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We demonstrate that kinks exist in nonparametrically ac driven sine-Gordon systems if the ac drive is
sufficiently fast. It is found that, at a critical value of the drive amplitude, there are two stable and two unstable
equilibria in the sine-Gordon phase. The pairwise symmetry of these equilibria implies the existence of a
one-parameter family ofr-kink solutions in the reduced system. In the dissipative case of the ac driven
sine-Gordon systems, corresponding to Josephson junctions, the velocity is selected by the balance between the
perturbations. The results are derived from a perturbation analysis and verified by direct numerical simulations.
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Soliton bearing systems are very important for our under-r kink solutions moving with any prescribed velocity. In the
standing of collective phenomena in many physical systemsase of damped and driven SGE, we show that the velocity is
in the one-dimensional approximatigf]. Often, such sys- selected and only one of the-kinks survives. We verified
tems are perturbed in one form or another and sometimethe obtained results by performing numerical simulations of
these perturbations are temporally periodie-4]. If the per-  the ac driven SGE.
turbations are small, one can approximate the dynamics First, we consider the equation of motion for a directly

through the adiabatic perturbation technid&gl, where the  fgrced pendulump + sin=Mf(wt), whered is the phase of
integrability of the unperturbed system is used to assuMgye pendulumf is a mean-zero periodic functiod is con-
wave profiles for analytical perturbation techniques appliecstant, t represents a normalized time, and the normalized
to the “nearly integrable” system. However, if the perturba- frequencyw is assumed to be sufficiently large compared to
tions are large, we cannot simply assume the unperturbeghe natyral frequency of the pendulumg=1. We shift the

wave profiles as representing a good approximation to thgmphasis to the oscillating reference frame by the transfor-
dynamics since the near integrability is lost. mation

This problem was previously addressed for strong peri-
odic perturbations of sine-Gordon systefis8], where it — 0+ Mo 2F(wt 1
was shown that the direct ac drive can induce a Shapiro type ¢ 0 F(ob), @
locked phas€9,10] to which a 27 kink can localize. Simi- N .
larly, it has been demonstrattil—13 that a parametrically whereF has zero mean ard (_T).._ f(_T)' we th?;] obtain the
driven sine-Gordon system can produce stablenk propa-  Parametrically forced equatio+sin 6+Mw “F(wt)]=0,
gation due to the well known effective Kapitza potential of aWith the Hamiltonian
driven penduluni14]. ,

It is thereby well documented that strongly perturbed non- b .
linear soliton bearing systems can retain some forms of near H= 7—A(wt)COS( 0) +B(wt)sin(0), @
integrability in certain windows of the perturbation param-

eter space. Previous analyses for the sine-Gordon SyStelfherep is the momentum canonically conjugate dp and
have been performed using the analogies to the single PEIX(wt) = co§Mw 2F(wt)], B(wt)=siMMw 2F(wt)]. Using
dulum cases, where Shapiro phase locking exists for the di__/ - periodicity of A,B, we denote{A}=A—(A), {B}
rect drive, leading to stables kinks in a rescaled sine- =B—(B), where(- - .>;('1/277)f§wd7__ o '

Gordon chain. Following Refs.[11,12, we apply the normal form tech-

. In this Rapid Commumcanon we demons_trate thﬂ.‘t nigue, to move mean-zero terms to a higher order. Let the
k!nks can propagate in strongly p_erturbed, directly drlVenfirst canonical transformation be defined implicitly as
sine-Gordon chains if the perturbation parameters are chosen

near the values, leading to zero crossing of the relevant

Bessel functions determining the size of a Shapiro step. The P=p1tdgWi(6.pa.1),
analysis is based on the normal form technique that relies

upon a time scale separation between the rapidly oscillatindhe transformed Hamiltonian takes the fokin=H + Wy, .
driving force and a relatively slow behavior of the residual To remove mean-zero rapidly oscillating terms, we choose
field. This technique was previously applied to the parametriW; = o~ {A} _;cos@)— o YB}_;sin(d), where {A}_, is a
cally forced sine-Gordon equatidB8GE) in [11,12. We find  mean-zero antiderivative ¢fA}. With this choice ofW; the

for nondissipative ac driven SGE a one-parameter family ofransformed Hamiltonian takes the form

