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In this paper we consider the motion of a particle in a linear array of fluctuating barriers. Each barrier can
be closed or open and fluctuates in time. The motion of the particle is any stochastic motion between the
barriers and the closed barriers stops the particle. We give several rigorous asymptotic results for the trans-
mission probability of the particle and use them to show that this model presents a stochastic resonance with
respect to the probability of finding a barrier closE81063-651X98)15212-1

PACS numbe(s): 05.40—-d

INTRODUCTION ticle entering the interval at O leaves itNtat a certain time.
These asymptotic results are sufficient to prove the existence
The motion of a particle in a disordered environment isof a resonance in the following sense. For a certain range of
usually studied in one of the following situations. Either frequencies of the fluctuation of the barrier at each site, the
one assumes that the fluctuations in time of the environmerdverall transmission probability presents a maximum as a
are extremely fast compared to the time scale of the motiofunction of the probability to find a barrier closed. This result
of the particle or one assumes that the fluctuations in time ofeems paradoxical in the following sense. At first sight, the
the environment are infinitely slow with respect to the timepresence of the barrier would hinder the motion. However, if
scales of the motion of the particle. The first situatiéast  the stochastic motiofwithout barriers has a sufficiently low
environment corresponds to the usual Markovian limit: The propanility of transmission this turns out to be wrong. The
particle experiences an environment that essentially has Ngesence of closed barriers may facilitate the transmission of
memory. The second situatidgwery slow environmentcor- 5 haricle because it also hinders the return of the particle at
responds to a quenched disorder and has recently been the qiarting point. Previous numerical simulatiof®j were
subject of many studiessee[1,2] for reviews and3] for an not very conclusive, although they tended to confirm the

applicat.ion to ch_emica}l kin_etics in the presence of diffusion phenomenoriwe shall examine reasons why this is so in this
The intermediate situation where the environment fluctu-

ates at a finite time scale is rather unknown. Recently, thgr.t'qe)' We notice _that.th|s phenomepon was exhibited ex-
situation of a diffusion in a fluctuating potentiébetween Plicitly for tW.O barrlers |n.[7] 'by analytical methods.
two stateshas been extensively studiésbe[4—6]) and phe- Although |deal|z§d, this kl'l’ld qf model has peen.use.d and
nomena of the resonance have been investigated. For reascifdVed under certain approximations to describe diffusion in
related to chemical kinetics, the case of potentials modele8lasses9] and also diffusion of a substrate in enzymatic
by two fluctuating barriers has also been studi=t[7]) and reactiong 10]. In the latter case the @ffusmn of the substrate
a resonance of the transmission probability has been exhis conceived as a traversal of a series of bottlenecks that the
ited as a maximum of the transmission probability as a funcstructure of the enzyme contains naturally, which can be
tion of the probability to find a barrier closed. In this case,closed or open according to the conformational fluctuation of
the potential was fluctuating between four states. the protein. These kinds of phenomena have been experi-
The subject of this article is the diffusion of a particle in a mentally observed10] or simulated(for example, in myo-
disordered environment that is fluctuating in time. The envi-globin [11]) and analytically described as a series of two-
ronment is idealized. A particle is moving on a long interval state barriers[12]. Our result proves, as an unexpected
[O.N]. At each pointn=0,1,2 ... N, an impenetrable bar- consequence, that a protein can also facilitate the diffusion of
rier can appear at random times. In each intefvah+1]  a substrate towards the reactive site. In other words, a protein
the particle has a certain given stochastic motwhich can  may also very well be, in certain circumstances, a diffusional
be of any type, even non-Markovipand when the particle catalyst as well as having its traditional function of chemical
arrives at siten+1, say, it continues ifin+1,n+2] if the  catalyst.
barrier atn+ 1 does not exist at the instant of arrival and itis ~ We now describe briefly the content of this article. In Sec.
reflected back ifin,n+ 1] if the barrier ain+1 is present at | we return to the two-barrier cases and give more precise
the instant of arrival. The barriers at various sites are uncorresults than those previously obtained #j. These prelimi-
related and the motion of the particle does not influence th@ary results are necessary for Sec. Il, where we present the
environment. Although this model is quite simple, it cannotmodel of diffusion inN barriers and certain asymptotic re-
be solved exactly. Nevertheless, it is possible the find rigorsults. In Sec. Il we give another asymptotic redlilnit of
ous asymptotic resultén various limits of the parameters all barriers opehand in Sec. IV we derive the resonance
controlling the fluctuation of the barrigrdor the overall result. The mathematical calculations and notation are rather
transmission probability, that is, the probability that a par-cumbersome. They are postponed to Appendixes A—D.
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l. ASYMPTOTIC ANALYSIS ) »
OF THE TWO-BARRIER SYSTEM S, (le'}{eh)= fo Saa(t;{e'}{ehe™ "dt,

A. Description of the two-barrier system and notation

We (_:onsider first the two-barrier system, namely,_we have Sg)a({é})= fwsara(tl{e})e’ ot
a certain interval, saj0,1] and a stochastic process|[it,1]. 0

We denotes(t)dt the probability that the particle starting

from O leaves the interval at 1 in the time interval When we sety=0 we simply denote without any upper in-
[t,t+dt] andr(t)dt the probability that the particle starting dex

from O leaves the interval at 0 in the time interval 0)

[t,t+dt]. We assume that the stochastic process is symmet- Saral{e' Y {eh) =S, ,({e'H{e}).

ric with respect to the exchange of 0 and 1 and there are no

losses inside the interval B. The system forsgf’g(eo,el)

o o _ We start by writing a system of equations for
0 s(ydt+ o r(dt=1. S{%(1p,€1). This will be a 4x4 closed system. We have
We also denote 3(1(?(10761)=[S€0051]0+[S€0151<P561]055%)(1o,66)
= - +renee . 1’818 (10.€1), 1.4
R:f r(t)dt, S:f s(t)dt. (1.1) [ 5911905151] 10 (1o, €1) 1.9
0 0

(6) — 0 0c(6)
Otherwise, there are no further assumptions about the sto- So0 (L. €1) =[1 por] "+ [ 501014, Sig(Lo,€o)
chastic proceséwhich can even be non-Markovian . 1900) /

Now \r/)ve add two barriers at 0 and 1. These barriers can be Flreneal So (o ). (19
in two states labeled=0,1. When a patrticle hits a barrier in
a closed stateg=1), it starts its stochastic process afresh
and is reflected back in the interval. When it hits a barrier in
an open stateg=0) it leaves the interval. The probability
. (t) of finding a barrier in state’ at timet while it is in
statee at time 0 is given by the dichotomous noise law

