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Synchronization of randomly driven nonlinear oscillators
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When nonlinear oscillators with stable limit cycles are subject to periodic forces, these oscillators may
become entrained or mode locked to the driving force. Remarkably, a similar phenomenon occurs when the
nonlinear oscillators are driven by a random force. In particular, when nonlinear oscillators with different
initial conditions are strongly driven with the same random force, their fluctuating behavior may reliably
converge to an identical, synchronized response. Analytical estimates are derived for the conditions, rates, and
structural stability for synchronization of a broad class of randomly driven nonlinear oscillators, which suggest
different experimental procedures for assessing the nonlinear response of biological, chemical, and physical
oscillators to fluctuating inputs.@S1063-651X~98!50612-5#

PACS number~s!: 05.45.1b, 05.40.1j, 87.10.1e
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Mathematical models of nonlinear oscillators describe
wide variety of physical and biological phenomena that
hibit self-sustained oscillatory behavior, from the the van
Pol ~vdP! equations for nonlinear electrical circuits, to th
Hodgkin-Huxley model for spiking neurons, to simple pha
models for the flashing of fireflies@1#. When strongly driven
by forces that are periodic in time, these oscillators m
become entrained to oscillate at the same frequency as
driving force. This phenomenon of ‘‘mode locking’’ o
‘‘phase locking’’ is epitomized by Huygens’s ancient obse
vation that pendulum clocks hung from the same beam t
to synchronize due to the common periodic vibrations of
beam@2#. Although there is a vast literature@3–5# on this
ubiquitous phenomenon, there are few analyical resu
Qualitatively, mode locking occurs when the periodic pert
bation is sufficiently strong and the frequency of the pert
bation is sufficiently close to the unperturbed frequency~or
to a rational multiple! of the nonlinear oscillator. One impor
tant consequence of this effect is that a common perio
perturbation can force two nonlinear oscillators, which st
out with different initial conditions, to converge to identica
synchronized states.

Remarkably, this synchronization also occurs when n
linear oscillators are driven by random forces. In this cas
is not clear what the oscillator is mode locking to, since
driven oscillator also exhibits random fluctuations. Nevert
less, random forcing applied to two identical nonlinear os
lators with different initial conditions may reliably lead t
asymptotically stable, synchronized states. This phenome
is graphically illustrated in Fig. 1, which displays the evol
tion of two van der Pol oscillators@3,5#,

d2x

dt2
5e~12x2!

dx

dt
2V2x1F~ t !, ~1!

with different initial conditions, driven by a common rando
force F(t).

Recently, there has been considerable interest in the
chronization of chaotically driven nonlinear systems@6,5#.
However, chaos is not necessary for the realization of
striking effect. The chaotically driven systems are spec
cases of the more general phenomenon of the possibilit
PRE 581063-651X/98/58~6!/6907~4!/$15.00
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asymptotically stable@7# solutions for aperiodically driven
nonlinear systems. A simple example of the synchronizat
of randomly driven nonlinear oscillators was believed to
first observed by Pikovskii in 1984@8#.

This synchronization of aperiodically or randomly drive
nonlinear oscillators is structurally stable, which means t
approximate synchronization is realized even in the prese
of small variations~or errors! in the parameters of the sys
tems and in small levels of additional noise in the drivi
signal. This structural stability is essential for practial app
cations in secure communication, control theory, and s
chronization of biological oscillators, since real systems w
inevitably have small variations and be subject to ba
ground noise@6#.

For example, nonlinear oscillators used to model the sp
ing voltage dynamics of neurons, such as the Fitzhu
Nagumo, Morris-Lecar, and Hodgkin-Huxley equations@9#,
are all found to exhibit asymptotically stable, synchroniz
behavior when strongly driven by randomly fluctuating cu
rents@10#. This effect provides a dynamical mechanism f
the remarkable reliability of the spike timing recently o
served@11# in the response of neocortical neurons to fluc
ating input currents that resemble real synaptically genera
currents. The same levels of spike timing reliability a
achieved in the different mathematical models for neuro

FIG. 1. Time-evolution ofx(t) is plotted for two randomly
driven vdP oscillators withV51 and e51. The driving force
F(t)50.8sinf(t) with a Gaussian random phasef(t) is shown in
the lower curve. Starting from two different initial condition

x(0)51 ~solid line! and x̄(0)521 ~dashed line!, the solutions
converge to indistinguishable curves byt550.
R6907 © 1998 The American Physical Society
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oscillations, even with small changes in initial condition
cell parameters, and driving currents@10#. This reliability of
spike timing is essential if single neurons are expected
faithfully encode temporal information in the timing of su
cessive spikes@12#.

