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Pattern formation of a reaction-diffusion system with self-consistent flow
in the amoeboid organismPhysarumplasmodium

Hiroyasu Yamada, Toshiyuki Nakagaki, and Masami Ito
Bio-Mimetic Control Research Center, The Institute of Physical and Chemical Research (RIKEN), Shimoshidami,

Moriyama, Nagoya 463-0003, Japan
~Received 8 May 1998; revised manuscript received 21 August 1998!

The amoeboid organism, the plasmodium ofPhysarum polycephalum, moves by forming a spatiotemporal
pattern of contraction oscillators. This biological system can be regarded as a reaction-diffusion system with
spatial interaction via active flow of protoplasmic sol in the cell. We present a reaction-diffusion system with
self-consistent flow on the basis of the physiological evidence that the flow is determined by contraction
patterns in the plasmodium. Such a coupling of reaction, diffusion, and advection is characteristic of biological
systems, and is expected to be related to control mechanisms of amoeboid behavior. Using weakly nonlinear
analysis, we show that the envelope dynamics obeys the complex Ginzburg-Landau~CGL! equation when a
bifurcation occurs at finite wave number. The flow term affects the nonlinear term of the CGL equation
through the critical wave number squared. A physiological role of pattern formation with the flow is discussed.
@S1063-651X~99!11501-0#

PACS number~s!: 87.10.1e, 87.17.2d, 87.19.Rr, 82.40.Bj
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I. INTRODUCTION

The plasmodium ofPhysarum polycephalumis a large
amoeboid cell, showing contraction-relaxation cycles eve
where within the organism. These local contractions gene
intracellular transport of endoplasmic sol@1#. The plasmo-
dium can crawl when the endoplasmic flow is organiz
throughout the organism. Some types of spatiotemporal
tern of the contraction have been observed after stimula
and discussed in relation to development of amoeboid
havior @2–5#. The contraction apparatus is located at t
outer layer of the plasmodium~ectoplasm! @6–8#. Experi-
mental results imply that chemical oscillation is a clo
for the rhythmic contraction@9,10#. Possible candidate
for the chemicals are, for example, Ca21 and adenosine
58-triphosphate@3,11,12#. Coupled-oscillator and reaction
diffusion systems have been presented as mathematical
els of contraction pattern formation in the plasmodium@13#.
They are based on chemical oscillations and diffusion of
chemicals in the ectoplasm. These models have expla
experimental results in some simple situations.

Spatial interaction between chemical oscillators occurs
diffusion of chemical substances in cytoplasm, and by p
toplasmic streaming in the inner part of the plasmodi
~endoplasm! as well. The protoplasmic streaming transpo
mass and momentum of the endoplasm, and it also transp
chemicals in the cytosol. The contraction pattern is modifi
by inhibition of the streaming@5,14,15#. Miyake et al. @15#
proposed a model of the information processing system w
two levels of subsystems corresponding to the endoplas
oscillators with long-range interaction and the ectoplasm
ones with short-range interaction. Some more physical m
els based on hydrodynamics and chemical kinetics have b
presented in Refs.@16–18#. These models are constructed
the mechanical interaction of mechanochemical oscilla
by viscoelasticity in the plasmodium.

Although the endoplasmic flow evidently exists in th
PRE 591063-651X/99/59~1!/1009~6!/$15.00
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plasmodium, some oscillatory phenomena in the plasmod
can be illustrated with the simple system of diffusive
coupled oscillators without any flow effects@13#. Thus it is
inevitable to study the role of the endoplasmic flow when
analyze the pattern formation of contraction oscillation in t
plasmodium. In the present paper we discuss transporta
effect of chemicals by endoplasmic flow on the contract
oscillation. First, we formulate the schematic framework
contraction pattern formation from the view of the oscill
tory reaction-diffusion system with self-consistent flow. W
do not go into details of reaction kinetics for chemical osc
lators and mechanism of the contractile apparatus in the p
modium. Thereby, we avoid including experimentally u
clear and invalid assumptions in our framework. We ad
only known facts and plausible kinetics in thePhysarum
plasmodium. Next, we study weakly nonlinear dynamics
our reaction-diffusion system. Using the method of multip
scales, we obtain the complex Ginzburg-Landau~CGL!
equation which describes the envelope dynamics of chem
oscillation near the bifurcation point. We show that the flo
term affects the nonlinear term of the CGL equation. A po
sible role of the plasmodial pattern formation is discuss
from a physiological point of view.