In this system, which is closed, the convention is that re-
peated indices in a given monomial are summed over their
possibilities 0,1. Let us comment briefly on Ed.4): The
full propagator for leaving by 1, starting from 0, the barrier
at 0 being closed, and the barrier at 1 being in statis the
sum of the following contributions.

oo )=au+(b—au)e M, (1.2) () [s%el](’. This is the propagator for the direct motion

of the stochastic particle from 0 to 1 and when it arrives at 1

where ay,a; are the stationary probabilities of the states Oit finds the barrier open.
and 1 of the barrier, SO thato+ o= 1, and\ is the fluctua- (||) [S(Plelqoeél] osgg)(_’]_o,g(’))_ This is the propagator for

tlow;e?]g\?vnyént {0 compute the various transmission an he direct motion of the stochastic particle from 0 to 1, then
reflection brobabilities ofpthe whole systefthe stochastic inds & 1 a closed barrier, the barrier at O is in a certain state
P Y rgé, followed by the full return propagatdfrom 1 to 1, but

process of the particle in the presence of the fluctuating ba . : : X
riers). Unfortunately, the notation becomes rather prohibi—recall that our system is symmetrinowing that the barrier

tive. We shall denots,.(t;{¢'}|{e})dt the probability that at 1 is closed, and the barrier at 0 is in staje
the particle leaves the interval in tini¢,t+dt] at pointa’ b ,

=0,2 the states of the barrier bei{lgor’ﬂ%ei}={j’}, Ifnowing S17/(€6,11) =St/ (1o,€)  (by symmetry.
that it starts at time 0 from poira=0,1, the state of the
barriers being{eg,€;}={e}. Of necessity, here,,=0 be-
cause the barrier @’ must be open to let the particle go
through the barrietand out of the interval We note that

(iii) [rgoll(péiel]es(lﬁ)(lo,ei). This is the propagator for

the motion of the particle returning to (@efore reaching )1
and finding the barrier at O closed, the barrier at 1 having
fluctuated to state; , followed by the full propagator from 0
to 1, the barrier at O being closed, the barrier at 1 being in its
Sa'a(tHf})dt:Z Sara(t;{€'}H{e}). (1.3 new statee]. This explains Eq(1.4) and Eq.(1.5) is ex-
(e’ plained in a similar way.

We find it convenient to denote the Laplace transform of Knowing the quantitieS{? (14, €;), it is easy to compute

a functionf (t), with the Laplace paramet#rasf(?) or[f]?, all the other quantitiesg%)(o,e). We have

f(ﬂ)E[f]t‘)E fxe— mf(t)dt, Ség)(o,e) =[r 9000]0"“ [r 9010905'5]05%%)(1-6')
0

+[S(P16(Pe’0]08<1%)(116,)1 (16)
[f]1=[f]° (i.e., [f]? with 6=0).

S19(0.6) =[S0l "+ [S@1c0r0]"Sho (1.€')
The reason for these somewhat unusual abbreviations will be(8) ,
appear shortly. In particular Tre10per el "Sip(1.e’) (1.7
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(again with summation over respected indic€s under-
stood. | |

o N

. (0) e .
C. Asymptotic values ofSzo ({€}): Limit of closed barriers FIG. 1. Linear array ofN barriers, with certain barriers open or

In this section we consider the asymptotics of the transelosed.
mission or reflection probabilitieS{?({e}) in the limit of

closed barriers, that is, whewr,— 0. S (1,0=S9(1,1)=S9(1,1)=0,
1. The casef>0 3(0) (1.8
The calculations are given in Appendix A. The quantities S60(1,0= 1-7(0)"
S%(eg,€;1) are all 0 whene,=1 in the limit of ¢g=0, as
results from Eqgs.(A11)—(Al14). The nonzero quantities 2 0=0
S ({e}) are given in these equations11)—(A14). In other ' _
words, one cannot leave the interyal1] by a point where For =0, the system of equatiorié2) and(A3) becomes
the barrier was initially closed, in any finite time interval. ~degenerate. It is nevertheless possible to show that
2. The casef#=0 Si(1,0=1, Syuo(1,00=0,
. . . . 19
In this case we notice that in the limity=0, (
o Sw1.)=Sig1=1,
_ _1
Sod 1,1 =Sl 1.9 =2 from which we deduce, using Eq&l.6) and (1.7),
and the other quantitieS,o({€}) are given in Eqs(A16), _ _
(A7), and (A19)—(A22). S 0.0=R,  Sool 0.1 =1, 110

3. Remark S$1000,0=S, $;¢(0,1)=0.

We see thatS{9(1,1) or S{%(1,0) are 0 for6+0 when
ap=0, while they are not 0 fo¥=0 and ay=0. This is II. DIFFUSION IN A LINEAR ARRAY
related to the following phenomena. Suppose we want to OF FLUCTUATING BARRIERS
compute the transmission probabilig;(0,1) using a sum A. Description of the system and notation
over paths. This in fact can be easily done if the stochastic

process irf0,1] is the ballistic motiori.e., the particle starts ; X o .
from 0, say, and arrives at 1 at a given timeits motion  (S€€ Fig. 1 In each intervalj,j+1], one has a certain
being uniforn. stochastic process that is characterized by the following

It is easy to see that, by summing over all possible pathsquantities: sj(t)dt is the probability that the particle start-
ing from j, in the interval[j,j+1], leaves the interval
through pointj +1 between times andt+dt andr;(t)dt is

We consider now an interval of lengtth(N is an integer

S01(0,1) = @s(7) + @12 7) @10(27) (2 7) 2 ©11(27)%". the probability that the particle starting fronin the interval
n=0 [j,j+1] leaves the interval through poipbetween times
andt+dt.

If we stop the expansion at any finite order, we see that the \ye assume that each stochastic process in each interval
result is 0 whem tends to 0. On the other hand, the geo-[j j+1] is symmetric with respect to the exchange of the
metric series, when summed, gives the factpt  extremities of the interval. Moreover, at each pojntwe
—¢11(27)?] 1= p0y(27) 1+ ¢14(27)]7 and theag in place a fluctuating barrier that can be in stafe-0,1 and
factor of po; cancels with they, in the numerator leading to  jumps between these two states according to(E@). Oth-
a finite and nonzero result whern tends to 0. So we have a erwise, we do not assume anything else about the stochastic
situation where at any finite order of perturbation theory, theprocess.
resulting quantity is zero while the exact result is nonzero. = |f the particle arrives at a poirjt(coming from the left or