Although damped, driven linear oscillators always lead
asymptotically stable solutions@7#, the asymptotic stability
of driven nonlinear oscillators is very much dependent on
parameters and properties of the nonlinear system, and o
drive. Formally, this stability can be established by dem
strating that all of the Lyapunov exponents are negative
by constructing an appropriate Lyapunov function@7,5#.
However, in general, the Lyapunov exponents can only
calculated numerically for specific systems and the rigor
Lyapunov functions can only be constructed in special ca

To provide a theoretical foundation for the general ph
nomenon of the synchronization of nonlinear oscillators
aperiodic inputs, this paper will focus on nonlinear oscil
tors that are well approximated by simple phase models@13#.
General analytical expressions are derived to provide qu
titative estimates of the conditions for observing the synch
nization for this broad class of randomly driven nonline
oscillators as a function of the fluctuation amplitudes a
frequency spectra along with estimates for the rates of c
vergence to the synchronized solutions and the requirem
for structural stability. These results reveal that the synch
nization of randomly driven oscillators is closely related
the periodically driven case, which suggests different exp
mental procedures for assessing the nonlinear respons
biological, chemical, and physical oscillators to fluctuati
inputs. Finally, both the analytical and empirical analyses
used to successsfully predict the synchronization of r
domly driven vdP oscillators~such as those displayed in Fig
1!.

First, consider two nonlinear oscillators with stable lim
cycles,x(t)[A(t)sinu(t) and y(t)[B(t)sinf(t), character-
ized by their phasesu(t) and f(t). Very generally, the in-
teraction of two~weakly coupled! nonlinear oscillators can
be expressed in terms of the phase differences alone@13#.
For example, the evolution of thex oscillator may be ap-
proximately described by the simple phase model@14#

du

dt
5V2bsin@u~ t !2f~ t !#. ~2!

If we assume unidirectional coupling fromy to x, and
allow the time-dependent phasef(t) in Eq. ~2! to be an
arbitrary function of time, then Eq.~2! can be treated as
simple, ‘‘toy’’ model for studying the response of a nonlin
ear oscillator to random phase noise. The analysis is fur
simplified by definingh(t)5u(t)2f(t) and rewriting Eq.
~2! as

dh

dt
5@V2v~ t !#2bsinh~ t !, ~3!

wherev(t)[df(t)/dt. Then a variety of different response
are possible depending on the magnitude of the couplinb
and the time dependence of the drive frequencyv(t).

Case 1. The phase model results for constant freque
drive f(t)5vt are well known@5#. Whenv lies within the
stable zone close to the natural frequencyV,
,
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b U,1, ~4!

the driven oscillatorx(t) will mode lock to the drive. Start-
ing from any initial phase, the long-time solution to Eq.~2!
converges tou(t)5vt1h, which has the same frequency a
the periodic drive but is shifted by a constant phaseh
5arcsin@(V2v)/b#. The mode-locked dynamics of th
driven oscillatorx(t) is asymptotically stable@7#, and the
Lyapunov exponent that determines the exponential rate
convergence,g, can be calculated by a simple perturbati
analysis of Eq.~3! @5#,

g5bcosh5Ab22~V2v!2. ~5!

One straightforward but important consequence of t
asymptotic stability is that the long-time behavior of tw
driven oscillatorsx(t) and x̄(t), with different initial phases
u0 and ū0, will always synchronize ~i.e., uu(t)2 ū(t)u
;e2gt) as the individual solutions converge~at the exponen-
tial rateg) toward the common asymptotic solution@15#.

Another important feature of the synchronization of pe
odically driven nonlinear oscillators is that this behavior
structurally stable. If two different oscillators,x and x̄, with
slightly different natural frequenciesV2V̄5dV or cou-
pling strengthsb2b̄5db are driven by the same periodi
drive with frequencyv inside the respective stable zon
defined by Eq.~4!, then both oscillators will still be entraine
to the periodic drive and will appear to be approximate
synchronized with a small, constant phase differencedh
5h2h̄'@dV2(V2v)(db/b)#/g.