II. BASIC EQUATIONS

The plasmodium ofPhysarumhas a cytoplasmic cortex
~ectoplasmic gel! filled with endoplasmic sol. The ectoplasm
makes periodic contraction and relaxation, and it causes
tracellular streaming of the endoplasm. A sheet of cytopla
becomes thick when the endoplasm is flowing into it. Me
bolic chemicals regulate contraction cycles@9,10#. These os-
cillating chemicals are exchanged between endoplasm
ectoplasm, and flow in and out via the streaming. Thus
present the dynamics of rhythmic pattern formation in t
Physarumplasmodium as the following equations for met
bolic elements in the ectoplasmic gelugel and endoplasmic
sol usol:
1009 ©1999 The American Physical Society
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]h

]t
1¹W •~hvW !50,

]ugel

]t
5Fgel~h,u!1¹W •~Dgel¹W ugel!, ~1!

]usol

]t
1vW •¹W usol5Fsol~h,u!1

1

h
¹W •~Dsolh¹W usol!,

where h is the thickness of the endoplasmic sol andvW is
the averaged velocity of the endoplasmic flow. T
N-component vectoru is a metabolic species in gel and so
(ugel,usol)5(u1, . . . ,uN). VectorsFgel andFsol represent re-
action kinetics among metabolic elements and exchange
them between the ectoplasm and endoplasm. The quan
Dgel andDsol denote diagonal matrices of diffusion constan
of metabolic elements. Experiments imply that the chem
oscillator exists in the ectoplasm. Thus we assume the l
dynamics ofugel has a stable limit cycle which the supercri
cal Hopf bifurcation gives rise to.

We note that Eq.~1! becomes the closed system if th
dynamics ofvW , the equation of motion of endoplasmic flow
is given. We consider the facts that metabolic chemicals
on the contractile apparatus in the ectoplasm, and the gr
ent of contraction force induces the endoplasmic stream
@19#. The contraction pattern determines the streaming,
vice versa. Now we assume that the endoplasmic stream
is the flow with small Reynolds numbers and it has the fo
of Darchy’s lawvW 52q(h)¹W P(u); hereP is the intracellular
pressure andq is the permeability. This means the stationa
flow approximation since deformation of the ectoplasm
very slow compared with variation of the endoplasmic flo
The viscoelasticity of the ectoplasmic cortex is ignored.
Eq. ~1! the sol-gel conversion is also ignored, and thus
mass conservation of endoplasmic sol is satisfied. This
plies a limitation of the model, such as cell migration, a
the formation and reconnection of a network of protoplasm
strands.

In the following, we assume that the thicknessh of the
endoplasm is almost constant all over the plasmodium,
that the diffusion constants of the metabolic elements
homogeneous in the plasmodium. The intracellular press
P is expanded around the homogeneous static stateu5us as

P~u!5P~us!1(
j

~uj2us
j !

]P

]uj
~us!1 higher order terms.