91=0+ &plwl(ﬁ,pl,t). (3)
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2 .
p ) dii— Dyt Sinp=MT(wt). (10
H1=?1—<A)cos¢91+<B>sm 6,—w p; R
_ After applying the transformatiofi) we obtain the evolution
X ({A}-1sin6;+{B}_,c0s6,) equation for a new phasé on top of a rapidly oscillating
-2 background fieldwritten in the canonical forin
+ T({A},lsin01+{B},lcosal)2. (4)

0,=p, Pi=0y—SiM0+Mo ?F(wt)]. (12)

Unlike the original Hamiltonian2), the transformed Hamil-
tonianH; contains terms with small~ w ™~ 2) positive time-
dependent coefficientsA}? , ,{B}2,, which have nonzero
averages for any nontrivial choice &f,f, and therefore,
cannot be removed from the Hamiltonian.

These terms have an essential effect on the system dy- H= f i
namics when the lower order potential energy terms vanish, —w
i.e., (Ay=(B)=0 (all terms~w ! always have zero aver-
ages. To remove the explicit time dependence from the,ynere the error term®(w3) contain the derivatives up to
Hamiltonian up to the terms-w "%, we perform a series of e second order. For sufficiently large when we can ne-
canonical transformatlorlsi similar to E) (see alsd12)).  giect these terms, the above Hamiltonian corresponds to the
To remove the terms-w ™", we apply the transformation  4oyple SGE. After retracing the identical transformatity

the obtained approximate solutions becoméinks on to

P1=P2t g, Wa(01,P2,1),  02= 011 9p,Wa(01,P2,1), of the rapidly ogrt):illating background field. P

(5) We now consider thelamped and driven SGE

Invoking the canonical transformations similar to those for
the directly forced pendulunisee alsd12]) and using Eq.
(8), we obtain for the corresponding Hamiltonian

Ch

— +H(P.0)+0(w ¥ (dx, (12

with D~ Pxxtsing=Mf(wt) —ad+ 7, (13

W,= o 2p,[{A}_,sin(6;) —{B} _,coq 6,)]. (6) o _ '
which is frequently used to describe long Josephson junc-
After straightforward calculations we obtain the transformedtions[6], where¢ is the phase difference between the quan-
Hamiltonian tum mechanical wave functions of the two superconductors
defining the junction, the normalized tinhés measured rela-
tive to the inverse plasma frequency, spacis normalized
to the Josephson penetration depth, and the nonlinear term
represents tunneling of superconducting Cooper pairs, nor-
+({B}21)cos0,+({A}_4{B}_1)sin 20,) + 0 R malized to the critical current density. The perturbations on
_3 the right-hand side of the equation represent, respectively, a
+0(w ™), @) normalized ac driving current, a dissipative term arising from
tunneling of quasiparticles, and a normalized dc bias current.
To obtain an effective equation of the evolution on the
slow time scale, we apply the above canonical transforma-
tions. Since the system is no longer Hamiltonian, we work
p2 =2 with equations of motion rather than Hamiltonians. We start
H(P,0)= ——C cog®—y)— ——D cog20 - ), with a homogeneous transformation to the oscillating refer-
2 2 ence frameg= 6+ G(t), analogous to Eql), designed to
®) remove the free oscillatory term. Substituting this transfor-
mation to Eq.(13) and choosing the functio® so that it

2 -2
sz% —(A)cosf,+(B)sin 6, + w7(<{A}271>3i”292

whereR turns out to be mean ze{®)=0. Finally, applying
the third transformation wittW,;=w 3R_; and neglecting
terms~ w3 we obtain

where 7 : i
solves the equatio®+ aG=Mf(wt), we obtain the equa-
(A)=C cogy), ({A}Z_l)—<{B}31)=2D cog ), tions of motion in the canonical form
(BY=C sin(y), —{A}_1{B}_,)=D sin(6), (9) 6:=p, Pt=bxx—aptn—sin+G(ot)]. (14

andP and® are new canonical variables. For the particular case df( 7) =sin 7, we find

