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Lattice Boltzmann method on irregular meshes
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A finite-volume scheme for the lattice Boltzmann meth@/LBM) is described. The scheme uses a
finite-volume formulation based on triangular elements in two dimensions and is implemented assuming that
velocity space is isotropically discretized at each node in position space. The accuracy of the finite-volume
scheme is numerically demonstrated by comparing the computed macroscopic velocity field with the exact
solution of the Navier-Stokes equations for the flow of an incompressible fluid between two relatively rotating
cylinders. The FVLBM scheme is applicable to irregular two-dimensional regions which contain both exterior
and interior boundaries of arbitrary shape. Thus, the range of applicability of systems to which the FVLBM
may be applied is seen to be significantly extend&d4063-651X%98)51810-1

PACS numbses): 47.10+g, 47.11+j, 05.20.Dd

Recently the lattice Boltzmann meth@gdBM) has been collision, the density distributions move along their respec-
demonstrated to be an effective simulation method for fluidtive velocities’ directions to points that may or may not be on
flow and other types of complex physical systefiis-4]. grid points. An interpolation step is then introduced to deter-
Unlike conventional computational fluid dynami¢€FD), mine the density distributions at the grid points for the next
which solves the macroscopic Navier—Stokes equations, thiéme step, and the above procedures are repeated.

LBM is based on the mesoscopic kinetic equation for the However, the above-mentioned approaches of using ir-
single particle distribution function. By incorporating the es-regular meshes are not satisfactory in the sense that the to-
sential physics of microscopic or mesoscopic processes, thlogy of the meshes used in the proposed models is not
LBM is constructed so that the macroscopic properties obegrbitrary. For example, in the 2D simulations of previous
the desired macroscopic equations. The obvious advantagesrks, each mesh grid point is connected to four other points
are the simplicity of programming, the natural parallelism of[6,7] in association with nine discrete velocities. This is still
the algorithm, and the capability of incorporating complexfar from the modern CFD methods, which are generally ca-
microscopic interactions. pable of accommodating fairly complex spatial meshes. To

However, compared to the state-of-the-art CFD tech-overcome this shortcoming, in this Rapid Communication
nigues, the LBM still suffers some limitations. One of thesewe describe a computational scheme based on arbitrary two-
is that the LBM is constructed on a special class of uniformdimensional triangular meshes from the point of view of
and regular spatial lattices. Historically, the LBM was devel-modern finite-volume method$,9]. The scheme we report
oped from the lattice gas automat@rGA) [5] model where in this paper is applicable to irregular meshes with arbitrary
the concept prevails of particles jumping from one site to theconnectivity. While our methods follow from an application
other on a regular lattice. The particle distribution function inof finite-volume methods to the LBE, they still keep much of
the LBM was interpreted as the floating-number counterparthe simplicity of the conventional LBM. As an illustration of
of the Boolean particle occupation in the LGA. The limita- the power of these methods, we will demonstrate that this
tion of using uniform lattices in the LBM is particularly se- scheme works remarkably well when applied to the flow of
vere in many applications where the complex geometry ofin incompressible fluid between two relatively rotating cyl-
internal and external boundaries cannot be well fitted byinders.
regular lattices. During the past few years, several research- Our starting point is the LBE. Recently, it was shoji0]
ers were motivated by such considerations to extend the aphat the LBM can be directly derived from the Boltzmann
plicability of the LBM to irregular lattices. Succi and co- equation by discretization of phase space. Specific discreti-
workers[6] have proposed a finite-volume formulation of the zations of the LBE on regular lattices along with some spe-
lattice Boltzmann equatiofLBE). The basic idea is to start cial assumptions concerning the length, time, and character-
from the differential form of the LBE and apply the Gauss’sistic velocities give the commonly used LBM models in
theorem to a set of macro-cells covering the spatial domainvhich the spatial and velocity space lattices are closely
For each cell, a volume-averaged “coarse-grain” particlecoupled. More general finite difference discretizations of the
distribution is defined and by using either piecewise constantBE were studied in Ref[11] and have been extended to
or piecewise linear interpolation schemes they obtain equeefficient parallel schemdd.2]. The flexibility gained in un-
tions for the “coarse-grain” distribution functions. In the locking the spatial and velocity lattices from each other pro-
model of He, Luo, and Dembi] for an arbitrary rectangu- vides us with an important degree of freedom in designing
lar mesh, collisions still take place on the grid points. After aour finite-volume scheme.
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After discretizing the velocity space, the LBE reads as P,
follows:

of;
ﬁ_tl_’_vi'Vfi:Qi’ (1) C

wheref; is the particle distribution function associated with

motion along theth direction in velocity spacey; the ve- D
locity in theith direction,i=1,2,...m with m the number of 6
different velocities in the model, and; is the collision op- |
erator. Many workers have used the lattice Bhatnagar-Gross- P,
Krook (BGK) model[13], or the single-time relaxation ap- P
proximation for the collision operator,

1
Qi=——(f;— 179, )
T

P 5
where 7% is the local equilibrium distribution and is the !

