agt+(1—af) —|. (B19)
¥ kdl+a@ o+ Orél

Thelocal £, andglobal {g axial pulse centroids are de-
fined by

JZ.d¢ ¢la)?
petis 820
>dr rf” d¢ Z|al?
Jadr iy de al? ®21
der rf—ocd§|é'|2
The local pulse centroid is given h§ = — ¢ . The axial

group velocity associated with the local centreid is de-
fined byd{, /dt=v —vg, i.e.,

(3a§+ ag)

(1+ ag)z

2

2.2
Karo

(1- 6ag+ ag)l‘2
(1+ag)’rg
(B22)

In general, the local centroid velocity =v | (r,2) is a func-
tion of bothr andz However,v =v4 at z=0 andr=0.
Hence, the value 0fgo=Cfqo given by B2,=1—w)y/ wj
—4c2/wc2)r§ is the correct value of the group velocity of the
local pulse centroid at the focal point to first orderdk/k.
As the pulse diffracts, the local centroid velocity slightly
increases. Asymptotically, forz/Zgg>1 and r=0, v,
=0 go(1+2/kK3r§)=1— w3/2wh, which is the 1D value.
Inserting Eq.(B17) into Eq. (B21), the global centroid is
given by {c=ag/2k,. The axial group velocity associated
with the global centroid g, defined byd{g/dt=vg—vg4o,
is given by

ULZUgo[ 1+

ve=vgo(1+1Krg) =c(1— wiol20i—1K5r3),  (B23)
plus corrections of orderkéroL)‘2 or higher. Hence, for the
entire pulse, the global centroid velocityy, Eq. (B23), is
constant(independent ofz) and slightly higher ¢4>v )
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Note that the validity of the expansion given by E§10)
implies that|2¢"/L?|<1.

APPENDIX C: HIGHER-ORDER MODES

In this appendix, the results of Sec. Il are generalized to
include higher-order modes. In analogy with E§), con-
sider the wave equation describing the evolution of the
Fourier transform of the pulse envelogg,

VI +2ik o 8= [ko(r) —ko( Bpo— 1) + k(1= Bgo) 1Ay,

(CD

wherek=ko+ 8k, the 9%/ 9z% term has been neglected in the
wave operator, and a parabolic density channel will be as-
sumedki=k2(1+Anr?/ngrj). A general solution to Eg.
(C1) is a Laguerre-Gaussian mode, characterized by the
mode numbersn andp, of the form

a=b,sP2LP (s)exdi6— (1—ia)sl2+ip¢], (C2)

where s=2r2/r§, LP is the generalized Laguerre polyno-
mial, and ¢ is the polar angular coordinaf@xisymmetric
modes correspond tp=0). By inserting Eq.(C2) into Eq.
(C1), it can be shown that the functiofg(z), r(z), a(2),
and 0(z) satisfy

bk=bk0r5/r0, (C3)
a=(krg/2)dr/az, (C9
rg 4 Anr?
=—|1- , (C5)
az>  Kr] Ancrg
(90_ 1|4 9 1
E_ ﬂ E( m+p+1)

+kpo—ko(Bpo— 1)+ 5k2(1—,8§o)}, (C6)

where k=ko+ 6k, Anc=1/mr.r3 is the critical channel

than the value of the local centroid velocity at the focal pointdepth, andyg is the initial 5k spectrum of the laser pulse at

v(0,0)=v4. The velocities of the local and global pulse
centroids given by Eqs(B22) and (B23) have been con-
firmed by numerical solutions of the wave equatjdd].

3. Second-order solution

To second order, &,=by exp@+y k+ ' k32).
The inverse transform of this can be readily obtained for
Gaussian axial profileyo=(agL/v2)exp(— kLY4), i.e.,
L2 (=i

i B reeyrey

. B24
(1—24"1L2) (B29

a= ao(

z=0.

The quantitied, , «, andrg are independent of the mode
numbersm and p and identical to the previous results, Egs.
(129-(12¢). Hence, the condition for a matched pulsg
=ryfor An=An,) is the same for all modes. The quantfty
however, does depend oemandp as well as on the choice of
Bgo (BgoBpo=1). For consistency, the previous choice for

Bgo=Cko/wy will be used, ie, IpBi=wr/wf

+4c?/whrg, such thatks,—k5(B5,—1)=—4/r5. Note that
this choice forBy, gives the correct axial group velocity for
matched propagationr{=r,) of the fundamental fh=p
=0) mode. For the higher-order modes, however, it can be
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shown that the axial group velocity of a matched mode is

given by 84, where

1—- Bi=whol 0o+ 4(2m+p+1)c wir).

(C7)

E. ESAREY AND W. P. LEEMANS
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rz, ok, NI
= _S_ 7 (1-B50) Zem
rg z
—(2m+p+tan ' — tan 5—| |, (C10
ri Zrm

The correct value for the axial group velocity is manifested

in the value of the effective axial wave-number skiiélative
to the fundamental Ak,=d6/9z, evaluated in the para-
ial limit (sk=0) for a matched laser pulsery), i.e.,
Bg=C(Ko+ AK,)/ wg=Bgo(1+ Ak, /ky), where Ak,
=—2(2m+p)/Kor5.

For propagation in a parabolic channdr(>0), the so-
lutions to Eqgs.(C4)—(C6) with the initial (at z=0) condi-
tions =0, #=0, Jr,/9z=0, andrg=r; are given by

_ oy m sin(k,2) ()
2 4 4
re r r
r§=5| (14__'1' + 1——'2)00&(@2)], (C9
l‘i ri

where kz=2/Zgy is the betatron wave numbeiZgy
=kr/2 is the matched Rayleigh length, andy
=(rgAn./An)¥* is the matched spot siz@y=r, for An
=An.). For a matched pulse,s=ri=ry, a«=0, and 6
—(2m+ p)kgz/2— 5k*(1— B5,) 2/ 2K.

For propagation in vacuum(nh=0), the solution to Egs.
(C4)—(Ce) for the initial (z=0) conditionsrgs=r, dr/dz
=0, a=0, andf=0 are given by

a=2Zg, (C1D)

rs=ro(1+a?'? (C12

0=a—(2m+p+1tan ! a—(Sk?r§/4)(1- B5) e,
(C13

where Zg=kr3/2 andr is the minimum spot size at the
focal point(assumed to be a=0).
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