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p kinks in strongly ac driven sine-Gordon systems
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We demonstrate thatp kinks exist in nonparametrically ac driven sine-Gordon systems if the ac drive is
sufficiently fast. It is found that, at a critical value of the drive amplitude, there are two stable and two unstable
equilibria in the sine-Gordon phase. The pairwise symmetry of these equilibria implies the existence of a
one-parameter family ofp-kink solutions in the reduced system. In the dissipative case of the ac driven
sine-Gordon systems, corresponding to Josephson junctions, the velocity is selected by the balance between the
perturbations. The results are derived from a perturbation analysis and verified by direct numerical simulations.
@S1063-651X~98!51607-8#
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Soliton bearing systems are very important for our und
standing of collective phenomena in many physical syste
in the one-dimensional approximation@1#. Often, such sys-
tems are perturbed in one form or another and someti
these perturbations are temporally periodic@2–4#. If the per-
turbations are small, one can approximate the dynam
through the adiabatic perturbation technique@5,6#, where the
integrability of the unperturbed system is used to assu
wave profiles for analytical perturbation techniques appl
to the ‘‘nearly integrable’’ system. However, if the perturb
tions are large, we cannot simply assume the unpertur
wave profiles as representing a good approximation to
dynamics since the near integrability is lost.

This problem was previously addressed for strong p
odic perturbations of sine-Gordon systems@7,8#, where it
was shown that the direct ac drive can induce a Shapiro
locked phase@9,10# to which a 2p kink can localize. Simi-
larly, it has been demonstrated@11–13# that a parametrically
driven sine-Gordon system can produce stablep-kink propa-
gation due to the well known effective Kapitza potential o
driven pendulum@14#.

It is thereby well documented that strongly perturbed n
linear soliton bearing systems can retain some forms of n
integrability in certain windows of the perturbation param
eter space. Previous analyses for the sine-Gordon sy
have been performed using the analogies to the single
dulum cases, where Shapiro phase locking exists for the
rect drive, leading to stable 2p kinks in a rescaled sine
Gordon chain.

In this Rapid Communication we demonstrate thatp
kinks can propagate in strongly perturbed, directly driv
sine-Gordon chains if the perturbation parameters are ch
near the values, leading to zero crossing of the relev
Bessel functions determining the size of a Shapiro step.
analysis is based on the normal form technique that re
upon a time scale separation between the rapidly oscilla
driving force and a relatively slow behavior of the residu
field. This technique was previously applied to the parame
cally forced sine-Gordon equation~SGE! in @11,12#. We find
for nondissipative ac driven SGE a one-parameter family
PRE 581063-651X/98/58~1!/52~4!/$15.00
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p kink solutions moving with any prescribed velocity. In th
case of damped and driven SGE, we show that the veloci
selected and only one of thep-kinks survives. We verified
the obtained results by performing numerical simulations
the ac driven SGE.

First, we consider the equation of motion for a direc
forced pendulumf̈1sinf5Mf(vt), wheref is the phase of
the pendulum,f is a mean-zero periodic function,M is con-
stant, t represents a normalized time, and the normaliz
frequencyv is assumed to be sufficiently large compared
the natural frequency of the pendulum,v051. We shift the
emphasis to the oscillating reference frame by the trans
mation

f5u1Mv22F~vt !, ~1!

whereF has zero mean andF9(t)5 f (t). We then obtain the
parametrically forced equationü1sin@u1Mv22F(vt)#50,
with the Hamiltonian

H5
p2

2
2A~vt !cos~u!1B~vt !sin~u!, ~2!

wherep is the momentum canonically conjugate tou, and
A(vt)5cos@Mv22F(vt)#, B(vt)5sin@Mv22F(vt)#. Using
2p/v periodicity of A,B, we denote$A%5A2^A&, $B%
5B2^B&, where^•••&[(1/2p)*0

2pdt••• .
Following Refs.@11,12#, we apply the normal form tech

nique, to move mean-zero terms to a higher order. Let
first canonical transformation be defined implicitly as

p5p11]uW1~u,p1 ,t !, u15u1]p1
W1~u,p1 ,t !. ~3!

The transformed Hamiltonian takes the formH15H1W1t .
To remove mean-zero rapidly oscillating terms, we choo
W15v21$A%21cos(u)2v21$B%21sin(u), where $A%21 is a
mean-zero antiderivative of$A%. With this choice ofW1 the
transformed Hamiltonian takes the form
R52 © 1998 The American Physical Society
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H15
p1

2

2
2^A&cosu11^B&sinu12v21p1

3~$A%21sinu11$B%21cosu1!

1
v22

2
~$A%21sinu11$B%21cosu1!2. ~4!

Unlike the original Hamiltonian~2!, the transformed Hamil-
tonianH1 contains terms with small (;v22) positive time-
dependent coefficients$A%21

2 ,$B%21
2 , which have nonzero

averages for any nontrivial choice ofM , f , and therefore,
cannot be removed from the Hamiltonian.

