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Average dynamics of the optical soliton in communication lines with dispersion management:
Analytical results
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Applying asymptotic methods to a previously derived system of ordinary differential equations, we present
an analytical description of the slow~average! dynamics of self-similar breathing pulses propagating in fiber
links with dispersion management. We derive asymptotic averaged quantities~adiabatic invariants! that char-
acterize the stable pulse propagation. In a particular, but practically important, case when the dispersion
compensation period is much larger than the amplification distance we have found analytically the fixed points
corresponding to the dispersion-managed solitons.@S1063-651X~98!51007-0#

PACS number~s!: 42.65.Tg, 03.40.Kf, 42.81.Dp, 89.70.1c
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I. INTRODUCTION

Recent impressive developments in lightwave transm
sion systems stimulated by increasing demands for telec
munication services are based both on innovations of te
nology and on advances in research. In particular,
realization of soliton-based transmission has clearly dem
strated how results of the fundamental soliton theory can
successfully exploited in very important practical applic
tions ~see, e.g.,@1–3# and references therein!. On the other
hand, the experimental implementation of optical solitons
high-bit-rate communication systems has stimulated furt
research in soliton theory. In this Rapid Communication
present an analytical description of the envelope soli
propagating in a medium with large periodic variations
dispersion and nonlinearity. As a specific practical appli
tion we focus on dispersion-managed soliton transmissio

Dispersion compensation has already shown its great
tential both in ultralong data transmission and for the upgr
ing of installed terrestrial links. Dispersion manageme
which is a well-known technique in linear systems~for in-
stance, low power non-return-to-zero formatted data!, also
allows an increase in transmission capacity of soliton-ba
communication lines. The traditional fundamental solit
@solution of the nonlinear Schroedinger equation~NLSE!#
preserves its shape during propagation by compensating
fiber dispersion through nonlinearity; only the pulse pow
oscillates due to periodic amplification of the pulse to co
pensate for the fiber loss. Rapid oscillations of the power
be averaged out with the result that the slow pulse dynam
in the traditional soliton-based transmission lines, is g
erned by the NLSE. On the other hand, numerical simu
tions and experiments have demonstrated that the disper
managed soliton differs substantially from the fundamen
soliton @4–15#, For example, the energy of the dispersio
managed soliton is enhanced in comparison with that of
fundamental soliton corresponding to the same path ave
PRE 581063-651X/98/58~1!/48~4!/$15.00
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dispersion and the same pulse width@4#. Therefore, using
dispersion-managed solitons in transmission permits an
creased signal-to-noise ratio with significant system per
mance improvement. Another feature in the dynamics is t
optical pulses propagating in a link with dispersion compe
sation acquire a chirp~time-dependent phase! while also ex-
periencing breathing oscillations of the pulse width. Over
the pulse dynamics in these systems is rather complic
and typically depends on many system parameters. Num
cal simulations~see, e.g.,@10#! have revealed the existenc
of two scales in the problem: the first~fast dynamics! corre-
sponds to a rapid oscillation of the pulse width and pow
due to periodic variations of the dispersion and periodic a
plification, and the second~slow dynamics! which occurs
due to the combined effects of nonlinearity, residual disp
sion, and pulse chirping.

It has been shown in@13# that a fast~over 1 compensation
period! dynamics of the dispersion-managed soliton is d
scribed by a system of two ordinary differential equation
This approximation is in agreement with a model previou
obtained by means of the variational approach@9,10#. Be-
cause of the practical importance of the problem, it is
evident interest to develop analytical methods to investig
the main properties of the basic ordinary differentiated eq
tions ~ODEs!.

In this Rapid Communication we present a new analyti
approach based on a combination of previous work@9,10#
and asymptotic methods. We show that our method can
successfully used for the description of the slow~average!
dynamics of the dispersion-managed soliton and slow ev
tion of any input pulse. Even though the approach is rat
general and can be used for any dispersion-managed sys
as an illustration we consider here a particular transmiss
line built from two pieces of fibers with opposite dispersio

II. BASIC EQUATIONS

The transmission of optical signals in a fiber link wi
dispersion compensation is governed by the basic model
R48 © 1998 The American Physical Society



l-

rio
a
ha

b
L

re

a

tio
n

t t
e

ar

e
s

n

rgy
uss-
n:

x-

al
-
-
re-
ged

f
ons
ped

t

e
oli-
ero
ex-
t
lin-

be-
ved

dis-
al
n
en
can

irp-

a-

RAPID COMMUNICATIONS

PRE 58 R49AVERAGE DYNAMICS OF THE OPTICAL SOLITON IN . . .
we write in the following dimensionless form:

iCz1
1

e
dS z

e DC tt1cS z

e D uCu2C50, ~1!

