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When nonlinear oscillators with stable limit cycles are subject to periodic forces, these oscillators may
become entrained or mode locked to the driving force. Remarkably, a similar phenomenon occurs when the
nonlinear oscillators are driven by a random force. In particular, when nonlinear oscillators with different
initial conditions are strongly driven with the same random force, their fluctuating behavior may reliably
converge to an identical, synchronized response. Analytical estimates are derived for the conditions, rates, and
structural stability for synchronization of a broad class of randomly driven nonlinear oscillators, which suggest
different experimental procedures for assessing the nonlinear response of biological, chemical, and physical

oscillators to fluctuating input$S1063-651X98)50612-5

PACS numbg(s): 05.45:+b, 05.40+j, 87.10+e

Mathematical models of nonlinear oscillators describe aasymptotically stablg7] solutions for aperiodically driven
wide variety of physical and biological phenomena that ex-nonlinear systems. A simple example of the synchronization
hibit self-sustained oscillatory behavior, from the the van dewof randomly driven nonlinear oscillators was believed to be
Pol (vdP) equations for nonlinear electrical circuits, to the first observed by Pikovskii in 198¢8].

Hodgkin-Huxley model for spiking neurons, to simple phase ~ This synchronization of aperiodically or randomly driven
models for the flashing of fireflids]. When strongly driven  nonlinear oscillators is structurally stable, which means that
by forces that are periodic in time, these oscillators mayAPProximate synchronization is realized even in the presence

become entrained to oscillate at the same frequency as t
driving force. This phenomenon of “mode locking” or

“phase locking” is epitomized by Huygens'’s ancient obser-
vation that pendulum clocks hung from the same beam ten
to synchronize due to the common periodic vibrations of the
beam[2]. Although there is a vast literatuf@—5] on this

id small variations(or errorg in the parameters of the sys-

tems and in small levels of additional noise in the driving
signal. This structural stability is essential for practial appli-
8ations in secure communication, control theory, and syn-
chronization of biological oscillators, since real systems will
inevitably have small variations and be subject to back-
ground noisq6].

ub|ql_J|tops phenomenop, there are few analylca}l results. For example, nonlinear oscillators used to model the spik-
Qualitatively, mode locking occurs when the periodic pertur-ing voltage dynamics of neurons, such as the Fitzhugh-
bation is sufficiently strong and the frequency of the pertur'Nagumo, Morris-Lecar, and Hodgkin-Huxley equatidgs,
bation is sufficiently close to the unperturbed freque@y  are all found to exhibit asymptotically stable, synchronized
to a rational mu|tlp|¢0f the nonlinear oscillator. One impor- behavior when Strong'y driven by random'y ﬂuctuating cur-
tant consequence of this effect is that a common periodigents[10]. This effect provides a dynamical mechanism for
perturbation can force two nonlinear oscillators, which starthe remarkable reliability of the spike timing recently ob-
out with different initial conditions, to converge to identical, served[11] in the response of neocortical neurons to fluctu-
synchronized states. ating input currents that resemble real synaptically generated
Remarkably, this synchronization also occurs when noneurrents. The same levels of spike timing reliability are
linear oscillators are driven by random forces. In this case iachieved in the different mathematical models for neuronal

is not clear what the oscillator is mode locking to, since the
driven oscillator also exhibits random fluctuations. Neverthe-
less, random forcing applied to two identical nonlinear oscil-

2
1

lators with different initial conditions may reliably lead to x(t) 0

asymptotically stable, synchronized states. This phenomenon
is graphically illustrated in Fig. 1, which displays the evolu-
tion of two van der Pol oscillatorg3,5],
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with different initial conditions, driven by a common random ¢
force F(1). FIG. 1. Time-evolution ofx(t) is plotted for two randomly

Recently, there has been considerable interest in the symiven vdP oscillators withl=1 and e=1. The driving force
chronization of chaotically driven nonlinear systenés5]. F(t)=0.8sinp(t) with a Gaussian random phaggt) is shown in
However, chaos is not necessary for the realization of thishe lower curve. Starting from two different initial conditions,
striking effect. The chaotically driven systems are speciak(0)=1 (solid line) and x(0)=—1 (dashed ling the solutions
cases of the more general phenomenon of the possibility afonverge to indistinguishable curves ty 50.
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oscillations, even with small changes in initial conditions, ‘Q—w
<1, 4

