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Lattice Boltzmann method on irregular meshes
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A finite-volume scheme for the lattice Boltzmann method~FVLBM ! is described. The scheme uses a
finite-volume formulation based on triangular elements in two dimensions and is implemented assuming that
velocity space is isotropically discretized at each node in position space. The accuracy of the finite-volume
scheme is numerically demonstrated by comparing the computed macroscopic velocity field with the exact
solution of the Navier-Stokes equations for the flow of an incompressible fluid between two relatively rotating
cylinders. The FVLBM scheme is applicable to irregular two-dimensional regions which contain both exterior
and interior boundaries of arbitrary shape. Thus, the range of applicability of systems to which the FVLBM
may be applied is seen to be significantly extended.@S1063-651X~98!51810-7#

PACS number~s!: 47.10.1g, 47.11.1j, 05.20.Dd
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Recently the lattice Boltzmann method~LBM ! has been
demonstrated to be an effective simulation method for fl
flow and other types of complex physical systems@1–4#.
Unlike conventional computational fluid dynamics~CFD!,
which solves the macroscopic Navier–Stokes equations,
LBM is based on the mesoscopic kinetic equation for
single particle distribution function. By incorporating the e
sential physics of microscopic or mesoscopic processes
LBM is constructed so that the macroscopic properties o
the desired macroscopic equations. The obvious advant
are the simplicity of programming, the natural parallelism
the algorithm, and the capability of incorporating compl
microscopic interactions.

However, compared to the state-of-the-art CFD te
niques, the LBM still suffers some limitations. One of the
is that the LBM is constructed on a special class of unifo
and regular spatial lattices. Historically, the LBM was dev
oped from the lattice gas automaton~LGA! @5# model where
the concept prevails of particles jumping from one site to
other on a regular lattice. The particle distribution function
the LBM was interpreted as the floating-number counterp
of the Boolean particle occupation in the LGA. The limit
tion of using uniform lattices in the LBM is particularly se
vere in many applications where the complex geometry
internal and external boundaries cannot be well fitted
regular lattices. During the past few years, several resea
ers were motivated by such considerations to extend the
plicability of the LBM to irregular lattices. Succi and co
workers@6# have proposed a finite-volume formulation of th
lattice Boltzmann equation~LBE!. The basic idea is to star
from the differential form of the LBE and apply the Gauss
theorem to a set of macro-cells covering the spatial dom
For each cell, a volume-averaged ‘‘coarse-grain’’ parti
distribution is defined and by using either piecewise cons
or piecewise linear interpolation schemes they obtain eq
tions for the ‘‘coarse-grain’’ distribution functions. In th
model of He, Luo, and Dembo@7# for an arbitrary rectangu
lar mesh, collisions still take place on the grid points. Afte
PRE 581063-651X/98/58~4!/4124~4!/$15.00
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collision, the density distributions move along their respe
tive velocities’ directions to points that may or may not be
grid points. An interpolation step is then introduced to det
mine the density distributions at the grid points for the ne
time step, and the above procedures are repeated.

However, the above-mentioned approaches of using
regular meshes are not satisfactory in the sense that th
pology of the meshes used in the proposed models is
arbitrary. For example, in the 2D simulations of previo
works, each mesh grid point is connected to four other po
@6,7# in association with nine discrete velocities. This is s
far from the modern CFD methods, which are generally
pable of accommodating fairly complex spatial meshes.
overcome this shortcoming, in this Rapid Communicati
we describe a computational scheme based on arbitrary
dimensional triangular meshes from the point of view
modern finite-volume methods@8,9#. The scheme we repor
in this paper is applicable to irregular meshes with arbitr
connectivity. While our methods follow from an applicatio
of finite-volume methods to the LBE, they still keep much
the simplicity of the conventional LBM. As an illustration o
the power of these methods, we will demonstrate that
scheme works remarkably well when applied to the flow
an incompressible fluid between two relatively rotating c
inders.

Our starting point is the LBE. Recently, it was shown@10#
that the LBM can be directly derived from the Boltzman
equation by discretization of phase space. Specific disc
zations of the LBE on regular lattices along with some s
cial assumptions concerning the length, time, and charac
istic velocities give the commonly used LBM models
which the spatial and velocity space lattices are clos
coupled. More general finite difference discretizations of
LBE were studied in Ref.@11# and have been extended
efficient parallel schemes@12#. The flexibility gained in un-
locking the spatial and velocity lattices from each other p
vides us with an important degree of freedom in design
our finite-volume scheme.
R4124 © 1998 The American Physical Society
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After discretizing the velocity space, the LBE reads
follows:

] f i

]t
1vi•“ f i5V i , ~1!

where f i is the particle distribution function associated wi
motion along thei th direction in velocity space,vi the ve-
locity in the i th direction,i 51,2,...,m with m the number of
different velocities in the model, andV i is the collision op-
erator. Many workers have used the lattice Bhatnagar-Gr
Krook ~BGK! model @13#, or the single-time relaxation ap
proximation for the collision operator,

V i52
1

t
~ f i2 f i

eq!, ~2!

