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Average dynamics of the optical soliton in communication lines with dispersion management:
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Applying asymptotic methods to a previously derived system of ordinary differential equations, we present
an analytical description of the slof@veragg dynamics of self-similar breathing pulses propagating in fiber
links with dispersion management. We derive asymptotic averaged quafditiebatic invarianjsthat char-
acterize the stable pulse propagation. In a particular, but practically important, case when the dispersion
compensation period is much larger than the amplification distance we have found analytically the fixed points
corresponding to the dispersion-managed solitp8%063-651X98)51007-0

PACS numbses): 42.65.Tg, 03.40.Kf, 42.81.Dp, 89.70c

[. INTRODUCTION dispersion and the same pulse wid#l. Therefore, using
dispersion-managed solitons in transmission permits an in-
Recent impressive developments in lightwave transmiscreased signal-to-noise ratio with significant system perfor-
sion systems stimulated by increasing demands for teleconftance improvement. Another feature in the dynamics is that
munication services are based both on innovations of tectPtical pulses propagating in a link with dispersion compen-
nology and on advances in research. In particular, th&ation acquire a chirftime-dependent phashile also ex-
realization of soliton-based transmission has clearly demorP€M€ncing breathing oscillations of the pulse width. Overall,
strated how results of the fundamental soliton theory can bg‘e puls_e dynamics in these systems is rather comphcate_d
successfully exploited in very important practical applica—and typically depends on many system parameters. Numeri-

tions (see, e.g.[1—3] and references therdinOn the other cal simulations(see, e.g.[10]) have revealed the existence

hand, the experimental implementation of optical solitons inOf two scales in the problem: the firgast dynamicscorre-

hiah-bit-rat icati i h timulated furth sponds to a rapid oscillation of the pulse width and power
Igh-bit-rate communication systeéms has stimulated 1urin€y, o 4, periodic variations of the dispersion and periodic am-
research in sollton_theory. In_th_ls Rapid Commumcatlon_w lification, and the seconéslow dynamics which occurs
present an analytical description of the envelope solitorye to the combined effects of nonlinearity, residual disper-
propagating in a medium with large periodic variations ofgion, and pulse chirping.
dispersion and nonlinearity. As a specific practical applica- |t has been shown ifL3] that a fas{over 1 compensation
tion we focus on dispersion-managed soliton transmission. period dynamics of the dispersion-managed soliton is de-
Dispersion compensation has already shown its great pacribed by a system of two ordinary differential equations.
tential both in ultralong data transmission and for the upgradThis approximation is in agreement with a model previously
ing of installed terrestrial links. Dispersion managementobtained by means of the variational appro§®lti0]. Be-
which is a well-known technique in linear systeitfer in-  cause of the practical importance of the problem, it is of
stance, low power non-return-to-zero formatted fasdso evident interest to develop analytical methods to investigate
allows an increase in transmission capacity of soliton-basethe main properties of the basic ordinary differentiated equa-
communication lines. The traditional fundamental solitontions (ODES.
[solution of the nonlinear Schroedinger equatidf_SE)] In this Rapid Communication we present a new analytical
preserves its shape during propagation by compensating tf@proach based on a combination of previous wW&k0]
fiber dispersion through nonlinearity; only the pulse powerdnd asymptotic methods. We show that our method can be
oscillates due to periodic amplification of the pulse to com-Successfully used for the description of the sltaverage
pensate for the fiber loss. Rapid oscillations of the power Calqyn""rmCS OT the dispersion-managed soliton and SIOW evolu-
be averaged out with the result that the slow pulse dynamicd!O" Of any input pulse. Even though the approach is rather

in the traditional soliton-based transmission lines, is gov_gleneral and can be used for any dispersion-managed system,

ered by the NLSE. On the other hand, numerical simula@s @n illustration we consider here a particular transmission

tions and experiments have demonstrated that the dispersiowje built from two pieces of fibers with opposite dispersion.
managed soliton differs substantially from the fundamental
soliton [4-15|, For example, the energy of the dispersion-
managed soliton is enhanced in comparison with that of the The transmission of optical signals in a fiber link with

fundamental soliton corresponding to the same path averaghspersion compensation is governed by the basic model that