using the notation introduced in@9,10#: time is normalized
by parametert0, the envelope of the electric field is norma
ized to the input power parameterP0, z is normalized to the
nonlinear lengthZNL51/(sP0) (s is the nonlinear Kerr pa-
rameter!; the dimensionless dispersion compensation pe
is e5L/ZNL!1. Though the results will be formulated in
general form we assume at the moment, for simplicity, t
the functionsd(z/e11)5d(z/e) andc(z/e11)5c(z/e) are
periodic with the same period, namelye.

We first reduce the problem to a finite dimensional one
deriving basic ODEs for the relevant pulse parameters.
us consider, following@13#, the evolution of the integrals

Tint~z!5F E t2uCu2dt

E uCu2dt
G 1/2

,

Mint~z!

Tint~z!
5

i

4

E t~CC t* 2C* C t!dt

E t2uCu2dt

, ~2!

which are proportional to the pulse width and the chirp,
spectively.

A closed system of equations forTint and Mint can be
derived~see@13#! if we assume that a propagating pulse h
a self-similar structure~in the energy-bearing part!

C~z,t !5
Q@ t

T ,z#

AT~z!
expS i

M ~z!

T~z!
t2D . ~3!

We assume now that, to leading order,]Q
]t 50 for the central

energy-bearing part of the asymptotic pulse. This assump
is confirmed by numerical simulations of the dispersio
managed pulse dynamics, though it should be noted tha
tails of the soliton~which contain a rather small part of th
energy! are not self-similar@4,5,10#. Then, evaluating the
first derivatives ofTint(z) and Mint(z), we obtain a system
of ordinary differential equations forTint and Mint , or, al-
ternatively,T(z) and M (z). Relations between integrals~2!
and local characteristics of the pulse width and chirp
given by

Tint~z!

Tint~0!
5

T~z!

T~0!
,

Mint~z!

Tint~z!
5

M ~z!

T~z!
. ~4!

The evolution of the optical pulse width and chirp in th
dispersion-managed line is described by the following ba
set of equations

dT

dz
54

1

e
dS z

e D M , ~5!
d
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dM

dz
5

1

e
dS z

e DC1

T3
2cS z

e DC2

T2
. ~6!

The constantsC1 andC2 are related to a structural functio
Q(x) through

C15

E uQx~x!u2dx

E x2uQ~x!u2dx

, C25

E uQ~x!u4dx

S 4E x2uQ~x!u2dxD . ~7!

Thus,C1 andC2 are determined by the shape and the ene
of the dispersion-managed pulse. For instance, for the Ga
ian approximation of the central part of the breathing solito
C15(1.665t0T/TFWHM)4, C25C1

3/4E/(2A2pP0t0), here
TFWHM is a pulse width at half maximum measured in e
periments andE5E0 is a pulse energy atz50. Note that
Eqs. ~5! and ~6! have also been derived from a variation
approach in@9,10# and applied to different practical trans
mission systems in@7,12#. Imposing the conditions of recov
ery of pulse width and chirp after one period we obtain
lations that determine the properties of a dispersion-mana
soliton: ^d(z)M &5*0

1d(z)Mdz50 and C1^d(z)/T3&
5eC2^c(z)/T2&. Below we present an analytical solution o
the problem for a specific map, but these general conditi
can also be used in numerical simulations. For sech-sha
soliton ~that is valid for weak dispersion management! the
energy enhancemen
is found then as E53.52P0t0

2^d(z)/@2eTFWHM
3 (z)#&/

^c(z)/TWFHM
2 (z)&. From here, in particular it is clear that th

energy can be positive even if the dispersion-managed s
ton propagates in the normal dispersion regime or at z
average dispersion. This important observation can be
plained easily using Eqs.~5! and ~6!. Consider a phase shif
that occurs due to a combined action of dispersion, non
earity, and chirping,

d~TM!

dz
5

1

e
dS z

e DC1

T2
2cS z

e DC2

T
14

1

e
dS z

e D M2. ~8!

In an arbitrary dispersion-managed system, a balance
tween the above-mentioned three effects can be achie
only on the average. Averaging of Eq.~8! immediately gives
a condition on the power of DM soliton,

K d~z!