cell parameters, and driving curreft0]. This reliability of b

spike timing is essential if single neurons are expected to

fanhfully encode temporal information in the timing of suc- the driven oscillatox(t) will mode lock to the drive. Start-

cessive spikepl2]. : . : ing from any initial phase, the long-time solution to K@)
Although damped, driven linear oscillators always lead toconverges {@(t) = wt + 7, which has the same frequency as

asymptotically stable solution&], the asymptotic stability the periodic drive but i’s shifted by a constant phase

of driven nonlinear oscillators is very much dependent on the:arcsirﬁ(ﬂ—w)/b]. The mode-locked dynamics of the

parameters and properties of the nonlinear system, and of tr}ﬁiven oscillatorx(t) is asymptotically stablé7], and the

d”VE’T' Formally, this stability can be established by de.mon'Lyapunov exponent that determines the exponential rate of
strating that all of the Lyapunov exponents are negative or.

by constructing an appropriate Lyapunov functiph5|. convergencey, can be calculated by a simple perturbation

However, in general, the Lyapunov exponents can only bgnalyss of Eal3) 5],

calculated numerically for specific systems and the rigorous ———
Lyapunov functions can only be constructed in special cases. y=bcosy=b"~(Q-w)".
To provide a theoretical foundation for the general phe- . . .
nomenon of the synchronization of nonlinear oscillators by ©On€ straightforward but important consequence of this
aperiodic inputs, this paper will focus on nonlinear oscilla-2SyMptotic stability is that the long-time behavior of two
tors that are well approximated by simple phase modeds ~ driven os_cillator9<(t) andx(t), with different initial pﬂases
General analytical expressions are derived to provide quarg, and 6, will always synchronize (i.e., |6(t)— 6(t)|
titative estimates of the conditions for observing the synchro—~e~ ") as the individual solutions convergat the exponen-
nization for this broad class of randomly driven nonlineartial rate y) toward the common asymptotic solutiph5].
oscillators as a function of the fluctuation amplitudes and Another important feature of the synchronization of peri-
frequency spectra along with estimates for the rates of coredically driven nonlinear oscillators is that this behavior is

vergence to the synchronized solutions and the requirementgycturally stable. If two different oscillatorg,andx, with
for structural stability. These results reveal that the synchroé"ghtly different natural frequencieﬁz—(_zz SO or cou-

nization of randomly driven oscillators is closely related to . . -
the periodically driven case, which suggests different experip“,ng st_rengthsb—bzép are driven by the same periodic
mental procedures for assessing the nonlinear response grliv_e with frequencye inside the respective stable zones
biological, chemical, and physical oscillators to fluctuating efined by.Eq_(4), t_hen both qscnlators will still be entr.amed
inputs. Finally, both the analytical and empirical analyses ard? the pe_rlodlc erve and will appear to be ap_prOX|mater
used to successsfully predict the synchronization of ran-SynChEm'ZQd with a small, constant phase differedoe
domly driven vdP oscillatorésuch as those displayed in Fig. = 7~ 7~[Q—(Q—w)(sb/b)]/y.
1). On the other hand, if the driving frequenay is too far
First, consider two nonlinear oscillators with stable limit away from the natural frequendy or if the couplingb is too
cycles, x(t)=A(t)siné(t) and y(t)=B(t)sing(t), character- weak [so that Eq.(4) is not satisfiedi then there is no
ized by their phase#(t) and ¢(t). Very generally, the in- asymptotic convergence to a common, mode-locked solu-
teraction of two(weakly coupledl nonlinear oscillators can tion, and there is no synchronization. The evolutiox(@ is
be expressed in terms of the phase differences dld@e  quasiperiodic and different initial conditions lead to distinct
For example, the evolution of the oscillator may be ap- long-time solutions.

®

proximately described by the simple phase mddd] Case 2. For time-dependent drive frequencieft),
nearby solutions will tend to converge when the frequency
de . lies within the stable zone,
gp @ bsinl ot —¢(v)]. )
O —ow(t)
5 <1. (6)

If we assume unidirectional coupling fromto x, and
allow the time-dependent phasg(t) in Eq. (2) to be an . . o
arbitrary function of time, then Eq2) can be treated as a !n particular, if the frequency of the periodic drivgt) var-
simple, “toy” model for studying the response of a nonlin- €S slo_vvly .through the stable zone, then the oscHIa_tor angle
ear oscillator to random phase noise. The analysis is furthef(t) will still try to track the angle of the drives(t) with a
simplified by definingz(t)= 6(t)— #(t) and rewriting Eq. time-dependent phase shifj(t) ~arcsif[Q—w(t)/b}, and