For C#0 there is only one stable equilibriu@=y and
one unstable equilibriun® =7+ vy, for large frequencies; a M M
this equilibrium corresponds to the usual phase-locked Sha- G(r)=————C0sT————sinr. (15)
piro state known from Josephson junctig@$ However, as ©a"tw a’tw

C passes through 0, a bifurcation occurs &ad C=0) the

system has two stable equilibria given By=6/2, w+ 6/2  Using the notationg\= cosG(wt), B=sinG(wt) and assum-

and two unstable equilibria given b =/2+ 8/2, 37/2  ing that (A)=(B)=0, we apply the series of transforma-

+ 612. tions, as we did for the directly forced pendulum. This
Now we turn to thedirectly forced SGE moves all mean-zero terms to higher order, leading to
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FIG. 1. Behavior ofr-kink solution in the ac driven SGELL). FIG. 2. Behavior ofm-kink solution in the damped and driven

The solid line corresponds to the initial profile given by E©9), SGE (14). The solid line corresponds to the initial profit§x,0)
with c=0.5 andF (wt) =sin(wt). The dashed line correspondstto  =V(x,0)+ arcsing?#/D), with V given by Eq.(19) and G(wt)
=300. The parameters awe= 10, time stepdt=0.01, mesh size given by Eq.(15). The dashed line corresponds tte 150. The

dx=0.1, system sizé& =1500. parameters are =6, time stepdt=0.01, mesh sizelx=0.1, sys-
tem sizelL = 1500, «=0.03, »= —0.003.
0= P+O(w’3),
‘ {Al-1 {B}-1
) 0=V, p=V,— sin(V) — cogV), (20
P;=0,,—aP+7— o 2D sin(20—8)+O0(w 3, w w

(16 which we use to generate initial conditions for Ef1).

We have performed numerical simulations of Efl),

. which is equivalent to the original directly forced SGH).
Eq. (16) are assumed to be sufficiently small, so that thee |,geq g second-order Iea%-frog metgod, with initial con-

corresponding terms could be considered as a perturbatiogtions given by Eq(20). The coefficientD and 6 in Eq.
Then, in zeroth order i, 7, the systen(16) reducesafter (19 are calculated from Eq9): D=0.2270596- -; d~.
neglecting terms~w %) to SGE, which hasr-kink solu-  Figure 1 shows the results of the simulations. The driving
tions. Therefore, slightly perturbed kinks are approximate amplitudeM was chosen so as to make bdh) and (B)
solutions of the original equatiofi3) on top of the rapidly vanish:Mw~2~2.4048 - - . The velocityc in Eq. (19) was
oscillating background field. taken asc=0.5. The small parameter used in our perturba-
To verify the above predictions, we have performed a setion analysis iss= w 1. One can see from the figure that the
of numerical simulations. Rescaling the variables in equakink indeed moves with the velocitg=0.5 and that it is
tions of motion(16) [which in the Hamiltonian case corre- stable fort<300, much longer thae ! (in the considered

whereD and § are given by Eq(9). Constantsx and 7 in

spond to the Hamiltoniafl2)], by casee=0.1), which is a natural estimate for the validity of
averaging for time-periodic perturbation based on multiple
JD/2 scale procedure. For longer times=300), ther kink be-
x=20-45, p——=P, comes unstable and eventually disintegrates due to the para-
metric resonances. A similar destruction of th&ink after a
. 2D - \/ﬁt w I[olrfjlg.me was observed in a parametrically excited SGE
@ ®w In the dissipative cas¢a#0 andn+#0), we have shown
that Eq.(13) reduces to Eq.16), after averaging over the fast
we obtain the sine-Gordon system time scale and neglecting terms of orders. Then only one
a-kink solution of Eq.(16), with a certain value ot, is
o 2 selected out of the entire family, because of the energy bal-