relaxation time. FIG. 1. Diagram of finite elements sharing one common node.
In the LBM, only a small set of discrete velocities are Here P,P;,P,,...,Ps stand for the mesh grid poin€E and ED
used to approximate the Boltzmann kinetics of the con-are two boundary edges of the control volugpelygon over which
tinuum velocity. In the original formulations of the LBM it integration of the LBE is performed.
was understood that the discretization of momentum space is
coupled to that of position space. For example, one modalsing standard interpolation procedures depending on the el-
utilized by a number of workers used nine discrete velocitieement types used. For example, linear and “bilinear” inter-
in association with the square lattice in position space in twgolations would be applied to the triangular and quadrilateral
dimensions. For a triangular spatial lattice seven velocityelements, respectively.
space directions were used and they were closely tied to the We choose the control volume to be the polygon sur-
triangular spatial lattice. But as emphasized in REf4, 7, rounding the nodd®, as shown in Fig. 1. Two sides of the
11, this coupling is not necessary and both discretizationpolygon, CE and ED, are labeled in the figure. HEris the
can be done independently. Here we will completely de-midpoint of edgeP P,, C is the geometric center of element
couple these two discretizations by choosing the nine velociP P, P, with coordinates<z andxc, respectively. Likewise,
ties as in the nine-bit model for the velocity discretizationD is the center of elemer® P,P5. The integration volume
and arbitrary triangular meshes for the spatial discretizationconsists of triangles PCE, PED, etc. taken in counterclock-
The nine discrete velocities are defined \py=(0,0) for  wise order. In the following we focus on the integration over
i=0, (cog(i—1)w/2], sin(i—1)#/2]) for i=1,2,3,4, and the triangle PCE. Similar integrations would be done over all

(vV2(cog(i—5)m/2+ /4], sin (i—5)w/2+ ml4]) for [ such triangles centered dhand the results summed.
=5,6,7,8. The equilibrium distributiof? is given by The integration of the first term in E¢L) is approximated
as
fE9=wip[1+ F(vi-u)+3(vi-u)>=3|ul?], ()

g= APCE’ (4)

f éfid afi(P)
pce ot at

where p=3;f; and pu=%,f;v; are the macroscopic mass
density and momentum density respectively, anequalss
fori=0, fori=1, 2, 3, 4, andy; for i=5,6,7,8. whereApcg is the area of triangle PCE arfg(P) is thef;

In the scheme reported here we use two-dimensional trivalue at nodeé>. In what follows, the node index is given in
angular meshes to illustrate how our finite-volume scheme iparentheses following thg values. In the above equation,
constructed. The extension to three dimensions and to otheve have made an approximation thatis constant over the
types of meshes is straightforward. For example, in a 20riangle PCE to prevent us from having to solve a set of
simulation one can easily apply a similar formulation which equations iff;’s were assumed linear. This kind of “lump-
uses irregular quadrilateral meshes whose node connectivitpg” is a commonly used practice in the finite-volume meth-
can be much more complex than the nonuniform rectangulands[9].
meshes used in the previous studiég]. Integration of the second term of E(.) will give fluxes

In Fig. 1 we show the generic situation in which triangu- through the three edges PC, CE and EP. Since we will sum
lar elements surround an interior node of the mesh. Here wever all the triangles like PCE, PED, the net flux through
report a finite-volume method of the cell-vertex type. In thisinternal edgese.g., PC, PEwill cancel out. Therefore, we
type of formulation, thef;’s at the nodes are the unknowns. will omit the contribution from the internal edges. On the
When we need to calculate tHgs at non-node positions, assumption of linearity of thd;’s for the triangular ele-
these values would be interpolated from fhies at the nodes ments, the flux is given by
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J Vi'VfidG=Vi-j fidl+1s=v;-ncel cel fi(C)
PCE CE

+f(E)]/2+1s, 5

wherencg is the unit vector normal to the edge Clg is
the length of CE, andl is the fluxes from the internal edges.

The integration over the collision term of Ed) [i.e., Eq.
(2)] results in the following formula, assuming the linearity
of f; andf79 over the triangular element:
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wheref,(C) andf;(E) and their corresponding equilibrium
particle distribution functions are the values of these vari-
ables atC andE, respectively. These may be easily obtained FIG. 2. An irregular mesh between two coaxial cylinders.
by interpolation from the three nodes at elemPi, P,.

