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Pattern formation of a reaction-diffusion system with self-consistent flow
in the amoeboid organismPhysarumplasmodium
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The amoeboid organism, the plasmodiumPtfysarum polycephalunmoves by forming a spatiotemporal
pattern of contraction oscillators. This biological system can be regarded as a reaction-diffusion system with
spatial interaction via active flow of protoplasmic sol in the cell. We present a reaction-diffusion system with
self-consistent flow on the basis of the physiological evidence that the flow is determined by contraction
patterns in the plasmodium. Such a coupling of reaction, diffusion, and advection is characteristic of biological
systems, and is expected to be related to control mechanisms of amoeboid behavior. Using weakly nonlinear
analysis, we show that the envelope dynamics obeys the complex Ginzburg-L@f@huequation when a
bifurcation occurs at finite wave number. The flow term affects the nonlinear term of the CGL equation
through the critical wave number squared. A physiological role of pattern formation with the flow is discussed.
[S1063-651%9911501-7

PACS numbeps): 87.10+e€, 87.17--d, 87.19.Rr, 82.40.Bj

[. INTRODUCTION plasmodium, some oscillatory phenomena in the plasmodium
can be illustrated with the simple system of diffusively

The plasmodmm .ofPhysarum. polycephglurrs a large coupled oscillators without any flow effecf$3]. Thus it is
amoeboid cell, showing contraction-relaxation cycles EV€Yinevitable to study the role of the endoplasmic flow when we

where within the organism. These local contractions generatg v e the pattern formation of contraction oscillation in the
intracellular transport of endoplasmic gdl]. The plasmo-  piasmodium. In the present paper we discuss transportation
dium can crawl when the endoplasmic flow is organizedaffect of chemicals by endoplasmic flow on the contraction
throughout the organism. Some types of spatiotemporal pagscillation. First, we formulate the schematic framework for
tern of the contraction have been observed after StimU'atioaontraction pattern formation from the view of the oscilla-
and discussed in relation to development of amoeboid betory reaction-diffusion system with self-consistent flow. We
havior [2-5]. The contraction apparatus is located at thedo not go into details of reaction kinetics for chemical oscil-
outer layer of the plasmodiurtectoplasm [6—8]. Experi- lators and mechanism of the contractile apparatus in the plas-
mental results imply that chemical oscillation is a clock modium. Thereby, we avoid including experimentally un-
for the rhythmic contraction/9,10]. Possible candidates clear and invalid assumptions in our framework. We adopt
for the chemicals are, for example, Caand adenosine only known facts and plausible kinetics in th&hysarum
5'-triphosphate[3,11,13. Coupled-oscillator and reaction- plasmodium. Next, we study weakly nonlinear dynamics of
diffusion systems have been presented as mathematical mo@ur reaction-diffusion system. Using the method of multiple
els of contraction pattern formation in the plasmodifts]. ~ Scales, we obtain the complex Ginzburg-Landé@GL)
They are based on chemical oscillations and diffusion of théguation which describes the envelope dynamics of chemical

chemicals in the ectoplasm. These models have exp|ainébecillation near the bifurcation point. We show that the flow
experimental results in some simple situations. term affects the nonlinear term of the CGL equation. A pos-

Spatial interaction between chemical oscillators occurs b ible role of the plasmodial pattern formation is discussed

diffusion of chemical substances in cytoplasm, and by pro-rorn a physiological point of view.
toplasmic streaming in the inner part of the plasmodium
(endoplasmas well. The protoplasmic streaming transports Il. BASIC EQUATIONS
mass and momentum of the endoplasm, and it also transports The plasmodium oPhysarumhas a cytoplasmic cortex
chemicals in the cytosol. The contraction pattern is modifieqgctoplasmic gelfilled with endoplasmic sol. The ectoplasm
by inhibition of the streaming5,14,19. Miyake et al. [15]  makes periodic contraction and relaxation, and it causes in-
proposed a model of the information processing system withacellular streaming of the endoplasm. A sheet of cytoplasm
two levels of subsystems corresponding to the endoplasmigecomes thick when the endoplasm is flowing into it. Meta-
oscillators with long-range interaction and the ectoplasmigolic chemicals regulate contraction cyc[@s10]. These os-
ones with short-range interaction. Some more physical modeillating chemicals are exchanged between endoplasm and
els based on hydrodynamics and chemical kinetics have bettoplasm, and flow in and out via the streaming. Thus we
presented in Ref$16—18. These models are constructed on present the dynamics of rhythmic pattern formation in the
the mechanical interaction of mechanochemical oscillator®hysarumplasmodium as the following equations for meta-
by viscoelasticity in the plasmodium. bolic elements in the ectoplasmic g&), and endoplasmic
Although the endoplasmic flow evidently exists in the sol ugy:
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oh . . mechanism inducing the intracellular pressure. We assume
5 TV (hv)=0, that F(0; 1) =0 and hence Eq2) has a trivial homogeneous
steady solutiou= 0. We also assume that the trivial solution
is stable if u<pu. (uc denotes the bifurcation poinand