At the level of the system of equatiofs2) and(A3) this  from the righy when the barrier af is in the open state;
phenomenon manifests itself in that the system degeneratesg the particle enters the next intervahy[j,j+ 1] or [
for §=0 anda;=0 and becomes underdetermined in this—1 ;] respectively and starts a stochastic motion that is
circumstance. The method to lift the underdetermination isndependent of the previous stochastic motion. If the particle
then to use the conservation of probabilitiie particle must  ayrives at a point (from the right or the leftand the barrier

finally leave[0,1]). at pointj is in the closed state;= 1, the particle is reflected
back in the interval from which it come&o [j,j+1] or
D. Asymptotic values ofS.? ({€}) for small frequenciesA [j—1,], respectively and starts again an independent sto-

chastic motion in this interval. Our aim is to study the quan-
1.6>0 tity Sonj(0{ €xti=1), Which is the probability that the par-
We setA=0 in Egs.(A2) and (A3). In particulare¢,.,,  ticle leaves the interva]ON] at N, knowing that it has
=6, . and one finds entered the interval at O at time O.
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B. Asymptotics for ap=0 WhenA tends to 0, all thep, reduce tos.,.. Moreover,

Starting from the system of equatiof®2) and (B3), it is the two-barrier quant|t|eSao({e’}|{e}), a=0,1, are equal to
possible to derive rigorous asymptotic results for the limitSao({€}) dee, WhereSo({€}) are given by the formulas of
ap=0 (all barriers closed Syonj(0{1}k=1) is the prob- Sec. I D in the limitx =0. _
ability that the particle starting at tinte=0 from 0 leaves the We shall assume, as a recurrence hypothesis, that
interval [O,N] by point N, the states of the barriers being S[O,Nfll]({leOO'{f}k?l) is O except ife,=0 for all k=1
€,=0 ande,=1 (k=1) at time O. It is remarkable that one @Nd{€’}={0o.{€}i=1}. This is true for the two-barrier sys-
obtains an addition formula for this probability in the form t€m. Now Eq.(2.2) reduces in the limit =0 to

Sionj({0}k=0l{0}k=0) = S1¢(0,0)Sonj({O}k=0l 1 ;{O}kTS)A:)

N—-1

! 1= ( 1) (2.)
Sonj(041}k=1) =0 154+14(0,1 ' '
while in Eq.(2.3), if we want a nonzer®[; y; and a nonzero
We notice also tha§onj(0{1}k=1) is, in the limit ap=0,  S1nj. We must havd e ={z} and

the transmission probability for a particle entering the system

at time 0 at point Qwith the barrier at 0 openthe other Son ({00l 1" {0}k=0)
barriersk=1, . . . N being in their stationary states. If all the Sin({0}k=11{0}k=1)
intervals and the stochastic processes are identical(2EL). = : - - . (2.
s P = 1~ Sd00R (10}t 1O 22
so that from Eqs(2.4) and (2.5 and from the fact that
01 _ S10(0,9) 21
Ston(0{h=1)= N—(N-1)S;40,1)° (2.13 R[l,N]({O}kleo}kzl):1_S[l,N]({O}kleo}kzl)-(Z ’

with $,(0,1) given by Eqs(A20) and (A22), Inserting Eq.(2.6) into Eq. (2.5, an addition formula is eas-
o ily obtained by induction:
S 01—E 1—A)\—& (2.1b

1 _“‘2*1
Son({0}k=0l{0}k=0) =0
. o ~ Here S;, 4 is the transmission probability—j+1 in the
We consider now the transmission probability interval [j,j+1] in the absence of barriers, so B,

Sony(ti{€’}{€})dt, which is the probability starting from 0 = [+*s,(t)dt. Then the total transmission probability at
(in the systen{ON]), with the states for the barriers, to  equilibrium is

leave the systenjiON] at point N between timegd andt

+dt and with the states of the barrieeg (necessarilyey S[O,N]:ang[O,N]({O}kaoHo}kZO) (2.8
=0). In the same manneBoy)(t;{e'}/1" {€})dt denotes

the analogous quantity, but starting from point 1 with posi-and everything behaves as in a Markovian case.

tive velocity. The recurrence equations for the total transmis-

5o
Sj+1

+1. (2.7

C. Asymptotics of the transmission probability for A=0

sion probabilities are given by D. Asymptotics for large A
When\ — o, each time the patrticle hits a barrier, it finds
Son({ €' H0{ek=1)=| S1( 70,00, [ @, . it in its equilibrium state and the system does not have any
k=2 memory. For a given intervdlj,j+1], the effective trans-
XS[ON][{E,}|1+;770101( k=0l mission probability is then given by the equation
(2.2) S}iﬁl),jzsju,jaoJr Sj+1,ja1(1_sfﬁl,j)

_q . (eff)
Soni{€ 17, €001 {edi=2) FA=S ) aSE;,

:[S[l,N](t,{frHOl,{fk}k>2)¢>e(’)eo] which implies
+ RNt 7idk=1/01 { €idk=2) e, ] (eff) _ Sj+1
Mo€o SJJerJ 1_a1(1_28j+1,j). (2.9
X Soo(t,oo,ﬂ6|oo,ﬂo)g2 Py Then we have the addition formula
N-1
xS[ON]({6’}|1+;77(,)y011{77l,<}k>2); (23) 1 (
: —1=> | ==—1]. (2.10
S[o,N] 1=0 jiﬁl),j

this is supplemented by the set of equati¢Bg) and (B3)
for the R's, which are defined in Appendix B. The bracket When all the stochastic processeq jpnj+1] are identical,
[---] notations are as in Sec. | A. we have
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1 1—a,(1-2S) IV. STOCHASTIC RESONANCE
1=N -1/. (2.11 ) ) . )
Ston S In this section we prove that there is a stochastic reso-
nance in terms ofy;, namely, that the total transmission
Ill. ASYMPTOTIC IN THE LIMIT OF ALWAYS OPEN probability S reaches a maximum, as a function f,
BARRIERS (ay—1) for @, #1, at least for a certain interval of frequencies. We

) o assume the following hypotheses.
We study the asymptotic value of the transmission prob- (i) First we suppose that all the intervdlg,j+1] and
ability in the limit ap—1, i.e., in the limit of all barriers  thejr stochastic processes inside them are identical. We de-

open. Contrarily to the case of the limiy—0, we can use & note by S the transmission probability in a single interval
perturbation expansion in terms ef;=1—a,. Thus the d[j’j+1] (without a barrier.

method is completely different from the previous one an (i) Next we assume th@<1.

does not use the recursion relations of Appendix B. We shalljii) Then we assume that the particle starts at point 0 with
assume that the barrier at site 0 is always offerlet in the 5 positive velocity, the state of the barrier at Gjs=0 (open
particle and we shall consider the total transmission probyariep, and all barrier (k=1) are in the stationary state

ability Sop; (i-e., the probability that a particle entering at ipjtially, that is, open with probabilitya, and closed with
t=0 the array at point 0 leaves the interJ&IN] through  ropability a; .