(2) as nearb_y solutions will converge exponentially at an approxi-
dy mate instantaneous rate,
— =[Q—o(t)]-bsiny(t), (€)
dt Y=~ 02— [0~ w()]2 )

wherew(t)=d¢(t)/dt. Then a variety of different responses

are possible depending on the magnitude of the coufding A more detailed analysigsl6] of the phase model with time-

and the time dependence of the drive frequency). dependent drive frequency indictates that a sufficient condi-
Case 1. The phase model results for constant frequendjon for the validity of these adiabatic approximations is pro-

drive ¢(t) = wt are well known[5]. Whenw lies within the  vided by the requirement that the transit time through the

stable zone close to the natural frequefiLy stable zone be long compared with the convergence time or,
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equivalently, thatw and the rate of change @ be small 0.15
compared with the rate of synchronization,

do(t
‘;(t ) / Y1)2<1. ®

When conditiong6) and(8) are met, two nearby solutions
will converge toward synchronization as they approach the
common asymptotic solution during the transit through the
stable zone. As in the constant frequency case, this synchro-

nization is structurally stable in the sense that the evolution

of two different oscillators«(t) and x(t), with slightly dif-
ferent values for the natural frequencié$) or coupling
strengthséb, will approximately synchronize with a small

(bounded phase difference Sn=7n—p~{5Q—-[Q
—w(t)](sb/b)}H y(t).

Whenw(t) leaves the stable zoné(t) will no longer be
constrained to closely track the driving angle and two drive
oscillators will tend to desynchronize. Nevertheless, syn-
chrony will be restored when the drive frequency enters th
stable zone again as long as the transit time through the
stable zone is long compared with the convergence time?.
Then the mean rate of synchronizatibrcan be estimated by
taking the time average of the instantaneous convergence
rate

T

(s}
(O]

FIG. 2. Predicted synchronization ratEsfor randomly driven
phase oscillators witf) =1 andb=0.5 (solid curve are compared
with the results of numerical simultations as functionsogf for
small values of the adiabaticity paramettarge dotg with R, be-
ntween 0.5 and 2plotted from left to right, and for largeR,=5-20
e(small dotg. The synchronization rates in the numerical simulations
are calculated by measuring the average exponential rate of conver-
ence of the solutions for two identical driven oscillators with dif-
erent initial conditions. The different dots plotted for eagf cor-
respond to different realizations of the random drive.

Case 4. The classic van der Pol oscillatBg. (1)] is a

= Eny(t)dt, 9) harmonic oscillator with nonlinear damping that exhibits a

0 stable limit cycle[5]. If the solution is expressed in oscilla-

using Eq.(7) when the drive frequency is in the stable zonetory form x(t)=a(t)siné(t), then for smalle the van der Pol
and y(t) =0 otherwise. _ _ _ equations can be approximated by equations for the ampli-
Case 3. For randomly varying drive frequencies the deteryyde a(t) and phasei(t), derived by neglecting rapidly os-

mination ofI' can be simplified by replacing the time aver- gjjjating terms[5,4],

age in Eq.(9) with an ensemble average. For example, if
¢(t) = ¢, (t) is a Gaussian random proc¢43] with a power
spectrumS(v) and variancer=(1/2w) [~ .. S(v)dw, then the
probability distributionP(w,) for the derivative of the ran-
dom phases,=dd, /dt will also be Gaussiafl7] with vari-
anceo,,= (1/27) [* .v*S(v)dv. In this case the adiabaticity
parameter in Eq8) can be estimated using the average ratio
Ra= o, /b? whereo,, =(1/27) [ v*S(v)dv is the vari-

(1—a?/4), (12

—~Q. (13)

In this case every solution converges to the limit cy{€)

ance ofdw,(t)/dt andb is the maximum convergence rate at ~2sir 6(t)] where 6(t) = Qt+ 6(0).

the center of the stable zone. Then, wigpis small, driven
oscillators may be expected to synchronize at a mean co
vergence rate,

I'= J'ijb\/bz—(ﬂ—wr)zP(wr)dwr. (10

de

In particular, if o, has zero mean and the stable zone is
narrow,b<(), then Eq.(10) can be further approximated by

If the van der Pol oscillatok(t) is driven with a force
r?f(t)z Bsing(t), then for smalle the equations for the oscil-
latory form[4] of the solution can again be approximated by
neglecting rapidly oscillating terms,