Ju - -
a_se': Fgel(N,u) +V - (DgeVuge), (1) otherwise it is unstable. The reaction souFgel; «) can be
expanded around the trivial solution as
Ju T 1. N . — + + +...
240 Vigg=Feof( N,U) + £V (Deoh Vi), F(U; ) = LU+ Ntk Natuu+--,
. IF! 92F!
where h is the thickness of the endoplasmic sol ands L= Pk Ny= Pk
the averaged velocity of the endoplasmic flow. The du gu'ou

N-component vectou is a metabolic species in gel and sol, i
(Ugel,Uso) = (U, . .. uM). VectorsF e andFg, represent re- :( 7°F )
action kinetics among metabolic elements and exchanges of aulgukau' )’
them between the ectoplasm and endoplasm. The quantities

D4e andD, denote diagonal matrices of diffusion constants ~ Linearizing Eq.(2) near the trivial solution, we obtain a
of metabolic elements. Experiments imply that the chemicasolution for some Fourier component,

oscillator exists in the ectoplasm. Thus we assume the local _Weekxy

dynamics ofuge has a stable limit cycle which the supercriti- u= e”u+rc.c.,

cal Hopf bifurcation gives rise to. where W is an arbitrary constant and c.c. means complex

Wwe _note Ehat Ea(1) pecomes t_he closed system if the conjugate. The stability of this component is determined by
dynamics ofv, the equation of motion of endoplasmic flow, the eigenvalue problem

is given. We consider the facts that metabolic chemicals act
on the contractile apparatus in the ectoplasm, and the gradi- (L—k’D)U=AU 3
ent of contraction force induces the endoplasmic streaming . . . .
[19]. The contraction pattern determines the streaming, antpr the eigenvalue\ and eigenvectol. On the bifurcation
vice versa. Now we assume that the endoplasmic streamirigpint, ReA=0 andd(Re \)/ok=0 are satisfied at somie
is the flow with small Reynolds numbers and it has the form=Kk; for the maximal eigenvalye); here we assume this
of Darchy’s lawp = —q(h)ﬁP(u); hereP is the intracellular maxmgl eigenvalue is simple. I.n the V|C|n.|ty of the bifurca-
pressure and is the permeability. This means the stationaryion Point (u,k)=(uc k), the eigenvalue is
flow approximation since deformation of the ectoplasm is
. L . 2N N

very slow compared with variation of the endoplasmic flow. A=At —| (=) + —| (k—ke)

. . . R <ty M M E c
The viscoelasticity of the ectoplasmic cortex is ignored. In Ml c
Eqg. (1) the sol-gel conversion is also ignored, and thus the

atu=0.

mass conservation of endoplasmic sol is satisfied. This im- 4 1 1?2_)\ (K—kJ)2+ - - - @)
plies a limitation of the model, such as cell migration, and ARET ¢ ’

the formation and reconnection of a network of protoplasmic ¢

strands.

) ) where the subscript denotes the bifurcation point, and ex-
In the following, we assume that the thicknes®f the  pansion coefficients are given as

endoplasm is almost constant all over the plasmodium, and

that the diffusion constants of the metabolic elements are ) AN
homogeneous in the plasmodium. The intracellular pressure Ae=Flag, K
P is expanded around the homogeneous static state; as