T2~z!
L C114^d~z!M2&5^d~z!V2~z!&5e K c~z!C2

T L .0.

~9!

It is seen that the requirement of the anomalous average
persion^d&.0 that provides the existence of the tradition
NLSE soliton is replaced for DM soliton by the conditio
de f f5^d(z)V2(z)&.0 that can be satisfied at zero and ev
normal path-averaged dispersion and the DM soliton
have finite energy even witĥd&,0. HereV2(z) is nothing
more but a square of the varying spectral bandwidthV(z) of
a chirped pulse. The total phase shift resulting pulse ch
ing, dispersion, and nonlinearity should be zero~except the
linear growth! in average for true soliton propagation. Equ
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tions ~5! and~6! present a simple and useful tool for optim
zation of the dispersion-managed fiber transmission syste

III. ADIABATIC INVARIANTS AND EXACT SOLUTIONS

Below we obtain the slow dynamics corresponding
Eqs.~5! and~6!, using the method of averaging which form
the main part of this paper. Rescalingz5et and absorbing
the constantC1 in the parametersT,M by defining T
5(4C1)1/4 b, M5(4C1)1/4n/4 we reduce the equations to

db

dt
5d~t!n,

dn

dt
5

d~t!

b3
2e

C~t!

b2
, ~10!

whereC5C2C1
23/4A2c(t).

An exact solution of these equations in the nonlinear c
exists for the special dispersion profile corresponding to
so-called chirped quasisoliton propagating along the fi
line @15,13#. Such a dispersion-tapered fiber span provid
strong confinement of the carrier pulse that is very attrac
for high-bit-rate data transmission. If the dispersion is giv
by

d~t!5d0C~t!
cosh@a1by~t!#

cosh@a#
;

dy

dt
5C~t!; y~0!50,

~11!

then Eqs.~10! have an exact solution

b~t!5b0

cosh@a1by~t!#

cosh@a#
, ~12!

n~t!5
cosh@a#

b0
Ad02eb0

d0
tanh@a1by~t!#. ~13!

Here b5Ad0(d02eb0) cosh@a#/b0
2 and sinh@a#

5n0b0Ad0 /(d02eb0). This exact solution describes prop
gation of the quasisoliton having Gaussian tails along
fiber with specially designed dispersion. The advantage
using this carrier pulse is that soliton interaction is su
pressed through chirping and fast decaying Gaussian t
This method requires a special design of the dispersion of
transmission fiber and can be considered as a potentiall
tractive scheme to realize future ultra-large capacity fi
communication lines.

We now derive equations for the evolution of the ad
batic invariants. In the casee50 the system has the obviou
conserved quantityI 5 (1/b2) 1n25(1/b0

2) 1n0
2, which we

introduce as a new variable. This integral is proportiona
the leading term in the Hamiltonian of Eq.~1!, when evalu-
ated at the trial function. In fact, any combination ofb0 and
n0 can be used for describing the average nonlinear dyn
ics. SubstitutingB5b2, after straightforward calculations th
system takes the formdB/dt 52d(t)ABI21. Assuming
that I 5 constant we integrate this equation and obtain a c
stantG5R̃(t)2 (1/I )ABI21, whereR̃5*t @d(t)2^d&#dt.
In the casee50, G52n0b0 as is clear from the abov
solution. We now chooseG as a new variable, since it shou
be slowly varying. Indeed, after straightforward calculatio
we obtain
s.
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dG

dt
52e^d&2eC~t!

I 2@R̃~t!2G#221

AI $11I 2@R̃~t!2G#2%3/2
, ~14!

dI

dt
52eC~t!

2I 3@R̃~t!2G#

AI $11I 2@R̃~t!2G#2%3/2
. ~15!

The advantage of using the previous transformation, is
the right-hand sides of Eqs.~15! and~16! are proportional to
the small parametere and different perturbation methods ca
now be applied. Equations similar to Eqs.~15! and~16! have
been derived in@14# by means of the variational approac
We note also that both adiabatic invariantsI andG have an
optical interpretation;I is related to the pulse spectral width
andG is the effective accumulative dispersion~including the
effect of nonlinearity-induced spectrum evolution!.