Il. BASIC EQUATIONS
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we write in the following dimensionless form: dM 1 (z\C, z\C,
WoLES HS
1 [z 7 zZ € \€/T3 €T

The constant€; andC, are related to a structural function

using the notation introduced i®,10]: time is normalized Q(x) through

by parametet,, the envelope of the electric field is normal-

ized to the input power parametBy, z is normalized to the f |Qu(x)|2dx f |Q(x)|*dx
nonlinear lengtizy, = 1/(oPy) (o is the nonlinear Kerr pa- C,=————, C,= . (D
rametey; the dimensionless dispersion compensation period J x2|Q(x)|2dx (4J' x2|Q(x)|2dx

is e=L/Zy <1. Though the results will be formulated in a

general form we assume at the moment, for simplicity, that _

the functionsd(z/e+1)=d(z/ €) andc(z/e+1)=c(z/€) are Thus,C,; andC, are determined by the shape and the energy

periodic with the same period, namedy of the dispersion-managed pulse. For instance, for the Gauss-
We first reduce the problem to a finite dimensional one by’an approximation of th4e central g%rt of the breathing soliton:

deriving basic ODEs for the relevant pulse parameters. LeF1=(1.6630T/Trwunm)®,  Co=C1 E/(2V27Pqto), here

us consider, following13], the evolution of the integrals ~ Trwhw IS @ pulse width at half maximum measured in ex-
periments andE=E, is a pulse energy at=0. Note that

12 Egs. (5) and (6) have also been derived from a variational
ft2|‘1’|2dt approach in[9,10] and applied to different practical trans-
Tm(2)=| —/———| ., mission systems ifi7,12]. Imposing the conditions of recov-
f 1P |2dt ery of pulse width and chirp after one period we obtain re-
lations that determine the properties of a dispersion-managed

soliton:  (d(z)M)=[}d(z)Mdz=0 and Cy(d(z)/T%)
=€C,(c(2)/T?). Below we present an analytical solution of

* _Ap*
j (W~ dt the problem for a specific map, but these general conditions

Mine(2) i

Tin(2) 4 ' 2 can also be used in numerical simulations. For sech-shaped
f t2|W|%dt soliton (that is valid for weak dispersion managenetiite
energy enhancement

; _ 2 3
which are proportional to the pulse width and the chirp, re-'S four;d then as E=3.5Pty(d(2)/[2€Tewum(2) 1)/
spectively. (c(2)/ Tyyrum(2)). From here, in particular it is clear that the
A closed system of equations fdi,, and M;,, can be €nergy can be positive even if the dispersion-managed soli-
derived(see[13)]) if we assume that a propagating pulse haston propagates in the r'10r'mal dispersion regime or at zero
plained easily using Eq$5) and (6). Consider a phase shift
that occurs due to a combined action of dispersion, nonlin-

t
Wzt Qlr.z] oxd M(Z)tz)_ (3  earity, and chirping,
T2 T(2)
d(TM) 1 (z\C, z\C, 1 (z )
We assume now that, to leading ord& =0 for the central dz %z F_C 2|7 tAd M ®

energy-bearing part of the asymptotic pulse. This assumption

is confirmed by numerical simulations of the dispersion-|y an arbitrary dispersion-managed system, a balance be-
managed pulse dynamics, though it should be noted that thgeen the above-mentioned three effects can be achieved
tails of the soliton(which contain a rather small part of the qny on the average. Averaging of E@) immediately gives
energy are not self-similar4,5,10. Then, evaluating the 5 condition on the power of DM soliton,

first derivatives ofT;,;(z) andM;,(z), we obtain a system
of ordinary differential equations fof;,; and M;,,, or, al- d(2) c(2)C
ternatively, T(z) and M (z). Relations between integra(g) <—> C1+4d(z2)M?)=(d(2)Q%(2))= e< 2> >0.
and local characteristics of the pulse width and chirp are ’(2) T