=Zicy, w:,c4=0.
C

P Now we consider two oscillatory types of bifurcation(s}
P(U)ZP(US)+2 (Uj—Ujs)—.(US)+ higher order terms. k.=0 and w:#0 (Hopf bifurc_atior‘); (i) kc#0 and a)F#O
] aul (traveling-wave typg In case(i), each component af is so
smooth in space that the advection term is smaller than the
Hereafter, we ignore the higher order terms which have ngonlinear and diffusion terms in Eq2). Although the
effects on results deduced by the weakly nonlinear analysisveakly nonlinear analysis for this case yields the complex
Under these assumptions, we rewrite the metabolic dynamiasinzburg-Landau equation as the envelope dynamics, the ad-
of Eq. (1) in the form of the reaction-diffusion-advection vection term has no effect on the CGL equation. In d@ge
equations: the advection term competes with the nonlinear and diffusion
au terms as shown in the next section.
— +MVu-Vu=F(u;u)+DV3u, 2
ot I1l. ENVELOPE EQUATION

whereF is reaction kineticsM represents a tensor of advec- Let us consider the envelope equation when the bifurca-
tion coefficients induced by endoplasmic flow, abdis a tion of traveling-wave type occurs, on a basis of weakly
diagonal matrix of diffusion constants. The advection quannonlinear analysi§20]. We denote the bifurcation parameter

tity M depends on the thickness of the endoplasm and they (u—uc)~€? for u>pu., and assume thawl~O(e)
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(j=1,... N) in the vicinity of the bifurcation point. In the
following analysis, the envelope equation is derived for one
spatial dimension system of E() with the single traveling W U

wave. In the Appendlx we comment on the derlvatlo_n of b(;l):—V—cg—z+2k§WM(u(22>V+Vu(22))
envelope equations of Ed2) for the counterpropagating aT Z3

waves and for two spatial dimensioh20]. We introduce

(V*,b5™) = (V¥ by~ Y) =0,

perturbation expansions and multiple scales,

U~6U1+62U2+€3U3+"', L""L0+62L2+"‘,

©)

X=X=Cpt, &= E(X—Cgt), =€,

wherec,=w/k. is the phase velocity and, is the group
velocity. Substitution of Eq(5) into Eq. (2) yields perturba-

tion equations for each order in

(92

Lo+D Up=by,, mM=123... (6

—_ + —_
X2 Pax

whereb,, denotes the inhomogeneous term of thié order

equation.

For the first order equation in E¢), the inhomogeneous

term isb;=0. Then we have a solution

u;=W(&,nekXv+ec.c.,

whereV is an eigenvector of an eigenvalNes —i w, for the
eigenvalue problen3) on the bifurcation point. For the sec-
ond order equation, that im=2 in Eq. (6), we expand the

— WL,V —WN,(UPV + Vu®) — WN,(UPV

+VUu?) — [WPWN;(VVV + VWV +VVV)

2ik DaU(Zl) azWDV
— e a_g_a_gz ,
-1 (+1 (8)

From these conditions, we obtain the complex Ginzburg-
Landau equation:

IW , P*W
_:ClW_C2|W| W+C3_2= CJ:(V*vvj)/(V*av)a
T ag

V1: L2V,
_ ©)
Vo= —2KM{V,(LF?) (NS P VV)}

FNAV, Lo H(NG™ MV, V)
+No{V, (L) THNG VW)

—N3(VWV +VVV+VVV),

solution and inhomogeneous term as a Fourier series in terms

of the phasep=k.X— w.t,
up=>, ude'? b= blel?,
| |
Then the solvability conditions fau, are

(V*, b V)= (V* by V) =0,
(7)
IW

=1)_R(+1
by V=Y.
These conditions are obviously satisfied since

O\ . (V*,DV)

Cy= W C: _ZIKCW'

Here we use the adjoint eigenvalue problen§ ¢ k?D)U*

=\U* of Eqg. (2). Thus we must advance our calculation to
the third order to obtain the envelope equation. For the thir

order equation ire, we expandi; andb; as
u3=2 ug)e”‘f’, b3:2 b%”e”“ﬂ
[ [

then the solvability conditions fau; are

V3=DV —(Cq+2ikD)(L§"") " 1(cy+2ik D)V,

where L™ =1 (Ik;)?D+imw,, NP=N,+Ik?M, and
{X,Y}=XY+YX According to the dispersion relatiod),

ci=(oNdu), and c3=(1/2)(9*\/9k?). are generically
complex constants.

Equation(9) describes the small-amplitude dynamics of
the system near the bifurcation point, that is, slow and slight
modulation of traveling wave with the wave numberand
frequencyw, by the quantityv. We note that the coefficient
of the nonlinear termg,, depends on the quantitig’M
through the vectoW,. For the ordinary(no flow) reaction-
diffusion system, this quantity is vanishing in the small-
amplitude dynamics of the system. Since the advection term
has the form of the gradient of the metabolic specigs,
depends on the critical wave number.