point N, the barriers being initially in their equilibrium state, = ynder  these hypotheses, we can summarize the
except the barrier at 0, which is initially operWe look for  asymptotic results obtained in the previous sections.(&or

an expansion in powers af;, a,=1 we have from Eq(2.1)
Ston=Slon T Ston 3.1 Sonl 1= S1000,9) @
ONJl =17 NN — ) .
whereS{§y; is the term ina and the term of order 0 and © N=(NT1)S,(0.D)
Ség?N] is exactly the transmission probability in the absencewith S,(0,1) as in Eq(2.1b),
of barriers and is given by an ordinary addition law of the ,
1 S(\
type S0, )=~ 1—f(>\)——(A) . 4.2
1 N1 2 1-F(N)
o 1=2 (——1), (32 -
SES,)N] =35 For (b) «;=0 we have from Eq(3.3
where S is Fhe probgbil.ityfgsj(t)dt, ie., t.he' probabiIiFy Sionla :O:;_ 4.3
that the particle enteringj,j + 1] through point leaves this 77 N=(N-1)S
interval through pointj+1 (in the absence of barriers o
When all the interval§j,j+ 1] and the stochastic processes Hypothesis(ii) implies that
are identical, one recovers 1
S - S s fws(t)dt (3.3 ol -
0‘ - _ _ 3y - . .
MON=(N-1)S 0 and from Eq.(3.6) we get
The formula forSE(l)?N] is given by Eq.(C21) or (C22. IS;oN]
From these formulas, one finds immediately that T“'l >0. (4.9
a;=0A=
(on; increases with\, (3.4 '
' Moreover, from Eq(3.5 we have
ISoN
j[Tl] a0~ @5 95om <0 (4.6
= day |, —on=0
IStoN]
Txl a1=0: 8,)N][1_(N+1)SE8,)N]]' (3.6 (c) For \—0 we have
A S[o,N]|a1:1,x:o=0 4.7
dsoiti itive if and only iSO, <1/(N+1). If
and so it is positive if and only i§g)y; ( ) [see Eq(2.8)] and
1
(0) S
S[O,N] N+1 ’ S[O,N]|a120,>\:O: m (48)

there exists a valur* such that

9S0N]
(96!1

[see Eq(2.7)]. (d) For A\ —<, we have from Eq(2.11)

>0 for A>\*. (3.7 St

@ =0 Son= N (N=1) 5o 4.9
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s < L
N{N-DS N+l

0 1 o,

FIG. 2. Sketch of the graphs &gy; as a function ofa for
various values oh, including\ =0 or .

S

eff) _
s 1-ay(1-2S)°

(4.10

Song increases as a function af; for A=o.

(4.11

From these results alone we can sketch the grapt®f
as a function ofx; for A =0 ande (see Fig. 2 (i) For all \,
all graphsS;; start ata; =0 at the point

S

N-(N-DS N1 (%2

(4.12

(i) for A=0, the graph of5y; goes to 0 whenv; =1 [Eq.

(4.7)] and is decreasing as a function ®f [Eq. (2.8)]; (iii)

for A=<, the graph ofSon; goes to 1/N+1) and is an
increasing function of oy [Eq. (4.1D];, (iv) finally,

(75[0,N]/<9a1|a1=o is an increasing function ok [see Eq.
(3.9)].
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(0) N
ISroN] ON] 1
day ~ N—(N-1)S N zsg‘l 1-Trol(N) |’

1=0

we see that Eq4.14) is equivalent to

N

1
=>2>

— 4.1
S =1 1-Tpo(N) 419

while, using Egs.(4.1)—(4.3), we see that Eq(4.13 is
equivalent to

a2

S—%[l—f()\)]+ m>0. (4.1
We define the quantity
g=1-%f(\) (4.19
so that Eq(4.16) is equivalent to
§>0°-2qS=9(q). (4.18

If Ais an upper bound of oy, it is sufficient to prove,
instead of Eq(4.15), that

A<1-2S. (4.19

In Appendix D 1, we show that we can replace E419 by
the inequality
F+8%(1-872t%)(1-29)

1_
1-7(1-29) 1-2s.

(4.20

After a rearrangement, E4.20 can be rewritten

p
1-2S

+(82-F2)<1-F(1-29),

From the sketch of Fig. 2 it is clear that there must exist avhich in terms ofg defined by Eq(4.17) can be rewritten

certain interval o\ whereS;oy; has either a maximum or a

minimum as a function ofr; because when varies from 0

to oo, the graph varies from a decreasing to an increasing

graph and surely for any value af S y; cannot be a con-

stant function ofe;. So there must exist certain intervals of Now, obviously

\ so that the graph has a maximum or a minimum.

We are now in a position to prove the main result of this

work: Under the assumptions of Ed@..1), in particular in the
case 0fS< 3, there exists an interval of frequency so that
when\ is in A, §ox; has a maximum as a function af; for

a certain value of; between 0 and 1. Moreover, the interval

A contains neither 0 nore.
Using the sketches of the grapfsee Fig. 2, it is enough
to prove that for certain frequencias

Stonilay =0~ Sonla,=1>0, (4.13
J
Som (4.14
&al -0
al—

Using Eq.(C22) in the form

SZ 4 2
222 _ =
§°<q +1_28q 1-7s h(q). (4.2
f+5<1,
so that
S<q<1, #&=q? &=<%. (4.22

The system of inequalitie§t.18), (4.21), and (4.22 is dis-
cussed in Appendix D 2 and it is proved there that one can
find an intervalA of A where these inequalities are simulta-
neously satisfied, which implies that Eq4.13 and (4.14)
are also both satisfied forin A so that the system presents
a stochastic resonance in the sense that its transmission prob-
ability is maximized by a convenient choice of the parameter
a4. Moreover, this result is valid for an.