given by 9

_ _ It is seen that the requirement of the anomalous average dis-
T _T(@ - Min(2) M@ (4)  persion(d)>0 that provides the existence of the traditional
NLSE soliton is replaced for DM soliton by the condition
) ] ] o derr=(d(2)Q?(2))>0 that can be satisfied at zero and even
The evolution of the optical pulse width and chirp in the hormal path-averaged dispersion and the DM soliton can
dispersion-rr_lanaged line is described by the following basig,5ye finite energy even witfd)<0. HereQ?(z) is nothing
set of equations more but a square of the varying spectral bandwid{z) of
a chirped pulse. The total phase shift resulting pulse chirp-
ar 1 (Z) M 5) ing, dispersion, and nonlinearity should be zéeacept the

dz e linear growth in average for true soliton propagation. Equa-

Tin(0)  T(0)' T  T(2)°

€
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tions (5) and(6) present a simple and useful tool for optimi- dG I2[R(r)— G]>—1
zation of the dispersion-managed fiber transmission systems. —=—¢(d)—eC(7) ~ , (19
ar -4V VIH{1+1P[R(1) -G
I1l. ADIABATIC INVARIANTS AND EXACT SOLUTIONS 5
. . . 213[R(7)—G]
Below we obtain the slow dynamics corresponding to (15)

—=—¢€C(7) = .
Egs.(5) and(6), using the method of averaging which forms dr VH{1+12[R(7) - G]?}%2
the main part of this paper. Rescaling e and absorbing
the constantC, in the parametersT,M by defining T  The advantage of using the previous transformation, is that
=(4C)Y* b, M=(4C,)Y /4 we reduce the equations to the right-hand sides of EqéL5) and(16) are proportional to
the small parameter and different perturbation methods can
db dv d(r) C(7) now be applied. Equations similar to E¢$5) and(16) have
E:d(T LI b3 _f?’ (10 peen derived if14] by means of the variational approach.
We note also that both adiabatic invariahtand G have an
optical interpretationt is related to the pulse spectral width,
gndG is the effective accumulative dispersi@including the
ffect of nonlinearity-induced spectrum evolution

whereC=C,C; ¥*2¢(7).

An exact solution of these equations in the nonlinear cas
exists for the special dispersion profile corresponding to thé
so-called chirped quasisoliton propagating along the fiber
line [15,13. Such a dispersion-tapered fiber span provides IV. AVERAGE DYNAMICS
strong confinement of the carrier pulse that is very attractive

for high-bit-rate data transmission. If the dispersion is given In this section we consider the slow averaged dynamics in
the general case, where no exact solutions can be found.

by According to the Bogolubov-Krylov averaging theor¢h®],
cosa+By(r)] dy the solutions of this system ageclose to the solutions of the
d(n)=deC(7)—————; +—=C(7); y(0)=0, averaged system on the intervat~ 1/e. The averaged sys-
cosfi o] dr ap tem is obtained by integrating the right hand-side of the
equation with respect te. First note that the dispersion-
then Egs(10) have an exact solution managed soliton corresponds to a periodic solution of Egs.
(15 and(16) [1(1)=1(0), G(1)=G(0)]. Therefore, the pa-
costia+ By(7)] rameters of the true periodic breathing soliton are determined
b(7)=bg cosfia] (12) by the following two conditions:
costia] [do— eby 1 C(n)I¥R(7)—-G]d7
V(T): br(E ] Odo 2 tanf[a"’ﬁy( T)] (13) 0 ﬁ{l+|2['§(7)—6]2}3/2:0, (16)
Ijere B=/do(do— ebo) costia]/b? ~and  sinfia] LG {12R(7)— GTP— 1) dr
=wgboVdo/(do— €by). This exact solution describes propa- (dy=— — ) 17
gation of the quasisoliton having Gaussian tails along the o VH{1+IR(7)—G]3¥?