w
=p,, = —a——p,+—7n—siny. (18 ance consideration.
X Pe P X \/ﬁpX D" o 49 To find the selectedt, we substitute a traveling wave
ansatzZ=X—cT, into Eq.(18). In the zeroth order im and
In the Hamiltonian case(a=7=0), Eq. (18) has solitary 5 we obtainy,=4 arctafiexp @/v1—c?)]. The solvability
wave solutions which, after retracing the transformatn,  condition for the linearized equation for the first order cor-

read® =V(x,t), P=V,(x,t), where rection y4, gives us the velocity
+ oo
1) v2D[ x—ct f 'dZ
V(x,t)= = + 2 arctanex — | 19 _,Xo
(x,t) 2 { pT m” 19 C:_\/Ewn TNW

a\D J'“C( ’)de__ V8a?D + w2 5tw?’
Using Eq.(3) we return to the original variables, which gives X0

us the approximate solution (21
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We have simulated Eq.14), equivalent to the original tion in the unperturbed SGE. As a consequence, the pre-
forced and damped SGE3), with the initial conditions ob- dicted localization mechanism is limited to the high fre-
tained from Eq. (200 by adding a small correction quency region of parameter space. As the driving frequency
arcsing?®/D) to the first equation of E¢20), to compensate  is lowered, nonlinear mixing between the supposed high fre-
an additional energy transferred to the kink from the constanguency drive and low frequency wave dynamics become
source in Eq(14). The results of the simulations are given in more dominant, eventually leading to the destruction of lo-
Fig. 2. Thew kink in the figure moves with the velocity  calization and all coherent behavior. We have numerically
~0.79, which approximately coincides with the selected veegted that long time propagation ef kinks is possible for
locity c~0.81 obtained from Eq21). The plotted solution relatively low driving frequencies, as small as~5, and

remained intact for times<150. Shortly after that it is de- ., qarate driving amplitudesyl ~60. While technical Jo-

stroyed by higher order effects such as radiation and nonlméephson applications ofr-kink localization seem far re-
ear resonances.

We have demonstrated that directly strongly ac drivenmoved from the present, the above perturbation parameters

. ) i . . suggest that the predicted effect may exist within experimen-
SGE can produce localized kinks in special regions of : : .

. .k . . tal parameters used for generating Shapiro steps in current-
parameter space. These regions coincide with the regions. - e characteristics of Josenhson iunctions
where 27-kink localization (Shapiro stepsvanishes. The g P J '
formalism for demonstrating the existence of thekinks is This work was performed under the auspices of the U.S.
based on a time scale separation technique, where the &epartment of Energy. The work of V.Z. was supported by
drive is assumed to be fast compared to any natural oscilladhe NSF under Grant No. DMS-9627721.

[1] See, e.g., Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. [8] Niels Gronbech-Jensen, Yuri S. Kivshar, and Mario Salerno,

61, 763(1989. Phys. Rev. Lett70, 3181(1993.

[2] M. Salerno, M. R. Samuelsen, G. Filatrella, S. Pagano, and R.[9] See, e.g., A. Barone and G. PatgrRtiysics and Applications
D. Parmentier, Phys. Rev. 81, 6641(1990. of the Josephson Effe(Wiley, New York, 1982.

[3] M. Cirillo and F. L. Lloyd, J. Appl. Phys61, 2581(1987. [10] J. Miles, Phys. Lett. AL13 295(1988.

[4] G. Rotoli, G. Costabile, and R. D. Parmentier, Phys. Rev. B[11] V. Zharnitsky, I. Mitkov, and M. Levi, Phys. Rev. B7, 5033
41, 1958(1990. (1998.

[5] D. J. Kaup and A. C. Newell, Phys. Rev. 1B, 5162(1978. [12] I. Mitkov and V. Zharnitsky, Physica o be published

[6] D. W. McLaughlin and A. C. Scott, Phys. Rev. 28, 1652 [13] Yu. S. Kivshar, N. Grabech-Jensen, and M. R. Samuelsen,
(1978. Phys. Rev. B45, 7789(1992.

[7] Niels Gronbech-Jensen and Yuri S. Kivshar, Phys. Lett74 [14] See, e.g., L. D. Landau and M. Lifshitkechanics(Perga-
338(1992. mond Press, Oxford, 1960