On the other hand, if the driving frequencyv is too far
away from the natural frequencyV or if the couplingb is too
weak @so that Eq.~4! is not satisfied#, then there is no
asymptotic convergence to a common, mode-locked s
tion, and there is no synchronization. The evolution ofx(t) is
quasiperiodic and different initial conditions lead to distin
long-time solutions.

Case 2. For time-dependent drive frequenciesv(t),
nearby solutions will tend to converge when the frequen
lies within the stable zone,

UV2v~ t !

b U,1. ~6!

In particular, if the frequency of the periodic drivev(t) var-
ies slowly through the stable zone, then the oscillator an
u(t) will still try to track the angle of the drivef(t) with a
time-dependent phase shifth(t)'arcsin$@V2v(t)#/b%, and
nearby solutions will converge exponentially at an appro
mate instantaneous rate,

g~ t !'Ab22@V2v~ t !#2. ~7!

A more detailed analysis@16# of the phase model with time
dependent drive frequency indictates that a sufficient con
tion for the validity of these adiabatic approximations is pr
vided by the requirement that the transit time through
stable zone be long compared with the convergence time
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equivalently, thatv and the rate of change ofv be small
compared with the rate of synchronization,

dv~ t !

dt Y g~ t !2,1. ~8!

When conditions~6! and~8! are met, two nearby solution
will converge toward synchronization as they approach
common asymptotic solution during the transit through
stable zone. As in the constant frequency case, this sync
nization is structurally stable in the sense that the evolu
of two different oscillatorsx(t) and x̄(t), with slightly dif-
ferent values for the natural frequenciesdV or coupling
strengthsdb, will approximately synchronize with a sma
~bounded! phase difference dh5h2h̄'$dV2@V
2v(t)#(db/b)%/g(t).

Whenv(t) leaves the stable zone,u(t) will no longer be
constrained to closely track the driving angle and two driv
oscillators will tend to desynchronize. Nevertheless, s
chrony will be restored when the drive frequency enters
stable zone again as long as the transit time through
stable zone is long compared with the convergence ti
Then the mean rate of synchronizationG can be estimated by
taking the time average of the instantaneous converge
rate

G5
1

TE0

T

g~ t !dt, ~9!

using Eq.~7! when the drive frequency is in the stable zo
andg(t)50 otherwise.

Case 3. For randomly varying drive frequencies the de
mination ofG can be simplified by replacing the time ave
age in Eq.~9! with an ensemble average. For example,
f(t)5f r(t) is a Gaussian random process@17# with a power
spectrumS(n) and variances[(1/2p)*2`

` S(n)dn, then the
probability distributionP(v r) for the derivative of the ran-
dom phasev r[df r /dt will also be Gaussian@17# with vari-
ancesv5(1/2p)*2`

` n2S(n)dn. In this case the adiabaticit
parameter in Eq.~8! can be estimated using the average ra
RA5Asv8/b

2, wheresv8[(1/2p)*2`
` n4S(n)dn is the vari-

ance ofdv r(t)/dt andb is the maximum convergence rate
the center of the stable zone. Then, whenRA is small, driven
oscillators may be expected to synchronize at a mean
vergence rate,

G5E
V2b

V1b
Ab22~V2v r !

2P~v r !dv r . ~10!

In particular, if v r has zero mean and the stable zone
narrow,b!V, then Eq.~10! can be further approximated b

assuming thatP(v r)5(1/A2psv)e2vr
2/2sv does not change

much over the stable zone,

Ḡ'
b2p

2

1

A2psv

e2V2/2sv. ~11!

Figure 2 shows that the predictions of Eq.~11! are in good
agreement with numerically calculated synchronization ra
~large dots! for driven phase oscillators withb50.5, V51,
and frequency distributions withsv50.25 to 4 andRA
50.5 to 2. The breakdown of the adiabatic theory is a
illustrated in Fig. 2 by the significantly reduced synchroniz
tion rates~small dots! for rapidly fluctuating driving forces
with broad frequency distributions and largeRA55 –20.
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Case 4. The classic van der Pol oscillator@Eq. ~1!# is a
harmonic oscillator with nonlinear damping that exhibits
stable limit cycle@5#. If the solution is expressed in oscilla
tory form x(t)[a(t)sinu(t), then for smalle the van der Pol
equations can be approximated by equations for the am
tudea(t) and phaseu(t), derived by neglecting rapidly os
cillating terms@5,4#,

da

dt
'

ea

2
~12a2/4!, ~12!

du

dt
'V. ~13!