With these results, the integration of Hd) over the tri-  tion of the Navier-Stokes equati¢fh5]. Here we have taken
angle PCE is Complete. The |ntegrat|0n over the whole Conthe radii of the two Cy”nders to bEl: 50 andRZZ 100 and
trol volume is just the sum of contributions from all these the angular velocity of the outer cylinder &= 0.0005 rad
terms over different triangles such as PCE, PED, etc. Thergser unit time. The effective mesh spacing of our triangular

4
g

fore, f; at nodeP is updated as follows: mesh is of the order of 1 and the relaxation timis taken to
be 0.1. The average densipy is set to be 1.0. During the
f.(Pt+dty="f,(P,t)+ % 2 D yjisions simulations we observed the d_ensity to stay very cloggto
P \around P thus confirming that the evolution maintains the incompress-
ibility of the fluid between the relatively rotating cylinders.
- > q)ﬂuxes), (7) We evolved the system for >3106_ time steps withdt
around P =0.01 and observed it to monotonically approach the exact

stationary solution for the velocity profile. The time s&p
whereAp is the total area of the control volume around nodewas well within the effective Courant limit throughout the
P, ®colisions and Ppyyes refer respectively to the finite-  simulations. The CFL condition in the current finite volume
volume-integrated contributions from the collision term andscheme is found to be of the formdtc/h<1, whereh is a
fluxes. The summation is over different triangles PCE, PEDm|n|mum |ength scale of the control volume aads a con-
etc. associated with the nodre

To demonstrate the flexibility of the above scheme we
present an example of simulation of an incompressible fluid
flow between two coaxial cylinders. Figure 2 gives an ex-
ample of an irregular mesh adapted to the two cylinder prob- ¢l
lem. Note that for any irregular boundary geometry, it is
always possible to cover the domain using triangular ele-
ments, as is shown here for the cylinders. ooaf

For the initial conditions we take the macroscopic veloc- -

. . . ~—0.025
ity field between the cylinders to be zero. Then the outer =
cylinder suddenly starts to rotate with a constant angular ooz
velocity () while the inner cylinder is kept at rest. Note that
this particular problem possesses high symmetry so that ar
appropriate finite difference scheme adapted to cylindrical |

0.045

0.0351

0.015[

coordinates can also handle[itl]. The FVLBM scheme 0005k
reported here needs no assumptions of symmetry and thus i
capable of handling a wide variety of geometries without % s e e 70 75 80 8 0 9% 10

modification. In the finite-volume scheme, the update of the '

fi’s at boundary nodes is similar to that for interior nodes FiG. 3. The steady state velocity profile of flow between two
except at the boundary the corresponding covolumes arévaxial cylinders(points, compared with the theoretic solution
half-covolumes. (curve of the Navier-Stokes equation(r)=ar—b/r with a=3

In Fig. 3 we show the stationary velocity profile for the x 1072 andb=23. Here each point is the average of the angular
angular component of the macroscopic velocity which resultselocities at the nodes in a circular layer betwaen1/2 andr
from our computations compared with the theoretical solu-+1/2 with r integers.
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stant depending on the shape of the control volume. Fromot require a special mesh connectivity and is easy to apply
Fig. 3 one can see that the agreement with the theoreticab other kinds of meshesuch as quadrilateral elements in
results is quite good. To gain a quantitative measure of theD and tetrahedral and hexahedral elements in BPre-
accuracy, we have computed the norm of the difference placing the standard interpolation we used here for triangular
between the computed and exact velocity profiles. The globadlements with other standard interpolation procedures suit-
error was found to be 1.0%, indicating that our computedqple for the relevant types of volumes.
velocity profile agrees well with the exact profile. We have found that the kinematic viscosity in our finite-

It is interesting to make a comparison between the abovgsjyme scheme is equal te/3 independent of various
scheme and the finite-volume scheme of Succi and COjeghes we used and independent of mesh sizes. Since our

wolrkers [G]fh F('jrSt’h.lthe'r mor(]jel IS a ?lell ctentelret?] f'n't%' Echeme is based on the LBE, which is continuous in space
volume method while our SCheme IS cefl-vertex. In tné modey, , 4 time, it is understandable that thi8 relation coincides

OT SU.CC' gnd co-workerg5], the “coarse grain” density dls'. with that obtained directly from the continuous equations
tribution is the unknown for each macro-cell. Second, in
their model the piecewise constant extrapolation for the[ll]' -
streaming operator causes serious problems of numerical di;- To conclude, we _have proposed a f|n|te-volu_me scheme
fusion. Even for the piecewise linear interpolation, numerical®’ the LBM which is flexible and can be applied to un-
diffusion does not disappear. To minimize this numerica/Stéady, incompressible fluid flow in a wide variety of two-
diffusion, a free parameter is then introduced and its value i§imensional regions that contain arbitrarily shaped internal
to be adjusted for each problem on a case by case bas@nd external boundaries. This opens up the LBE methods to
Third, even for the meshes with the simple connectivity of ab€ applied to many interesting systems so far difficult to treat
logically rectangular lattice, their empirical formulas for the using the conventional LBM. Several applications as well as
streaming coefficients are very complex and one could imagextensions to thermal problems are under investigation and
ine the practical difficulty of using irregular meshes with will be reported elsewhergl6].
arbitrary connectivity.

By comparison, our scheme is based on the standard _ )
finite-volume methods. It involves minimum approximation  ThiS work was supported in part by the NSF under Grant
and does not need to introduce any free parameters. We hal¥9- ASC-9418357 for the Pharoh MetaCenter Regional Al-
not found numerical diffusion problems in our finite volume liance. The simulations were performed on the Cray T3E at
scheme. The formulation on which our model is based doetie Ohio Supercomputer Center.
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