fiber with specially designed dispersion. The advantage of
using this carrier pulse is that soliton interaction is sup-These conditions determine the energy and chirp required for
pressed through chirping and fast decaying Gaussian tailgwue periodic propagation of the dispersion-managed pulse. It
This method requires a special design of the dispersion of thig evident from the equations that, for most cases this inte-
transmission fiber and can be considered as a potentially agration cannot be carried out analytically. A particular case
tractive scheme to realize future ultra-large capacity fibefvhere this can be done is whéis a constant. This assump-
communication lines. tion is valid when the compensation period is much larger
We now derive equations for the evolution of the adia-than the amplification distance. This is an important practical
batic invariants. In the case=0 the system has the obvious |imit, corresponding to the so-called lossless model, which is
conserved quantity= (1/b?) + v?=(1/b3) + v2, which we  well justified in the long-haul transmission systems. In addi-
introduce as a new variable. This integral is proportional tation, we gain much intuition from the results in this limit. In
the leading term in the Hamiltonian of E€L), when evalu- the case tha€ is a constant, the averaged equations read
ated at the trial function. In fact, any combinationkgfand
vo can be used for describing the average nonlinear dynany

ics. Substitutindgd=b?, after straightforward calculations the — = —{(d)
system takes the forndB/d7=2d(7)yBl—1. Assuming
thatl = constant we integrate this equation and obtain a con- c dl_dZ/ 2I_(d1L1—€) 216G

stantG=R(7)— (1/1) yB1—1, whereR= ["[d(7) —(d)]dr.

In the casee=0, G=—ygby as is clear from the above
solution. We now choos@ as a new variable, since it should — = - =212
be slowly varying. Indeed, after straightforward calculations ~In 1(diLy G)_+[1+ I_((ELl G)]
we obtain —1G+(1+1%G?)Y2

+ = — — + ==
192 didz \[1+1%(diL,~G)?]¥2 (1+17G)Y?

, (18
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_ - g B
ﬂzzcﬁ/de dl/ _ — uJEF’Otol_3’2(2r<):|n[|CK+(1+T2K2)1/2]
E Cc C
dr d; da|[1+12(d,L,—G)2]Y2
21K
1 -, (22)
_ QTEZ)W , (29 (1+I_§K2)1/2

This analytical expression gives the energy enhancement dis-
where T:<|>:fé|(7.)d7. and similarly for G; d(r)=d; coyer.ed in(4]. For sm_aIIK the enhancement factor is para-
+H(7—L,)(dy—d,); here H is the Heaviside function, pohc in accqrdqnce w¢[15].. Anothgr interesting observat'lon
d1 is varying part of the dispersion coefficient for the gc;[;‘al‘; az(fr?)r?:j:lcofglgl?a;;so?Oliilrbiﬁee\éggég ;‘Z%r%s: d(:per-
piece of fiber of lengthL, 5, respectively. It is easy to =" " ~= : .g
check thatd;L;+d,L,=0 andL;+L,=1. lc=sinh(£;)2/K; here, {; is a solution of the equatiod

These averaged equations describe slow secondary oscif-2 tanh€) with a corresponding sign. Note that we have
lations of the breathing pulse propagating in the system wittpPtained the averaged equations that also describe the slow
dispersion management. The stationary solutions of the ayzecondary oscillations observed [i0] (as well as similar
eraged equations corresponding to the dispers;ion-managgélmnomena reported in other papers
soliton are characterized as the fixed points of Efj8) and V. CONCLUSIONS
(20); namely,

We have studied the slowaveragé dynamics of
1 dispersion-managed optical pulses in fiber transmission lines.
GczzdlLl, (20 By applying asymptotic methods to an approximate system
of the ordinary differential equations, we have presented an
analytical description of the average evolution of the self-
: _ . similar breathing pulse in fiber links with periodic amplifi-
—<d>? di—qg. ~2InlcGe+(1+1:Gc) ?] cation and dispersion compensation. We have derived
2 1 asymptotic, averaged quantitiéadiabatic invarianjswhich
4|_C§C characterize stable pulse propagation. For the practically im-
PR R (21 portant limit where the dispersion compensation period is
(1+12Go) much larger than the amplification distance, we have found
analytically the fixed points corresponding to stable
Rewriting C in terms of the energf and introducing the dispersion-managed soliton propagation. The analytical re-
parameterk =0.29d,L,—d,L,|=0.5d;L| that character- sults we obtained then provide asymptotic features of the
izes the strength of the map yields for the second conditiopulse.
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