In this case every solution converges to the limit cyclex(t)
'2sin@u(t)# whereu(t)5Vt1u(0).

If the van der Pol oscillatorx(t) is driven with a force
F(t)5Bsinf(t), then for smalle the equations for the oscil
latory form @4# of the solution can again be approximated
neglecting rapidly oscillating terms,

du

dt
'V2

B

4
@cos~u2f!2cos~u1f!#. ~14!

In particular, when the driving term has a constant freque
v, Eq. ~14! can be approximated further by neglecting t
rapidly oscillating term cos(u1vt) to arrive at the simple
phase model

du

dt
'V2

B

4
cos@u~ t !2vt#, ~15!

and synchronization of two vdP oscillators may be expec
when uV2vu,B/4 @18#.

Using the correspondence betweenb[B/4, the previous
results for the phase model provide useful estimates for
average rate of synchronization for weakly nonlineare
<1) van der Pol oscillators with random driving. For e

FIG. 2. Predicted synchronization ratesG for randomly driven
phase oscillators withV51 andb50.5 ~solid curve! are compared
with the results of numerical simultations as functions ofsv for
small values of the adiabaticity parameter~large dots! with RA be-
tween 0.5 and 2~plotted from left to right!, and for largeRA55 –20
~small dots!. The synchronization rates in the numerical simulatio
are calculated by measuring the average exponential rate of con
gence of the solutions for two identical driven oscillators with d
ferent initial conditions. The different dots plotted for eachsv cor-
respond to different realizations of the random drive.
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ample, in Fig. 1 two van der Pol oscillators withe51 and
V51 are synchronized by a random force withB50.8 and
sv51 at an average exponential rate ofG.0.04. This com-
pares well with the predicted rateG50.03, derived by dou-
bling the rate given by Eq.~11! with b50.2 because of the
dual contributions from positive and negative frequencies
Eq. ~14!.

Because the van der Pol oscillator admits additional sta
zones near harmonics and subharmonics of the natural
quency of the undriven oscillator, the phase model tend
underestimate the synchronization rate for variable freque
drives. However, the success of this adiabatic analysis
gests a practical procedure for assessing the asymptotic
bility for strongly nonlinear oscillators when the reduction
the simple phase model breaks down. In these cases the
chronization rate can still be estimated for slowly varyi
frequency drives by first measuring the convergence rates
an array of constant drive frequencies and then using th
results to average the instantaneous convergence rate
the randomly fluctuating drive. Figure 3 demonstrates
utility of this general program for quantitatively character
ing the synchronization of randomly driven nonlinear osc
lators, using the example of a strongly nonlinear van der
oscillator withe54 subject to strong random forces withB
51 and 2.

A wide variety of nonlinear oscillators are found to e
hibit reliable synchronization when driven by either period
or aperiodic inputs. This paper extends results for cons
frequency drives to slowly fluctuating drives and provid
analytical estimates for the conditions, rates, and struct
stability for the synchronization of randomly driven pha
oscillators. These results suggest a different way of think
about the response of nonlinear oscillators to aperiodic
puts by demonstrating the close relationship to the perio
cally driven case. Specifically, the reliable response of a n
s
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linear oscillator to a fluctuating input may be mo
dependent on the frequency spectrum of the input than on
overall amplitude. Finally, this work suggests a practical p
cedure for theoretically and experimentally evaluating
conditions and rates of synchronization for more realis
nonlinear oscillators and aperiodic driving forces by fi
measuring the response to different periodic drives and t
averaging these results over the spectrum of the rand
drive.
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FIG. 3. The predicted synchronization ratesG for randomly
driven van der Pol oscillators withe54, evaluated using the nu
merical results for periodic driving alone~curves!, are compared
with the results of direct numerical simulations~dots! for B52
~solid curve and small dots! andB51 ~dashed curve and large dots!
as functions ofsv . Remarkably, the adiabatic estimates show go
agreement even though the approximate adiabaticity paramete
the random phase drive varies fromRA51 to 16 in these simula-
tions.
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