Hereafter, we ignore the higher order terms which have
effects on results deduced by the weakly nonlinear analy
Under these assumptions, we rewrite the metabolic dynam
of Eq. ~1! in the form of the reaction-diffusion-advectio
equations:

]u

]t
1M¹W u•¹W u5F~u;m!1D¹W 2u, ~2!

whereF is reaction kinetics,M represents a tensor of adve
tion coefficients induced by endoplasmic flow, andD is a
diagonal matrix of diffusion constants. The advection qu
tity M depends on the thickness of the endoplasm and
of
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mechanism inducing the intracellular pressure. We assu
thatF(0;m)50 and hence Eq.~2! has a trivial homogeneou
steady solutionu50. We also assume that the trivial solutio
is stable if m,mc (mc denotes the bifurcation point! and
otherwise it is unstable. The reaction sourceF(u;m) can be
expanded around the trivial solution as

F~u;m!5Lu1N2uu1N3uuu1¯,

L5S ]Fi

]uj D , N25S ]2Fi

]uj]ukD ,

N35S ]3Fi

]uj]uk]ul D , . . . at u50.

Linearizing Eq.~2! near the trivial solution, we obtain a
solution for some Fourier component,

u5WelteikxU1c.c.,

where W is an arbitrary constant and c.c. means comp
conjugate. The stability of this component is determined
the eigenvalue problem

~L2k2D !U5lU ~3!

for the eigenvaluel and eigenvectorU. On the bifurcation
point, Rel50 and](Re l)/]k50 are satisfied at somek
5kc for the maximal eigenvalue~s!; here we assume thi
maximal eigenvalue is simple. In the vicinity of the bifurc
tion point (m,k)5(mc ,kc), the eigenvalue is

l5lc1
]l

]m U
c

~m2mc!1
]l

]kU
c

~k2kc!

1
1

2!

]2l

]k2U
c

~k2kc!
21•••, ~4!

where the subscriptc denotes the bifurcation point, and ex
pansion coefficients are given as

lc56 ivc ,
]l

]kU
c

56 icg , vc ,cg>0.

Now we consider two oscillatory types of bifurcations:~i!
kc50 andvcÞ0 ~Hopf bifurcation!; ~ii ! kcÞ0 andvcÞ0
~traveling-wave type!. In case~i!, each component ofu is so
smooth in space that the advection term is smaller than
nonlinear and diffusion terms in Eq.~2!. Although the
weakly nonlinear analysis for this case yields the comp
Ginzburg-Landau equation as the envelope dynamics, the
vection term has no effect on the CGL equation. In case~ii !,
the advection term competes with the nonlinear and diffus
terms as shown in the next section.

III. ENVELOPE EQUATION

Let us consider the envelope equation when the bifur
tion of traveling-wave type occurs, on a basis of weak
nonlinear analysis@20#. We denote the bifurcation paramet
by (m2mc);e2 for m.mc , and assume thatuj;O(e)
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( j 51, . . . ,N) in the vicinity of the bifurcation point. In the
following analysis, the envelope equation is derived for o
spatial dimension system of Eq.~2! with the single traveling
wave. In the Appendix we comment on the derivation
envelope equations of Eq.~2! for the counterpropagating
waves and for two spatial dimensions@20#. We introduce
perturbation expansions and multiple scales,

u;eu11e2u21e3u31•••, L;L01e2L21•••,
~5!

X5x2cpt, j5e~x2cgt !, t5e2t,

wherecp5vc /kc is the phase velocity andcg is the group
velocity. Substitution of Eq.~5! into Eq. ~2! yields perturba-
tion equations for each order ine:

S L01D
]2

]X2
1cp

]

]XD um5bm , m51,2,3, . . . ~6!

wherebm denotes the inhomogeneous term of themth order
equation.

For the first order equation in Eq.~6!, the inhomogeneous
term isb150. Then we have a solution

u15W~j,t!eikcXV1c.c.,

whereV is an eigenvector of an eigenvaluel52 ivc for the
eigenvalue problem~3! on the bifurcation point. For the sec
ond order equation, that ism52 in Eq. ~6!, we expand the
solution and inhomogeneous term as a Fourier series in te
of the phasef5kcx2vct,

u25(
l

u2
~ l !eil f, b25(

l
b2

~ l !eil f.