Remark.This result extends previous ones obtained for
the case oN=2 barriers. However, for the method used in
that caseN cannot be extended to the case of genkralve
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notice why the simulation of8] was not very conclusive: [SM[1—(ag, 1) (Xo+X1)]
The reason is that the interval is rather small. (1, 1) (Xo+X1) = —— XTI XFT
1-[real ag[s]
(Ad)
CONCLUSION [P+ (g, 1) (X1—Xo)]

(L,=1)(X1—Xp)=

. o . N 1—[rey ] o+ a[s]?* 0
The preceding conclusion is the main result of this article. [r 1] ool 8]

In spite of the fact that the transmission probability cannot be
calculated exactly, it was possible to prove analytically that, (ag,aq)(Xqy+Xo)

) 2. . e . 1-[reu]’—aifs]’
in relevant conditions, this transmission probability presents

a stochastic resonance for a certain value of the average M6y 2

probability of the presence of the barriéos average density — alaa’&[j] ) I

of barriers «,. The resonance is due to the interaction of 1=[reul*" "~ als]

two stochastic processes: the stochastic motion intrinsic to ajag([s]* )2

the particle and the fluctuations of the barriers. It should be = 10 3+ [(r+s)go]’

” N - . - 1_[r JJ)Hr(?_a [3]2)\+
pointed out that two characteristic times appear in this sys- P1 0
tem: the relaxation time of the barriers and a characteristic +ag[sM? (A5)
return time, which is the average time needed by the particle

to return to a barrier when all barriers are frozen. However,
the resonance is not clearly related to the respective values of (ao,al)(xl—xo)( 1-[re.1]%+ay[s]?
these times; in particular, the maximum of the transmission
probability was obtained by varying; rather than the relax- arag([S]*0)2
ation time of the barriers. Thus the comparison with other, - e ZHG]
more classical, cases of resonance is difficult. 1=lreul™ "+ aols]
The system studied here is a very special and idealized =[(s—1) o]’ + ag[s] "
model of motion in a fluctuating environment of arbitrary
size. Still this model has been used to describe the diffusion arag([s]*)?
of a substrate in a protein as ji2], relying on previous 1-[ro M 7+ ag[s] 7 (AB)

experimental work and simulatiod0,11]. The result in
[12] is restricted to the case of two barriers and was treated
using a Fokker-Planck—type approximation.

In subsequent work13] we plan to study other models  If we setay=0 in Egs.(A5) and (A6) we see that the
with two barriers where the barriers are correlated. We plasecond members tend to[€ecall thateg,=ag(1—e )],
to prove there that there is a rich structure of the phase trarwhile the term in curly brackets of these equati¢AS) and
sition provided the correlation between the obstacle is strongag) stays away from 0 becauge>0 [itis 1—7(6) =3(6)],

2. Asymptotic of S{9({€}) when ay—0, >0

enough. so that the matrix product (0,X), vanishes fom=0,1. Thus
SIP(LY=SE(L)=0 (ap=0). (A7)
APPENDIX A: TRANSMISSION PROBABILITY
FOR TWO BARRIERS Then Egs(A3) and (A4) give
In this appendix we prove the various results stated in (o)
Sec. |. Spo (1,0=0, (A8)
. . ¢ S(A+6)
1. Solution of the system of equation§1.4) and (1.5 S<10)(170)= m (A9)
We rewrite this system of equations as follows. First we
define two column vectorX,, a=0,1, by Using Egs.(1.2) and(1.3), it is easy to obtairs{?(0,¢) by
setting ¢g=0 in these equations and using the previously

 _ S (1,0
amls® (1)

. a=0,1. (A1) obtained limiting values

[8(A+ 6)— &(2\ + 6)]3(\ + 6)

Si5(0,00=F(6+N\)+

We know that 1-f(N+0) '
N 3(\+6)2
D o=, (A2) S60(0,)=F(6+N)+ 1-F(A+6)’
‘ (A10)
. [F(N+6)—F(2N+0)]3(N + 6)
P pa=(—1)%eM. (A3) Si(0.0=8(\+6)+ 1-F(A+0) !

After some lengthy computations we obtain Si9(0,1)=0.
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3. Asymptotic of S{? ({€}) when ay—0, =0 L 1-F(0) -8
Now we setfd=0 and consider Eq$A5) and (A6) when Soo(0.01,0 = 1-t(N) Soo(0.01,1).
ag— 0. The second member is proportionaldg. The term

in curly brackets in Eq(A5) is also proportional toxg, Setting@y=0 in Eqg.(A15), we get, using Eq(A20),
while the term in curly brackets in EA6) stays away from

(A21)

0. A detailed analysis proves that the matrix products (0,1) 1-F(N)—58(\)
X (Xo—X4) and (0,1)Ko+X,) vanish whenay—0. From 510(0,q1,0)=T()\) Soo(0,01,D). (A22)
this we deduce that

Su(1,)=S;o(1,1)=13 (A11) Now, when we setry=0 in Eq.(Al5), this equation de-

generates. So we use E¢a20)-(A22) in Eq. (A16) to ob-

(using the conservation of probability to leave the intervaltain
[0,1] and the symmetry with respect to the exchange of 0 and

Y 1= () =500
Using Egs.(A3) and (A4), it is easy to obtain when Soo(0,01,2)1 1~ [r ¢11¢01] C1-F(N)
—0

b 1-f(N)—8(N) 5

1 1 5\ —[se11¢01] W_[r(’olﬂ

So(1,0==—=—"— (ay—0). (A12)
T2 21t T —[50%]S14(0,01,2)=0(a?) (A23)

Using Egs.(1.6) and(1.7), one can also compute the various ,
limits S.0(0,€) whena,— 0. Recalling that by conservations @nd EQ.(A18) gives

of probabilities 5
S10(0,01, {1 —[rey]}

Sod{e})+Sio{eh) =1, (A13) Lt 0800
_ 2
we obtain from Eqgs(1.2—(1.7), (A12), and(A13) SOO(O'ql’l)[[S¢1ﬂ+[s¢°l¢1ﬂ 1-t(N)
R 1-F(N)—58(N)
500(0:0):% 1+P(N)—8(\)+ 1:)‘())\) [8(\)—F(N\) +reoeul ity ]:O(aé). (A24)
. N Now the determinant of the>22 linear systen{A23) and
—5(2N)+F(2N)] ], (A14) (A24) is
il 8(1)? IPURN B 1—f(>\)—é(7x))
500(0,1)25 1+F(N)+ m} (A15) @29 1-TF(N) S()\)](Z 1-t(N)

It is exactly of ordera, while the second members of Egs.
(A23) and(A24) are of orderaé. As a consequence,

Here we determine for future use the asymptotic values of
S.o({€'}H{e}). We start first with the system for S00(0,01,1)=S,40,01,1)=0. (A25)
S.0(0,01,). It is easy to verify

S0o(0,01,) =[r @3]+ [ ¢11¢¢1]1S00(0,01,€)

4. Detailed transmission probabilities

From Egs.(A21) and (A22)