We consider the effect of the coefficiee on solutions
of the CGL equation. The CGL equation has various types of
solutions depending on its coefficieffgl], but we will not
dwell on each of them. We emphasize thadetermines the
amplitude of nontrivial(finite-amplitude solutions and in-
cﬁ‘uces the instability and bifurcation of the solutiofril].

onlinearity is essential to finite-amplitude solutions and bi-
furcations of the CGL equation. The sign of Rg)( deter-
mines the type of bifurcation at Re()=0: a supercritical
bifurcation occurs for Ref,)>0, while a subcritical bifur-
cation occurs for Re(,)<0. In the subcritical case, we will
need to take into account the higher order terms such as
|W|*W to the CGL equatiofi21].
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We have derived the CGL equation from Eg) in fairly Physarumplasmodium controls the contraction pattern for-
general form. If it is possible to specify the reaction andmation by its thickness.
advection terms based on the precise mechanism in the plas- In the weakly nonlinear region, the self-consistent advec-
modium, we can obtain the coefficients of the CGL equatiortion causes the strong dependence of pattern formation on
explicitly. In the next section we discuss the advection effeck.. The critical wave numbek, is regarded as an indicator
implied by the CGL equatiori9) and compare our results that an oscillator is in step with its neighboring oscillators,
with ones derived from reaction-diffusion models without because the phase difference of the metabolic oscillation be-
the endoplasmic flow. tween neighbors tends to become largek amcreases. This

point of view implies that phase difference plays an impor-
tant role for pattern formation such as amoeboid behavior in
IV. DISCUSSION the Physarumplasmodium.

We have presented the framework of the pattern- We comment on the reaction-_diffusion-adve_ction_ models
formation model for the contraction oscillation in tRéys- ~ Presented for the pattern formation of other biological sys-
arum plasmodium. Considering chemical oscillation to be atems. The flow of biological individuals contributes their
clock of the rhythmic contraction, we discussed the transporchemotactic pattern formation in the population systems,
tation of chemicals in the plasmodium. The transportatiorsUch as aggregation of the cellular slime mbldtyostelium
dynamics is described within the framework that chemicadiscoideumand the motile bacteri&scherichia coli[25].
oscillators interact with each other by diffusion and adveC_Pop_uIatlon density of ce_lls changes as a result of chemotactic
tion couplings. Then we have studied such reactioninotion, ar)d chemotactic substances are produced by egch
diffusion-advection systems to clarify the effect of the endo-Cell- That is, the flux of cellular mass is induced by chemi-
plasmic flow on contraction pattern formation in the cgls. The dynarr_ncs of thg cell distribution is governed by the
plasmodium. We assumed that the gradient of concentratiofiiffusion-advection equation. These population models have
of endoplasmic chemicals determines the endoplasmic flowg framework similar to that of Ed2) for contraction pattern
Using the weakly nonlinear analysis, we obtain the followingformation in thePhysarumplasmodium. In the chemotaxis
results from Eq(2): (i) for the Hopf bifurcation, the enve- models, the gradient of cher_mcals detgrmmes the flux of cel-
lope dynamics is governed by the CGL equation without thdular mass, but the advection term includes a linear part
flow effect; (i) for the traveling-wave type bifurcation, the Which has the form of cross diffusion. This implies that the
envelope dynamics is governed by the CGL equation and thweakly nonlinear analysis in the present paper is applicable

advection terms affect the nonlinear term of the CGL equal® these chemotaxis systems, although the flow affects the
tion throughk2M linear stability of the systems.
M.

It is well known that the reduction dynamics of the ordi-
nary reaction-diffusion equations is also governed by the
CGL equation near the oscillatory bifurcation poiri0].
This means that we cannot distinguish the reaction-diffusion We thank K. Imai for helpful comments through discus-
system with flow from one without flow by dynamical be- sions with H.Y. This study was supported by The Sumitomo
havior in the small-amplitude region if system parameters=oundation(Grant No. 970628 and The Institute of Physi-
are fixed. Thus, for a weakly nonlinear region, we need preeal and Chemical Resear¢RIKEN) (T.N.).
cise and careful analysis of the reaction-diffusion-advection
systems. The latter resuit) shows that the nonlinear effect
near the bifurcation point stems not only from reaction ki- APPENDIX: DERIVATION OF THE ENVELOPE
netics but also from the self-consistent flow. This is the point EQUATION IN TWO DIMENSIONS

to find out whether the flow affects the weakly nonlinear Before studving the envelope equation in two dimensions
dynamics of the plasmodial behavior. In the remainder of ying pe €q '