These terms have an essential effect on the system
namics when the lower order potential energy terms van
i.e., ^A&5^B&50 ~all terms;v21 always have zero aver
ages!. To remove the explicit time dependence from t
Hamiltonian up to the terms;v22, we perform a series o
canonical transformations similar to Eq.~3! ~see also@12#!.
To remove the terms;v21, we apply the transformation

p15p21]u1
W2~u1 ,p2 ,t !, u25u11]p2

W2~u1 ,p2 ,t !,
~5!

with

W25v22p2@$A%22sin~u1!2$B%22cos~u1!#. ~6!

After straightforward calculations we obtain the transform
Hamiltonian

H25
p2

2

2
2^A&cosu21^B&sinu21

v22

2
~^$A%21

2 &sin2u2

1^$B%21
2 &cos2u21^$A%21$B%21&sin 2u2!1v22R

1O~v23!, ~7!

whereR turns out to be mean zero^R&50. Finally, applying
the third transformation withW35v23R21 and neglecting
terms;v23 we obtain

H̃~P,Q!5
P2

2
2C cos~Q2g!2

v22

2
D cos~2Q2d!,

~8!

where

^A&5C cos~g!, ^$A%21
2 &2^$B%21

2 &52D cos~d!,

^B&5C sin~g!, 2^$A%21$B%21&5D sin~d!, ~9!

andP andQ are new canonical variables.
For CÞ0 there is only one stable equilibriumQ5g and

one unstable equilibriumQ5p1g, for large frequencies
this equilibrium corresponds to the usual phase-locked S
piro state known from Josephson junctions@9#. However, as
C passes through 0, a bifurcation occurs and~for C50) the
system has two stable equilibria given byQ5d/2, p1d/2
and two unstable equilibria given byQ5p/21d/2, 3p/2
1d/2.

Now we turn to thedirectly forced SGE
y-
h,

d

a-

f tt2fxx1sinf5M f ~vt !. ~10!

After applying the transformation~1! we obtain the evolution
equation for a new phaseu on top of a rapidly oscillating
background field~written in the canonical form!

u t5p, pt5uxx2sin@u1Mv22F~vt !#. ~11!

Invoking the canonical transformations similar to those
the directly forced pendulum~see also@12#! and using Eq.
~8!, we obtain for the corresponding Hamiltonian

H5E
2`

1`FQx
2

2
1H̃~P,Q!1O~v23!Gdx, ~12!

where the error termsO(v23) contain the derivatives up to
the second order. For sufficiently largev, when we can ne-
glect these terms, the above Hamiltonian corresponds to
double SGE. After retracing the identical transformation~1!,
the obtained approximate solutions becomep kinks on top
of the rapidly oscillating background field.

We now consider thedamped and driven SGE

f tt2fxx1sinf5M f ~vt !2af t1h, ~13!

which is frequently used to describe long Josephson ju
tions @6#, wheref is the phase difference between the qua
tum mechanical wave functions of the two superconduct
defining the junction, the normalized timet is measured rela-
tive to the inverse plasma frequency, spacex is normalized
to the Josephson penetration depth, and the nonlinear
represents tunneling of superconducting Cooper pairs,
malized to the critical current density. The perturbations
the right-hand side of the equation represent, respective
normalized ac driving current, a dissipative term arising fro
tunneling of quasiparticles, and a normalized dc bias curr

To obtain an effective equation of the evolution on t
slow time scale, we apply the above canonical transform
tions. Since the system is no longer Hamiltonian, we wo
with equations of motion rather than Hamiltonians. We st
with a homogeneous transformation to the oscillating ref
ence frame,f5u1G(t), analogous to Eq.~1!, designed to
remove the free oscillatory term. Substituting this transf
mation to Eq.~13! and choosing the functionG so that it
solves the equationG̈1aĠ5M f (vt), we obtain the equa-
tions of motion in the canonical form

u t5p, pt5uxx2ap1h2sin@u1G~vt !#. ~14!

For the particular case off (t)5sint, we find

G~t!52
a

v

M

a21v2
cost2

M

a21v2
sint. ~15!

Using the notationsA5cosG(vt), B5sinG(vt) and assum-
ing that ^A&5^B&50, we apply the series of transforma
tions, as we did for the directly forced pendulum. Th
moves all mean-zero terms to higher order, leading to
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Q t5P1O~v23!,

Pt5Qxx2aP1h2v22D sin~2Q2d!1O~v23!,
~16!

whereD andd are given by Eq.~9!. Constantsa andh in
Eq. ~16! are assumed to be sufficiently small, so that
corresponding terms could be considered as a perturba
Then, in zeroth order ina,h, the system~16! reduces~after
neglecting terms;v23) to SGE, which hasp-kink solu-
tions. Therefore, slightly perturbedp kinks are approximate
solutions of the original equation~13! on top of the rapidly
oscillating background field.