+[50110¢11510(0,01,€), (A16) S00(0,01,0) = $1¢(0,01,0)=0. (A26)
S0o(0,01,0 =[r @oopor] + [ ¢0@11]So0(0,01,€) Then for =0,
+[S@10011S10(0,01€), (A7) S10(0,00,1) =[r ¢10]S00(0,01,1) +[S¢0]S1¢(0,0 1,€),
S10(0,01, ) =[S¢5] + [S¢c111]S00(0,0 1,€) so that
+[r9061(101]_—|810(01qll€)1 (A18) 810(qu 0,1)2800(0,q 0,1):0 (A27)
S10(0.01,0)=[S¢o0p01] +[S¢100c1]Soe( 0.0 L.€) From these results one finds
+[re110.01S10(0,01,€). (A19) A
S00(0,00,00=F(2)). (A28)

If we setay=0 in Egs.(A18) and(A17) we obtain
Finally, all the other transmission probabilities can be com-
S00(0,01,1)=S,40,01,1), (A20)  puted easily.
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. 0
APPENDIX B: TRANSMISSION PROBABILITIES R[o,N]({'—‘,H{E})
FOR N BARRIERS
(0)
We are now interested in the following quantities. We call :[soo(t;o,e“ eo.en) |1 Pel e
k=2
Riong(ti{e'H{e})dt + R[ﬁo,N]({f/Hl_i 70:04 7 k=2)

X[Rping(t:01 { 7icdi=2101 { i) @ 57 17
the probability that the particle, starting from 0 at tirhe 1N (601 {7hi2l0 A "o’

=0, the states of the barriers beid@}k-o . . n={¢€},

leaves the intervdlO,N] for the first time at point 0 between X
timest andt +dt, the states of the barriers at that time being
{extk=0...n={€'} (with of course e;=0). In the same
manner, we shall also need

(0)
Swlt; 700 €0,e0) L1 <p} (B2)

and we have

R[ﬂo,N]({G’H 17,€0,01 { €fi=2)

Riong(t;i{e’}1™ . {e})dt, (0

=[Sm(t;ei,0|0,60)kljz Pele,
which is defined exactly in the same way, except that now -
the particle starts from 1 with a negative velodite., from + R[eo N]({E’Hl_i 75,04 7 ees)

1 in the first interval 0,1] instead of 0. Finally, '

X[Ri1n(801 {7tk O it i=2) @ )

Rianj(ti{e }H{eh)dt 0

X (B3)

Soo(t?07770|0afo)k132 P e

is defined as the probability that the particle startingt at
=0 from 1 (with positive velocity, the states of the barriers Although this system of equatioriB2) and(B3) seems pro-

being{e}tk=1 ... n={€} in the interval[1N], leaves 1,N] hibitively complicated, we shall show that it reduces to ex-

for the first time through 1, between timesindt+dt, the  tremely simple forms in certain limiting cases, namety,
states of the barriers beidgy}x—1 ... n={€'} (with e,=0).  —0, ¢g—1, A\—0, and\— .
We shall also need the Laplace transforms

2. Asymptotic for ap—0

RfO,N]({EIH{E}):f e mR[O,N](t;{e’}He})dt. a. A Laplace transform result forg>0
0 We first prove the following preliminary result. Fat
>0 anday=0 we have

When =0 we skip the index¥=0, -

p R[ao,N]({E’HOal;{Ek}kaz):[Soo(t;O,EHO,l)kl:[z (Pfﬁfk}
R[O,N]({f/}Hf}):R[O,N]({G/H{é}ﬂ0:0- = B4

We also denote the aggregate quantities To show this, we consider EgB2) and we prove that

(0)
=0 for 6>0, ay=0.

(B5)

Sit; 000D [ ¢,q,

R[o,N](tHf}):{Z} Rrong(ti{€’}{e}),

This results from the expansion Mk>2¢vkek’ so that the
REg?N]({e})zg REg’)N]({e'}He}). quantity (B5) is a sum of Laplace transform@t positive
{e'} value of the Laplace parameter becauge>0) of

S1o(t; 70,0[0,1) and this is 0 by EqA14).

1. Recursion relations b. The case#>0 with all barriers closed
We write down recurrence relations for the matrices (except the barrier at 0)
Ron;- Namely, we assume that Using the result$B4) and Eqgs(A12) and (A13), we can

, prove that ford=0, {€}={0{1}\=1}, anday—0, we have
ey=0. (B1)

R 1041} =q) =R Y04 1he1) S0l 81,
Summing up the different contributions, as done in Efjs)) on({€"}H0{Th=1) = Riom({ € }O{ Lhi=1) Ookl;[l K1
and(1.5), we find (B6)
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Rionj({€'H17;€0,0{1}k=2)

:R[o,N]({E'H17;60,0,{1}@2)55'01—[ O (B7)
07k=1 Tk

The proof is by recursion oN, the caseN=1 being proved
in Sec. I. Finally, Eqs(B2) and (B3) become

Rionj({€'H0{1}=1)
=Sod 0,400 8011 842

+Rpony({€'H17;1,0{1}y=>)
X RN (01,1} k=201, {1}k=>)

X$10(1,00,), (B8)

Rionj(041}k=1]0{1}k=1) =Spo(0, D +

Notice that

Rionj(041}k=1]0{1}k=1)=Ron)(041}k=1)

is the total return probabilitywhatever the final states of the
barriers argand the total transmission probability is thus

Sony(041}k=1)=1—Rron(041}k=1)- (B11)
A little manipulation gives
1 B 1 N 1 1
Son(041h=1) Sanj(0{lh=2) Sio(0,1)
(B12)

which leads to the addition formul@.1).

APPENDIX C: DERIVATION OF THE ASYMPTOTICS
FOR a;—0

We now derive the first correction for smal,, denoted
by S{gh; in Ed. (3.1). We consider the set of all trajectories
starting from O at time 0, leavinfO,N] at a certain time,

throughN and the total weight of these trajectories, which is

Sony- We can write the matrixp, () as

1 1-e™™ -1 -1
¢(t): 0 e M +a1(1_e ) 1 1
=0+ D) (C1)
and the stationary state
1 B (0) 4 D
a=|g|tay| 4 |=a +a'V, (C2

A trajectory contributing toSo; is determined by the
data
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Rrong({€'}17:1,0{1}=>)
=S 1,009 1 61840
k=1 0

+Rpong({€'}H17:1,0{1}=>)

XR1nj (041} =20 1}=2) Spo(0,10,2). (B9)

c. Solution of the system (B8) and (B9)
First we notice, using the notation of Sec. I,

S00(0,2/0,1) = Spo(0,1),
S1¢(1,00,1)=S4(0,1),

so that

S10(0,D) %Ry N (0 1}k=20{1}k=2)

1—Sp0(0,) Ry N (041} =2/ 0f1}=2)

(B10)

[pZNr(kOvEO!tO)r(klvel:tl)v"-a(kp:ep,tp)]v (CS)
where p is an integer greater than or equal iy ky,=0,
Kq,...,kp=N are the positions of the successive barriers vis-
ited by the particle,e,=0, €1,...,€, are the states of the
barrier when the particle visits them, ang=0<t,<---
<t, are the instants of visit of the barriers. The weight of a
trajectory (C3) contains various factors of the type(t;
—tj_1) or s(tj—t;_;), which are independent af,, and
also contains factors depending en, which are of two
types for eachK; € ,t), I=1. One hasi) a factora,, if the
barrier is visited for the first time and thus found in its sta-
tionary state with probabilityr., and (i) a factor<p5|€j(t|
—t;) if the barrier is not visited for the first time and if
(ki €j,tj) was the event of a visit of that same barrier before
(k| ) €] ,t])

To recoverSoy;, one sums ovep=N and over all pos-
sible (;,€;) and integrates ovep<t;<---<t,<+. Ob-
viously, SES?N] is obtained foreg= 1, namely, by replacing all
the o and P, by 1 [as it should be from EqgC1) and
(C2)].