where f i
eq is the local equilibrium distribution andt is the

relaxation time.
In the LBM, only a small set of discrete velocities a

used to approximate the Boltzmann kinetics of the c
tinuum velocity. In the original formulations of the LBM i
was understood that the discretization of momentum spac
coupled to that of position space. For example, one mo
utilized by a number of workers used nine discrete veloci
in association with the square lattice in position space in
dimensions. For a triangular spatial lattice seven veloc
space directions were used and they were closely tied to
triangular spatial lattice. But as emphasized in Refs.@14, 7,
11, this coupling is not necessary and both discretizati
can be done independently. Here we will completely d
couple these two discretizations by choosing the nine vel
ties as in the nine-bit model for the velocity discretizati
and arbitrary triangular meshes for the spatial discretizat

The nine discrete velocities are defined byvi5(0,0) for
i 50, „cos@(i21)p/2#, sin@(i21)p/2#… for i 51,2,3,4, and
„&(cos@(i25)p/21p/4#, sin@(i25)p/21p/4#… for i
55,6,7,8. The equilibrium distributionf i

eq is given by

f i
eq5wir@11 3

2 ~vi•u!1 9
2 ~vi•u!22 3

2 uuu2#, ~3!

where r5( i f i and ru5( i f ivi are the macroscopic mas
density and momentum density respectively, andwi equals4

9

for i 50,1
9 for i 51, 2, 3, 4, and1

36 for i 55,6,7,8.
In the scheme reported here we use two-dimensional

angular meshes to illustrate how our finite-volume schem
constructed. The extension to three dimensions and to o
types of meshes is straightforward. For example, in a
simulation one can easily apply a similar formulation whi
uses irregular quadrilateral meshes whose node connec
can be much more complex than the nonuniform rectang
meshes used in the previous studies@6,7#.

In Fig. 1 we show the generic situation in which triang
lar elements surround an interior node of the mesh. Here
report a finite-volume method of the cell-vertex type. In th
type of formulation, thef i ’s at the nodes are the unknown
When we need to calculate thef i ’s at non-node positions
these values would be interpolated from thef i ’s at the nodes
s
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using standard interpolation procedures depending on th
ement types used. For example, linear and ‘‘bilinear’’ inte
polations would be applied to the triangular and quadrilate
elements, respectively.

We choose the control volume to be the polygon s
rounding the nodeP, as shown in Fig. 1. Two sides of th
polygon, CE and ED, are labeled in the figure. HereE is the
midpoint of edgePP2 , C is the geometric center of elemen
PP1P2 with coordinatesxE andxC , respectively. Likewise,
D is the center of elementPP2P3 . The integration volume
consists of triangles PCE, PED, etc. taken in counterclo
wise order. In the following we focus on the integration ov
the triangle PCE. Similar integrations would be done over
such triangles centered onP and the results summed.

The integration of the first term in Eq.~1! is approximated
as

E
PCE

] f i

]t
ds5

] f i~P!

]t
APCE , ~4!

whereAPCE is the area of triangle PCE andf i(P) is the f i
value at nodeP. In what follows, the node index is given i
parentheses following thef i values. In the above equation
we have made an approximation thatf i is constant over the
triangle PCE to prevent us from having to solve a set
equations iff i ’s were assumed linear. This kind of ‘‘lump
ing’’ is a commonly used practice in the finite-volume met
ods @9#.

Integration of the second term of Eq.~1! will give fluxes
through the three edges PC, CE and EP. Since we will s
over all the triangles like PCE, PED, the net flux throu
internal edges~e.g., PC, PE! will cancel out. Therefore, we
will omit the contribution from the internal edges. On th
assumption of linearity of thef i ’s for the triangular ele-
ments, the flux is given by

FIG. 1. Diagram of finite elements sharing one common no
Here P,P1 ,P2 ,...,P6 stand for the mesh grid point.CE and ED
are two boundary edges of the control volume~polygon! over which
integration of the LBE is performed.
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E
PCE

vi•¹ f ids5vi•E
CE

f idl1I s5vi•nCEl CE@ f i~C!

1 f i~E!#/21I s , ~5!

wherenCE is the unit vector normal to the edge CE,l CE is
the length of CE, andI s is the fluxes from the internal edge

The integration over the collision term of Eq.~1! @i.e., Eq.
~2!# results in the following formula, assuming the lineari
of f i and f i

eq over the triangular element:

2E
PCE

1

t
~ f i2 f i

eq!ds52
APCE

t
$@ f i~P!2 f i

eq~P!#1@ f i~C!

2 f i
eq~C!#1@ f i~E!2 f i

eq~E!#%/3,

~6!

where f i(C) and f i(E) and their corresponding equilibrium
particle distribution functions are the values of these va
ables atC andE, respectively. These may be easily obtain
by interpolation from the three nodes at elementPP1P2 .