To verify the above predictions, we have performed a
of numerical simulations. Rescaling the variables in eq
tions of motion~16! @which in the Hamiltonian case corre
spond to the Hamiltonian~12!#, by

x52Q2d, px

AD/2

v
5P,

X5
A2D

v
x, T5

A2D

v
t, ~17!

we obtain the sine-Gordon system

xT5px , pxT5xXX2a
v

A2D
px1

v2

D
h2sinx. ~18!

In the Hamiltonian case(a5h50), Eq. ~18! has solitary
wave solutions which, after retracing the transformation~17!,
readQ5V(x,t), P5Vt(x,t), where

V~x,t !5
d

2
12 arctanFexp

A2D

v S x2ct

A12c2D G . ~19!

Using Eq.~3! we return to the original variables, which give
us the approximate solution

FIG. 1. Behavior ofp-kink solution in the ac driven SGE~11!.
The solid line corresponds to the initial profile given by Eq.~19!,
with c50.5 andF(vt)5sin(vt). The dashed line corresponds tot
5300. The parameters arev510, time stepdt50.01, mesh size
dx50.1, system sizeL51500.
e
n.

t
-

u5V, p5Vt2
$A%21

v
sin~V!2

$B%21

v
cos~V!, ~20!

which we use to generate initial conditions for Eq.~11!.
We have performed numerical simulations of Eq.~11!,

which is equivalent to the original directly forced SGE~10!.
We used a second-order leap-frog method, with initial co
ditions given by Eq.~20!. The coefficientsD and d in Eq.
~19! are calculated from Eq.~9!: D50.2270596•••; d'p.
Figure 1 shows the results of the simulations. The driv
amplitudeM was chosen so as to make both^A& and ^B&
vanish:Mv22'2.4048••• . The velocityc in Eq. ~19! was
taken asc50.5. The small parameter used in our perturb
tion analysis ise5v21. One can see from the figure that th
kink indeed moves with the velocityc'0.5 and that it is
stable fort<300, much longer thane21 ~in the considered
casee50.1), which is a natural estimate for the validity o
averaging for time-periodic perturbation based on multi
scale procedure. For longer times (t>300), thep kink be-
comes unstable and eventually disintegrates due to the p
metric resonances. A similar destruction of thep kink after a
long time was observed in a parametrically excited S
@11,12#.

In thedissipative case(aÞ0 andhÞ0), we have shown
that Eq.~13! reduces to Eq.~16!, after averaging over the fas
time scale and neglecting terms of orderv23. Then only one
p-kink solution of Eq.~16!, with a certain value ofc, is
selected out of the entire family, because of the energy
ance consideration.

To find the selectedc, we substitute a traveling wav
ansatz,Z5X2cT, into Eq.~18!. In the zeroth order ina and
h, we obtainx054 arctan@exp (Z/A12c2)#. The solvability
condition for the linearized equation for the first order co
rectionx1, gives us the velocity

c52
A2vh

aAD

E
2`

1`

x08dZ

E
2`

1`

~x08!2dZ

52
phv

A8a2D1p2h2v2
.

~21!

FIG. 2. Behavior ofp-kink solution in the damped and drive
SGE ~14!. The solid line corresponds to the initial profileu(x,0)
5V(x,0)1arcsin(v2h/D), with V given by Eq. ~19! and G(vt)
given by Eq. ~15!. The dashed line corresponds tot5150. The
parameters arev56, time stepdt50.01, mesh sizedx50.1, sys-
tem sizeL51500,a50.03,h520.003.
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We have simulated Eq.~14!, equivalent to the origina
forced and damped SGE~13!, with the initial conditions ob-
tained from Eq. ~20! by adding a small correction
arcsin(v2h/D) to the first equation of Eq.~20!, to compensate
an additional energy transferred to the kink from the cons
source in Eq.~14!. The results of the simulations are given
Fig. 2. Thep kink in the figure moves with the velocityc
'0.79, which approximately coincides with the selected
locity c'0.81 obtained from Eq.~21!. The plotted solution
remained intact for timest<150. Shortly after that it is de
stroyed by higher order effects such as radiation and non
ear resonances.

We have demonstrated that directly strongly ac driv
SGE can produce localizedp kinks in special regions o
parameter space. These regions coincide with the reg
where 2p-kink localization ~Shapiro steps! vanishes. The
formalism for demonstrating the existence of thep kinks is
based on a time scale separation technique, where th
drive is assumed to be fast compared to any natural osc
ys
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tion in the unperturbed SGE. As a consequence, the
dicted localization mechanism is limited to the high fr
quency region of parameter space. As the driving freque
is lowered, nonlinear mixing between the supposed high
quency drive and low frequency wave dynamics beco
more dominant, eventually leading to the destruction of
calization and all coherent behavior. We have numerica
tested that long time propagation ofp kinks is possible for
relatively low driving frequencies, as small asv;5, and
moderate driving amplitudes,M;60. While technical Jo-
sephson applications ofp-kink localization seem far re-
moved from the present, the above perturbation parame
suggest that the predicted effect may exist within experim
tal parameters used for generating Shapiro steps in curr
voltage characteristics of Josephson junctions.
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