To obtainSEé?N], one must consider the correction due to
a singleaq, in the weight of all possible trajectories. These
corrections can come only from fact@y or (ii) above. In the
corresponding factor, we shall us¢’ or <P(elle)j(ﬁ —t;) and in

other factors one shall use® or sﬂ(fz)y(t—t’) [as in Egs.

(C1) and(C2)].

1. Corrections coming from an event of a first visit(k, , €, ,t;)

There are two types of such corrections according to the
value of ¢ .

(&) ¢=0 (i.e., the barrier is open)For the terme,
alY=—a;. In the correction, all other barriers visited for



PRE 59 RESONANT DIFFUSION IN A LINEAR NETWORK @ . .. 113

the first time are treated as open; for multiple visits, they 2. Corrections due to an event of a second visit
(0) — .
pick up the factorppg = 1. In this case, one uses for the evekt,g ,t;) the *) term
If ki=k, the contribution is and for all other events we usé? =6, for the first visit
and ¢=1 for all successive visits, until a certaik, (¢ ,t,)
0 M1, —t. i
_alngk]E (R[k N] Ek>0] qs[k N for which one useg,, o(t—t;) (because the previous was

open. Thereafter, one continues to ugé® for all subse-
quent visits. We have two cases.

(i) At the last passagg atk;=k;, beforet,, the velocity
was positive. The part of the trajectory from Ot{awill give
a contribution, after integration over time

where ng?b] is the probability that the particle entering the
interval[a,b] througha leaves it througtb (without a barrier
in the interval[a,bl]). The total contribution i<,;, obtained
by summing ovek,

(0) (0) R(0) ya_ -1
C.i= > g 0 0 Sox(RikoR = 1-RY,RE .
B (CY

However, it is also clear for anly that . .
y Then comes the term 0j(t—t;), which is

—(—1)%0a,(1—e "), which after integration ovet,

S[o N S[o k]E (R[k N]R[k 0])q E,)N]' (C4 will give the factor
so that —(=1 E‘Oal(R[k N] f ]()\)) (C10
C11—_Na15EoN] (C5) corresponding to the loop frork;=k; back tok; inside
[k ,N].

(b) =1 (the barrier is closed)In this case the term ig, (@) If at t, the barrier is closed, the particle can perform
givesa; as a contribution. The particle is reflected and has tarbitrary number of returns froi to k within [k; N7, find-
return at least once to the barrigr. At the first returnink;,  ing the barrier closed and eventually leavirig,N] through
the correction must be calculated usiqaﬁj’gl or N, which has a probability

A @ —Fron(A) 72 C11
(p(oi(t) 17_)\? At .If =0 s Son@ = Treng (M) (C1y
€ e if €= 1.

or it can perform an arbitrary number of returns fré&nto k;

Once the barrier a, has been found open, the subsequentVithin [Ki,
¢ are all 1 for all subsequent returns kp.

If the barrier alk, is still closed, the particle must visit this SyStem with all barriers open until it leaves throughThe

barrier a second time, giving a factor of the ty(5). After probability is
integration, we find a correctio@,, which is
’ ’ Sk 1= RicoRicony) ~ Riko/Rikh— Frini (M)
o X(1-7 .
Con=a12, %‘8?@((120 R0y~ Fiko M) (M) (= Fpem() ™ (C12
So this case(i @) gives a contributionC; 5 that is the
X(l—REEo] EE)N]) lSEk N] - (C?  product of Eqs(C9) and(C10 and the sum of EqC11)

and(C12), that is,
Herer(O b(D)dt is the probability that the particle entering

[a,b] througha leaves[a,b] througha betweent andt+dt

- (0) _RO (0) -1
without any barrier and Cia= “1,(;1 Stok(1 = RikoRpicny)
2(0) I () X[RW N~ Froni(M)]
I’[a b]()\)_ 0 e I’[a’b](t)dt, 1 '

X SECK))N][]-_ P17

R[ko][R[kN] Friong(N)]
(0
1-RigoRien

0 _ 2
Riab1="lab)(0)-

X| 1+

Using Eq.(C4), one can rewrite EqC7) as

. . _ Using again Eq(C4) this is
Cipy= als[omz Riko— PR M)A FRG (M) A

1- R[k al [k, N]()\))

BecauseR(ko] 1— S[ko] one has Cia= als[ON]E REE)O]R[kN]

( Righy~ f[k,N](’\))

1—Frong(N) (13

N
Cpy=Nas Sy~ @1 2 Sko1—Flg(M) 7" (C8)

an

N], finding the barrier closed, then it returns to
k,, finding the barrier open, and then moves in the whole
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(b) If at time t; the barrier is openg;=0) it remains open } ! !
all the time(for the first-order contributions This gives the
contribution

L [l ]

k+1 k 0

_ SinRko oo
—a; > —= s[RI T ni(N)]
! 1- REE)O]RE&)N] N TN FIG. 3. Intervalga,c] and[c,b] introduced in Appendix C.
SEg)k] (0) (0)
oK Rrpoi—F R
(k0] "[k0] [k,N]
1_R(0) R(o) C( )= T 19N E (E)O( Py )( 0 0 )
[k,01 ™ [k,N] i S[ I ] 1o l_REk,)O]REk,)N]
or (C20

3. Addition of all corrections

(C149

k O N . . .
Ciipy=— a1, N]E Rio RN~ Frong (M) If one sums the various  contributions

0 0
=1 1= RikoRin)

C(a):Cv)Ciy Cqiy » One obtains the corrections
Summing Eqs(C13 and(C14) gives the total contribution
of case(i) (1) S[ON] +( (0) )2
o= s Sono| L  L-Fon(N) Ston
c (0) Nil (0) REE)N]_f[k,N](M N-1 |
= . — . 1 1
M 1S[O'N]k>1 S0l (=R gRinp[ 1= Frieng(N) ] X > (1— _ - ) )
(C15 K= 1-Frg(N)  1=Fpong(h)