IV. AVERAGE DYNAMICS

In this section we consider the slow averaged dynamic
the general case, where no exact solutions can be fo
According to the Bogolubov-Krylov averaging theorem@16#,
the solutions of this system aree-close to the solutions of the
averaged system on the intervalDt; 1/e. The averaged sys
tem is obtained by integrating the right hand-side of t
equation with respect tot. First note that the dispersion
managed soliton corresponds to a periodic solution of E
~15! and~16! @ I (1)5I (0), G(1)5G(0)]. Therefore, the pa-
rameters of the true periodic breathing soliton are determi
by the following two conditions:

E
0

1 C~t!I 3@R̃~t!2G#dt

AI $11I 2@R̃~t!2G#2%3/2
50, ~16!

^d&52E
0

1C~t!$I 2@R̃~t!2G#221%dt

AI $11I 2@R̃~t!2G#2%3/2
. ~17!

These conditions determine the energy and chirp required
true periodic propagation of the dispersion-managed puls
is evident from the equations that, for most cases this in
gration cannot be carried out analytically. A particular ca
where this can be done is whenC is a constant. This assump
tion is valid when the compensation period is much larg
than the amplification distance. This is an important practi
limit, corresponding to the so-called lossless model, which
well justified in the long-haul transmission systems. In ad
tion, we gain much intuition from the results in this limit. I
the case thatC is a constant, the averaged equations read

dḠ

dt
52^d&

1
C

Ī 3/2

d12d2

d1d2
S 2 Ī ~d1L12Ḡ!

@11 Ī 2~d1L12Ḡ!2#1/2
1

2 Ī Ḡ

~11 Ī 2Ḡ2!1/2

2 ln
Ī ~d1L12Ḡ!1@11 Ī 2~d1L12Ḡ!2#1/2

2 Ī Ḡ1~11 Ī 2Ḡ2!1/2 D , ~18!
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d Ī

dt
52CĪ1/2

d22d1

d1 d2
S 1

@11 Ī 2~d1L12Ḡ!2#1/2

2
1

~11 Ī 2Ḡ2!1/2D , ~19!

where Ī 5^I &5*0
1I (t)dt and similarly for Ḡ; d(t)5d1

1H(t2L1)(d22d1); here H is the Heaviside function
d(1,2) is varying part of the dispersion coefficient for th
piece of fiber of lengthL (1,2) , respectively. It is easy to
check thatd1L11d2L250 andL11L251.

These averaged equations describe slow secondary o
lations of the breathing pulse propagating in the system w
dispersion management. The stationary solutions of the
eraged equations corresponding to the dispersion-man
soliton are characterized as the fixed points of Eqs.~19! and
~20!; namely,

Ḡc5
1

2
d1L1 , ~20!

2^d&
Ī c

3/2

C

d1d2

d22d1
52 ln@ Ī cḠc1~11 Ī c

2Ḡc
2!1/2#

2
4 Ī cḠc

~11 Ī c
2Ḡc

2!1/2
. ~21!

Rewriting C in terms of the energyE and introducing the
parameterK50.25ud1L12d2L2u50.5ud1L1u that character-
izes the strength of the map yields for the second condi
n,

t.

et

tt
cil-
h
v-
ed

n

2
^d&
E

ApP0t0 Ī c
3/2~2K !5 ln@ Ī cK1~11 Ī c

2K2!1/2#

2
2 Ī cK

~11 Ī c
2K2!1/2

. ~22!

This analytical expression gives the energy enhancement
covered in@4#. For smallK the enhancement factor is par
bolic in accordance with@5#. Another interesting observatio
is that a periodic solution is possible even if average disp
sion is zero or normal (^d&,0). For the casêd&50 we get
Ī c5sinh(jc)2/K; here, jc is a solution of the equationj
52 tanh(j) with a corresponding sign. Note that we ha
obtained the averaged equations that also describe the
secondary oscillations observed in@10# ~as well as similar
phenomena reported in other papers!.

V. CONCLUSIONS

We have studied the slow~average! dynamics of
dispersion-managed optical pulses in fiber transmission lin
By applying asymptotic methods to an approximate syst
of the ordinary differential equations, we have presented
analytical description of the average evolution of the se
similar breathing pulse in fiber links with periodic amplifi
cation and dispersion compensation. We have deri
asymptotic, averaged quantities~adiabatic invariants! which
characterize stable pulse propagation. For the practically
portant limit where the dispersion compensation period
much larger than the amplification distance, we have fou
analytically the fixed points corresponding to stab
dispersion-managed soliton propagation. The analytical
sults we obtained then provide asymptotic features of
pulse.
t.

n.

,
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