Then the solvability conditions foru2 are

~V* ,b2
~11!!5~V̄* ,b2

~21!!50,
~7!

b2
~11!52

]W

]j
~cg12ikcD !V, b2

~21!5b̄2
~11! .

These conditions are obviously satisfied since

cg5 i
]l

]kU
c

522ikc

~V* ,DV!

~V* ,V!
.

Here we use the adjoint eigenvalue problem (L0* 2k2D)U*
5l̄U* of Eq. ~2!. Thus we must advance our calculation
the third order to obtain the envelope equation. For the th
order equation ine, we expandu3 andb3 as

u35(
l

u3
~ l !eil f, b35(

l
b3

~ l !eil f,

then the solvability conditions foru3 are
e

f

ms

d

~V* ,b3
~11!!5~V̄* ,b3

~21!!50,

b3
~11!5

]W

]t
V2cg

]u2
~1!

]j
12kc

2W̄M ~u2
~2!V̄1V̄u2

~2!!

2WL2V2WN2~u2
~0!V1Vu2

~0!!2W̄N2~u2
~2!V̄

1V̄u2
~2!!2uWu2WN3~VVV̄ 1VV̄V1V̄VV !

22ikcD
]u2

~1!

]j
2

]2W

]j2
DV,

~8!
b3

~21!5b̄3
~11! .

From these conditions, we obtain the complex Ginzbu
Landau equation:

]W

]t
5c1W2c2uWu2W1c3

]2W

]j2
, cj5~V* ,V j !/~V* ,V!,

V15L2V,
~9!

V2522kc
2M $V̄,~L0

~2,2!!21~N2
~11!VV !‰

1N2ˆV,L0
21~N2

~21!$V,V̄%!%

1N2$V̄,~L0
~2,2!!21~N2

~11!VV !%

2N3~VVV̄ 1VV̄V1V̄VV !,

V35DV2~cg12ikcD !~L0
~1,1!!21~cg12ikcD !V,

where L0
( l ,m)5L02( lkc)

2D1 imvc , N2
( l )5N21 lkc

2M , and
$X,Y%5XY1YX. According to the dispersion relation~4!,
c15(]l/]m)c and c35(1/2)(]2l/]k2)c are generically
complex constants.

Equation~9! describes the small-amplitude dynamics
the system near the bifurcation point, that is, slow and sli
modulation of traveling wave with the wave numberkc and
frequencyvc by the quantityW. We note that the coefficien
of the nonlinear term,c2, depends on the quantitykc

2M
through the vectorV2. For the ordinary~no flow! reaction-
diffusion system, this quantity is vanishing in the sma
amplitude dynamics of the system. Since the advection t
has the form of the gradient of the metabolic species,c2
depends on the critical wave numberkc .

We consider the effect of the coefficientc2 on solutions
of the CGL equation. The CGL equation has various types
solutions depending on its coefficients@21#, but we will not
dwell on each of them. We emphasize thatc2 determines the
amplitude of nontrivial~finite-amplitude! solutions and in-
duces the instability and bifurcation of the solutions@21#.
Nonlinearity is essential to finite-amplitude solutions and
furcations of the CGL equation. The sign of Re(c2) deter-
mines the type of bifurcation at Re(c1)50: a supercritical
bifurcation occurs for Re(c2).0, while a subcritical bifur-
cation occurs for Re(c2),0. In the subcritical case, we wil
need to take into account the higher order terms such
uWu4W to the CGL equation@21#.
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We have derived the CGL equation from Eq.~2! in fairly
general form. If it is possible to specify the reaction a
advection terms based on the precise mechanism in the
modium, we can obtain the coefficients of the CGL equat
explicitly. In the next section we discuss the advection eff
implied by the CGL equation~9! and compare our result
with ones derived from reaction-diffusion models witho
the endoplasmic flow.