With these results, the integration of Eq.~1! over the tri-
angle PCE is complete. The integration over the whole c
trol volume is just the sum of contributions from all the
terms over different triangles such as PCE, PED, etc. Th
fore, f i at nodeP is updated as follows:

f i~P,t1dt!5 f i~P,t !1
dt

AP
S (

around P
Fcollisions

2 (
around P

FfluxesD , ~7!

whereAP is the total area of the control volume around no
P, Fcollisions and Ffluxes refer respectively to the finite
volume-integrated contributions from the collision term a
fluxes. The summation is over different triangles PCE, PE
etc. associated with the nodeP.

To demonstrate the flexibility of the above scheme
present an example of simulation of an incompressible fl
flow between two coaxial cylinders. Figure 2 gives an e
ample of an irregular mesh adapted to the two cylinder pr
lem. Note that for any irregular boundary geometry, it
always possible to cover the domain using triangular e
ments, as is shown here for the cylinders.

For the initial conditions we take the macroscopic velo
ity field between the cylinders to be zero. Then the ou
cylinder suddenly starts to rotate with a constant angu
velocity V while the inner cylinder is kept at rest. Note th
this particular problem possesses high symmetry so tha
appropriate finite difference scheme adapted to cylindr
coordinates can also handle it@11#. The FVLBM scheme
reported here needs no assumptions of symmetry and th
capable of handling a wide variety of geometries witho
modification. In the finite-volume scheme, the update of
f i ’s at boundary nodes is similar to that for interior nod
except at the boundary the corresponding covolumes
half-covolumes.

In Fig. 3 we show the stationary velocity profile for th
angular component of the macroscopic velocity which res
from our computations compared with the theoretical so
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tion of the Navier-Stokes equation@15#. Here we have taken
the radii of the two cylinders to beR1550 andR25100 and
the angular velocity of the outer cylinder isV50.0005 rad
per unit time. The effective mesh spacing of our triangu
mesh is of the order of 1 and the relaxation timet is taken to
be 0.1. The average densityr0 is set to be 1.0. During the
simulations we observed the density to stay very close tor0 ,
thus confirming that the evolution maintains the incompre
ibility of the fluid between the relatively rotating cylinders
We evolved the system for 33106 time steps withdt
50.01 and observed it to monotonically approach the ex
stationary solution for the velocity profile. The time stepdt
was well within the effective Courant limit throughout th
simulations. The CFL condition in the current finite volum
scheme is found to be of the formv idtc/h<1, whereh is a
minimum length scale of the control volume andc is a con-

FIG. 2. An irregular mesh between two coaxial cylinders.

FIG. 3. The steady state velocity profile of flow between tw
coaxial cylinders~points!, compared with the theoretic solutio
~curve! of the Navier-Stokes equationv(r )5ar2b/r with a5

2
3

31023 and b5
5
3 . Here each point is the average of the angu

velocities at the nodes in a circular layer betweenr 21/2 and r
11/2 with r integers.
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stant depending on the shape of the control volume. F
Fig. 3 one can see that the agreement with the theore
results is quite good. To gain a quantitative measure of
accuracy, we have computed theL1 norm of the difference
between the computed and exact velocity profiles. The glo
error was found to be 1.0%, indicating that our compu
velocity profile agrees well with the exact profile.

It is interesting to make a comparison between the ab
scheme and the finite-volume scheme of Succi and
workers @6#. First, their model is a cell centered finite
volume method while our scheme is cell-vertex. In the mo
of Succi and co-workers@6#, the ‘‘coarse grain’’ density dis-
tribution is the unknown for each macro-cell. Second,
their model the piecewise constant extrapolation for
streaming operator causes serious problems of numerica
fusion. Even for the piecewise linear interpolation, numeri
diffusion does not disappear. To minimize this numeri
diffusion, a free parameter is then introduced and its valu
to be adjusted for each problem on a case by case b
Third, even for the meshes with the simple connectivity o
logically rectangular lattice, their empirical formulas for th
streaming coefficients are very complex and one could im
ine the practical difficulty of using irregular meshes wi
arbitrary connectivity.

By comparison, our scheme is based on the stand
finite-volume methods. It involves minimum approximatio
and does not need to introduce any free parameters. We
not found numerical diffusion problems in our finite volum
scheme. The formulation on which our model is based d
d-
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not require a special mesh connectivity and is easy to ap
to other kinds of meshes~such as quadrilateral elements
2D and tetrahedral and hexahedral elements in 3D! by re-
placing the standard interpolation we used here for triang
elements with other standard interpolation procedures s
able for the relevant types of volumes.

We have found that the kinematic viscosity in our finit
volume scheme is equal tot/3 independent of various
meshes we used and independent of mesh sizes. Since
scheme is based on the LBE, which is continuous in sp
and time, it is understandable that thist/3 relation coincides
with that obtained directly from the continuous equatio
@11#.

To conclude, we have proposed a finite-volume sche
for the LBM which is flexible and can be applied to un
steady, incompressible fluid flow in a wide variety of tw
dimensional regions that contain arbitrarily shaped inter
and external boundaries. This opens up the LBE method
be applied to many interesting systems so far difficult to tr
using the conventional LBM. Several applications as well
extensions to thermal problems are under investigation
will be reported elsewhere@16#.
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