(i) At the last passagg atk;=k; beforet,, the velocity By symmetry, we can rewrite this formula as
was negative. The part of the trajectory from G tavill give
after integration ovet;

0 0
(O)N] al{S[ON][l’L(N 1)SEO)N]]_2( (o,)N])2

Rion (1~ RioRieny) ~*Sloky - (C16
N
The loop fromk;=k; att; to k; at timet; gives thea; K ( B 1 ) o1
contribution(after integration ort;) T=F (N
[0K]
I(—1)5E|0[R[k10]—?[kvo]()\)]. (C]_?) which using Eq(33) o %ON] S

(@) If =1 at timet;, the trajectory can perform an ar-
bitrary number of returns frork; to k; in [0,k] finding the 1 _
barrier closed before the first time when it finds it open and 10Nl

N
NSony  2SonsS 1
UN=(N-1)S N—(N-1)S& 1-Ffrou(N)]

leaving toN. This gives, using EqSC16) and(C17), (C22
c EE)N]S[O k] [Rioo~ Frco(M] From Eq.(C22) it is straightforward to derive the results
. = a T~
(il a) 1— R[k,O]R[k,N] 1—Freg(N) of Egs.(3.49—(3.7).
%KN] (C19 APPENDIX D: PROOF OF STOCHASTIC RESONANCE

1_R(0) R(O) ’
(k.07 [k,N] 1. An upper bound for the quantity F[oy
(b) If =0, the barrier is open. It will remain open forthe  We consider an intervdla,b] that is composed ofa,c]
calculation of the corrections. The contribution of trajecto-and[c,b]. In [a,c] and[c,b] we have two stochastic processes
ries fromk to N is and we denote,,(t)dt the probability that starting frora at
time 0, one leave$a,c] through ¢ between timed and t

s 1 +dt andr_,(t)dt the probability that starting frora at time
k] 1—REE?0]REE?N]’ 0 one leaves$a,c| througha between times andt+dt. s,
and r,. denote the same quantities relative to the interval
which together with Eq(C16) and(C17) gives [c,b] ands,,.r,, are the quantities relative to the entire in-

terval [a,b]=[a,c]U[c,b] for the joint stochastic process

(0) . . . .
Chvim— St [Riol=Fricol(V)] in this full interval (see Fig. 3. We denote the Laplace trans-
(o 1-RERy o kel form of a functions by 8,
R(E)N 8)k a Tt
X% (C19 Sca()\):j e Vsg(t)dt.
1=RicoRpiong 0
The total contributiorC; of the caselii) is given by sum- Finally, we can also introduce the quantigs(t)dt,

ming Eqgs.(C18 and(C19): which is the probability starting frorato leave[a,c] through
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f(x)

A 1-28 X

>N —

[0k]

FIG. 4. Functionf(x) as defined by Eq(D7), its fixed point,
and the position of +2Sif Eq. (D10) holds, as well as the position
of f .

[0k]

a for the first time in[t,t +dt] and alsor,¢,S¢p, ... andtheir
Laplace transforms. Then it is easy to prove tatandfy,,
are given by

A o ~ A 71;\
Spa™ Sbc( 1- Facl bc) Sca
B 01
Fra=Tcat Saclcb(1—Facfbe)  "Sac-

We write

Yba=%bas toa=TbaSba- (D2)

Using these variables, the systéBil) can be written as

A1 A—1p
Yba=Spa Ybc— (Sca lac)tbes
-1 -1 -1 (Ds)
tha= (FcaSca )Ybet Scall— Sac cadSca Fac)tobe-

If the stochastic processes are symmetric in each interval

so that

Sca=™Sac: fca™lac,

etc., the systeniD3) reduces to

Yba™ §(:isllybc_ (ggal?ca)tbc )
s a1 a a—2:2 (D4)
tha= (FcaSca )Ybet Sca(1—Sca rca)tbc :
We now apply this result to the system Mfintervals with
b=0,

c=k, a=k+1

and simply denote
Yk=Yok, tk=tok

so that the systerfD4) becomes in our case

Yir1=8 1y — 87 ey,
(DY)
tk+1:§_1f)’k+§(l_§_2f2)tk,
which allows us to recoveijgy .1 as
. teat §’1f+§(1—§’2f2)?[oyk] D6)
f = =TT .
[Ok+1] Yk+1 571-(5 lr)r[o,k]

We now introduce the functiofsee Fig. 4

RESONANT DIFFUSION IN A LINEAR NETWORK @ . ..
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42 A
S S2= @

FIG. 5. Small curvilinear triangle where the inequaliti®11)
hold. The dotted time is the line followed tg(\), $2(\)] when\
runs from 0 toee. It cuts this triangle.

P +3%(1-8 2f?)x
—fx

f(x)= 1

(D7)

so thatf is convex and increasing. Moreover, from E¢36)
and (D7)

f(Frox) = Froks1g-

It is trivial that f[O,k+1]>f[0,k]'
fixed point off,

Let us denote byA the

f(A)=A. (D8)
We have a situation like that in Fig. 5, so that
Prox<A. (D9)

The inequality(4.15 is proved provided inequality4.20)
holds, namely,
A<1-2S. (D10

However, becausd(A)=A and f is below the function
i(x)=x for x>A, in order that Eq(D10) holds, it is suffi-
cient that

f(1-2S)<1-2S,

which, using the definitio(D7) of f(x), gives us the in-
equality (4.20.

2. Discussion of the system of inequalitieé4.40—(4.44)
This system is

g(q)<&<h(q),
¥<q? <%, S=<qg=l, (b1h
with
9(a)=09?-29S,
(D12)
457 43?

- _
h(a)=a"+ 1559~ 1=25"
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This system can be most simply discussed graphically. W&'=(q=13%=0), corresponds toA=w«, where f(x)
represent this system in Fig. 5 with abscigsand ordinate ~ =5(>2) =0. WhenA varies from 0 to=, the point(q(A) =1
&2, Both parabolass?=g(q) and h(q) cut the axis atq —f(N\),5%(\)) follows a trajectory joiningX to Y. This tra-

. . : " . jectory cuts out the allowed region on a certain interval cor-
=2Sand 25<1. The region where inequaliti€®11) hold is responding to an intervah of frequency\ in which in-

shown in Fig. 5. The poink=(q=S,8°=S?) corresponds to  equalities(4.13 and(4.14 hold and in which the stochastic
A=0, wheref (0)=R, §(0)=S, andq=1—R=S. The point  resonance occurs.
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