IV. DISCUSSION

We have presented the framework of the patte
formation model for the contraction oscillation in thePhys-
arum plasmodium. Considering chemical oscillation to be
clock of the rhythmic contraction, we discussed the transp
tation of chemicals in the plasmodium. The transportat
dynamics is described within the framework that chemi
oscillators interact with each other by diffusion and adv
tion couplings. Then we have studied such reacti
diffusion-advection systems to clarify the effect of the end
plasmic flow on contraction pattern formation in th
plasmodium. We assumed that the gradient of concentra
of endoplasmic chemicals determines the endoplasmic fl
Using the weakly nonlinear analysis, we obtain the followi
results from Eq.~2!: ~i! for the Hopf bifurcation, the enve
lope dynamics is governed by the CGL equation without
flow effect; ~ii ! for the traveling-wave type bifurcation, th
envelope dynamics is governed by the CGL equation and
advection terms affect the nonlinear term of the CGL eq
tion throughkc

2M .
It is well known that the reduction dynamics of the ord

nary reaction-diffusion equations is also governed by
CGL equation near the oscillatory bifurcation point@20#.
This means that we cannot distinguish the reaction-diffus
system with flow from one without flow by dynamical be
havior in the small-amplitude region if system paramet
are fixed. Thus, for a weakly nonlinear region, we need p
cise and careful analysis of the reaction-diffusion-advect
systems. The latter result~ii ! shows that the nonlinear effec
near the bifurcation point stems not only from reaction
netics but also from the self-consistent flow. This is the po
to find out whether the flow affects the weakly nonline
dynamics of the plasmodial behavior. In the remainder
this section we discuss the effect of the self-consistent fl
on physiological behavior.

In general, advection can play an effective role for patt
formation, as the flow of matter often causes instabilities
hydrodynamical systems@22,23#. For example, Rovinsky
and Menzinger@24# have shown that a differential flow o
chemical species induces instabilities of the homogene
steady state, and it leads to a traveling-wave pattern with
diffusions. In this case, advection terms have a crucial ef
on the linear dispersion relation. Contrary to this, the adv
tion studied in the present paper has no effect on the lin
stability but modulates the nonlinear dispersion relation. C
efficient c2 of the nonlinear term in Eq.~9! determines the
amplitude of solutions and induces instability and bifurcat
of them. As shown in Eq.~9!, c2 depends on the reactio
kinetics, diffusion coefficients, and advection coefficien
We remember that the advection quantityM varies according
to the thickness of the endoplasm, so it is possible that
as-
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Physarumplasmodium controls the contraction pattern fo
mation by its thickness.

In the weakly nonlinear region, the self-consistent adv
tion causes the strong dependence of pattern formation
kc . The critical wave numberkc is regarded as an indicato
that an oscillator is in step with its neighboring oscillato
because the phase difference of the metabolic oscillation
tween neighbors tends to become larger askc increases. This
point of view implies that phase difference plays an imp
tant role for pattern formation such as amoeboid behavio
the Physarumplasmodium.

We comment on the reaction-diffusion-advection mod
presented for the pattern formation of other biological s
tems. The flow of biological individuals contributes the
chemotactic pattern formation in the population system
such as aggregation of the cellular slime moldDictyostelium
discoideumand the motile bacteriaEscherichia coli @25#.
Population density of cells changes as a result of chemota
motion, and chemotactic substances are produced by
cell. That is, the flux of cellular mass is induced by chem
cals. The dynamics of the cell distribution is governed by
diffusion-advection equation. These population models h
a framework similar to that of Eq.~2! for contraction pattern
formation in thePhysarumplasmodium. In the chemotaxi
models, the gradient of chemicals determines the flux of c
lular mass, but the advection term includes a linear p
which has the form of cross diffusion. This implies that t
weakly nonlinear analysis in the present paper is applica
to these chemotaxis systems, although the flow affects
linear stability of the systems.
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APPENDIX: DERIVATION OF THE ENVELOPE
EQUATION IN TWO DIMENSIONS