E%Q—Z[coie—qs)—cos(eﬂLqS)]. (14

! . -
assuming thaP(,) = (1/\27a.)e“>» does not change In particular, when the driving term has a constant frequency

much over the stable zone,

w, Eq. (14) can be approximated further by neglecting the

rapidly oscillating term co#{+wt) to arrive at the simple

b’°r 1 phase model

2 27o,

T~ e~ %20, (12)

Figure 2 shows that the predictions of Efjl) are in good
agreement with numerically calculated synchronization rates

0 _ B
at Q- ZCOS{ 0(t) — wt], (15

(large dot for driven phase oscillators with=0.5, Q =1, and synchronization of two vdP oscillators may be expected

and frequency distributions witlr,=0.25 to 4 andR, When|Q—w|<B/4[18].

=0.5 to 2. The breakdown of the adiabatic theory is also Using the correspondence betwees B/4, the previous
illustrated in Fig. 2 by the significantly reduced synchroniza-results for the phase model provide useful estimates for the
tion rates(small dotg for rapidly fluctuating driving forces average rate of synchronization for weakly nonlinear (
with broad frequency distributions and largg=5-20. <1) van der Pol oscillators with random driving. For ex-
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ample, in Fig. 1 two van der Pol oscillators wit+=1 and 0.4
Q=1 are synchronized by a random force wigk- 0.8 and .
o,=1 at an average exponential ratelof0.04. This com- 0.3
pares well with the predicted ralé=0.03, derived by dou- .o .
bling the rate given by Eq11) with b=0.2 because of the Co.2 .
dual contributions from positive and negative frequencies in
Eq. (14).

Because the van der Pol oscillator admits additional stable
zones near harmonics and subharmonics of the natural fre-
quency of the undriven oscillator, the phase model tends to 1 2 3 4 5
underestimate the synchronization rate for variable frequency
drives. However, the success of this adiabatic analysis sug- [0}

ests a practical procedure for assessing the asymptotic sta- . -
gility forrs)trongly rllaonlinear oscillators whgn the re):jugtion to .FIG' 3. The prEd'Ct.ed Synchron'zat'on ratesfor .randomly
. driven van der Pol oscillators wite=4, evaluated using the nu-
the simple phase model breaks down. In these cases the syn-

L . - - “’merical results for periodic driving alon@urves, are compared
chronization rate can still be estimated for slowly Varyingd yith the results of direct numerical simulatiotidoty for B=2

frequency drives by first measuring the convergence rates fc{Eolid curve and small dotsndB=1 (dashed curve and large dpts

an array of constant drive frequencies and then using thesg nctions obr,, . Remarkably, the adiabatic estimates show good
results to average the instantaneous convergence rateé O\ffieement even though the approximate adiabaticity parameter for
the randomly fluctuating drive. Figure 3 demonstrates thgne random phase drive varies fraRa=1 to 16 in these simula-
utility of this general program for quantitatively characteriz- tjons.

ing the synchronization of randomly driven nonlinear oscil-

lators, using the example of a strongly nonlinear van der Pdinear oscillator to a fluctuating input may be more

oscillator with e=4 subject to strong random forces wgh ~ dependent on the frequency spectrum of the input than on the

=1 and 2. overall amplitude. Emally, this work suggests a practlc_:al pro-
A wide variety of nonlinear oscillators are found to ex- cedure for theoretically and experimentally evaluating the

hibit reliable synchronization when driven by either periodic€onditions and rates of synchronization for more realistic

or aperiodic inputs. This paper extends results for constaﬂr?noenall'snuer?r: %ﬁgllggrznigdtoagﬁg?g'ni dgr\ﬂ)nd%cfg:i(\;/eess gx dfltrr?;n
frequency drives to slowly fluctuating drives and provides 9 P P

analytical estimates for the conditions, rates, and structura veraging these results over the spectrum of the random

stability for the synchronization of randomly driven phase

oscillators. These results suggest a different way of thinking Useful discussions with L. Abbott, W. Bialek, B. Ermen-
about the response of nonlinear oscillators to aperiodic introut, D. Selover, S. Strogatz, and A. Williamson, and sup-
puts by demonstrating the close relationship to the periodiport from the NSF(Grant Nos. PHY-9507574 and IBN-
cally driven case. Specifically, the reliable response of a non9634409 are gratefully acknowledged.
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