. ; . ) . we comment on counterpropagating way26|. For the bi-
tohr:S iegtilc?lg Vi\::illdlljsecflljas\fi(;[:je effect of the self-consistent ﬂoV¥urcation of traveling-wave type, counterpropagating waves
Iﬁ yeneragl advection cén lav an effective role for patterr&€ possible in one spatial dimension, although we derived
9 ' play P ?Pe envelope equation for a single traveling wave in Sec. Ill.

formation, as the flow of matter often causes instabilities o he envelope dynamics of the counterpropagating waves is
hydrodynamical system22,23. For example, Rovinsky the coupled equations of amplitudlé, andW_ of a linear-

and Menzingeff24] have shown that a differential flow of . X
chemical species induces instabilities of the homogeneou'%ed solution
steady state, and it leads to a traveling-wave pattern without

diffusions. In this case, advection terms have a crucial effect W, e kextocdhy  p\w_gltkex—odly e,

on the linear dispersion relation. Contrary to this, the advec-

tion studied in the present paper has no effect on the linear

stability but modulates the nonlinear dispersion relation. Cowhere (o— kﬁD)Vi =*iw:V~. The time evolution ofV..
efficient ¢, of the nonlinear term in Eq9) determines the is governed by the coupled CGL equations with interaction
amplitude of solutions and induces instability and bifurcationterms|W-.|2W.. [20].

of them. As shown in Eq(9), ¢, depends on the reaction In the case of two spatial dimensions, modes correspond-
kinetics, diffusion coefficients, and advection coefficients.ing to an annulus of wave vectorgs|=k., are neutrally
We remember that the advection quantityvaries according stable on the bifurcation point. Thus multimode traveling
to the thickness of the endoplasm, so it is possible that thevaves satisfyindk;| =k, of the form
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> W,V exdi(k; x+ wgt)]
J

+W,;_V_exdi(kj-x—wct)]}+c.c.

are possiblg20]. Although we can obtain the multimode
envelope equations, it is not clear that their dynamics ha

REACTION-DIFFUSI® . . . 1013

We write a solution of the first order equations with the
slowly varying envelop&V(¢, 7, 7),

u;=W(¢, 7, 7)ek*V+ec.c.

S

structural stability. Such a problem has a relation to pattersince the solvability conditions for the second order equation

selection, and we need more precise analysis of the bifurcayq satisfied b
tion with symmetry. Hereafter we discuss the envelope equaztion to the t

tion for a single traveling wave of Eq2) in two spatial

y the definition af,, we advance our calcu-
hird order:

dimensions. We assume that a set of modes near the single

plane wave traveling along the axis, expi(kx—wdt)], is
dominant across the bifurcation point.
Introducing perturbation expansions and multiple scales,

L~Lo+ €Lyt -- -,
(A1)

U~ eu;+ €?uy+ eSug+ - - -,

X=X—Cpt, §=E(X—Cgt), n= €y, 7= €%,

and substituting Eq(A1) into Eq.(2), we obtain perturbation
equations,

2

Lo+D U,=b,, mMmM=123....

(A2)

The inhomogeneous term of the first order equation is van

ishing, b;=0. For the second and third order equations, the

inhomogeneous terms are

o auy AUy duy \ - d%uy
2= " Co e ax ax et IXIE’
Ju Ju Jdu, du duq du Jduq du
b3=—l—cg—2+M 20 1072 7101
ar Y- aX aX X X | 9E oX
auy duy
+ X € —Lous — Np(Upuy +ugup) — NaugUs Uy
5 2&2u2 9%u;  9%uy
Xt ag2 " ap?)

(V*,b5™H)=(V*,b5™) =0,

uln

9
—WNy(UPV +Vu) = WN,(UPV + VuP))

IW

(+l): _V_C
ar 9

by

+ 2K2WM (UPV + VUuP) — WL,V

— [WPWN3(VVV +VVV+VVWV)
PW  PPW
9% on?

ausy
—2ik:D 9%

DV,

(A3)

—1)_ R (+1
by V=b5"Y.

From the solvability conditiongA3), we get the envelope
dynamics,

2

, 9*W 2
=01W— C2|W| W+ C3_2+C4
29

IW

T

ptBGL

where coefficient,, c,, c3 are the same in Eq9) andc,
—icg/2k.. The coefficientc, implies dispersion waves
observed in the nonlinear Schiiager equation.
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