Before studying the envelope equation in two dimensio
we comment on counterpropagating waves@20#. For the bi-
furcation of traveling-wave type, counterpropagating wav
are possible in one spatial dimension, although we deri
the envelope equation for a single traveling wave in Sec.
The envelope dynamics of the counterpropagating wave
the coupled equations of amplitudeW1 andW2 of a linear-
ized solution

W1ei ~kcx1vct !V11W2ei ~kcx2vct !V21c.c.,

where (L02kc
2D)V656 ivcV6 . The time evolution ofW6

is governed by the coupled CGL equations with interact
termsuW7u2W6 @20#.

In the case of two spatial dimensions, modes correspo
ing to an annulus of wave vectors,uku5kc , are neutrally
stable on the bifurcation point. Thus multimode traveli
waves satisfyinguk j u5kc of the form
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(
j

$Wj 1V1exp@ i ~k j•x1vct !#

1Wj 2V2exp@ i ~k j•x2vct !#%1c.c.

are possible@20#. Although we can obtain the multimod
envelope equations, it is not clear that their dynamics
structural stability. Such a problem has a relation to patt
selection, and we need more precise analysis of the bifu
tion with symmetry. Hereafter we discuss the envelope eq
tion for a single traveling wave of Eq.~2! in two spatial
dimensions. We assume that a set of modes near the s
plane wave traveling along thex axis, exp@i(kcx2vct)#, is
dominant across the bifurcation point.

Introducing perturbation expansions and multiple scal

u;eu11e2u21e3u31•••, L;L01e2L21•••,
~A1!

X5x2cpt, j5e~x2cgt !, h5ey, t5e2t,

and substituting Eq.~A1! into Eq.~2!, we obtain perturbation
equations,

S L01D
]2

]X2
1cp

]

]XD um5bm , m51,2,3, . . . .

~A2!

The inhomogeneous term of the first order equation is v
ishing, b150. For the second and third order equations,
inhomogeneous terms are

b252cg

]u1

]j
1M

]u1

]X

]u1

]X
2N2u1u122D

]2u1

]X]j
,

b35
]u1

]t
2cg

]u2

]j
1M S ]u2

]X

]u1

]X
1

]u1

]X

]u2

]X
1

]u1

]j

]u1

]X

1
]u1

]X

]u1

]j D2L2u12N2~u2u11u1u2!2N3u1u1u1

2DS 2
]2u2

]X]j
1

]2u1

]j2
1

]2u1

]h2 D .
.

-
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We write a solution of the first order equations with th
slowly varying envelopeW(j,h,t),

u15W~j,h,t!eikcXV1c.c.

Since the solvability conditions for the second order equat
are satisfied by the definition ofcg , we advance our calcu
lation to the third order:

~V* ,b3
~11!!5~V̄* ,b3

~21!!50,

b3
~11!5

]W

]t
V2cg

]u2
~1!

]j
12kc

2W̄M ~u2
~2!V̄1V̄u2

~2!!2WL2V

2WN2~u2
~0!V1Vu2

~0!!2W̄N2~u2
~2!V̄1V̄u2

~2!!

2uWu2WN3~VVV̄ 1VV̄V1V̄VV !

22ikcD
]u2

~1!

]j
2S ]2W

]j2
1

]2W

]h2 D DV,

~A3!

b3
~21!5b̄3

~11! .

From the solvability conditions~A3!, we get the envelope
dynamics,

]W

]t
5c1W2c2uWu2W1c3

]2W

]j2
1c4

]2W

]h2
, ~A4!

where coefficientsc1, c2, c3 are the same in Eq.~9! andc4
52 icg /2kc . The coefficientc4 implies dispersion waves
observed in the nonlinear Schro¨dinger equation.
-
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