
RAPID COMMUNICATIONS

PHYSICAL REVIEW E OCTOBER 1998VOLUME 58, NUMBER 4
Synchronization of time-delay systems
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We present the linear stability analysis of synchronized states in coupled time-delay systems. There exists a
synchronization threshold, for which we derive upper bounds, which does not depend on the delay time. We
prove that at least for scalar time-delay systems, synchronization is achieved by transmitting a single scalar
signal, even if the synchronized solution is given by a high-dimensional chaotic state with a large number of
positive Lyapunov exponents. The analytical results are compared with numerical simulations of two coupled
Mackey-Glass equations.@S1063-651X~98!51210-X#

PACS number~s!: 05.45.1b, 02.30.Ks
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The problem of synchronization of dynamical systems
one of the classical fields in engineering science@1#. Re-
cently, renewed interest in this field was stimulated in co
nection with the synchronization of chaotic motion. Esp
cially, the potential applicability for communication ha
attracted much research in recent years@2#. Yet, there are a
lot of results available concerning the synchronization
low-dimensional chaotic systems, theoretical as well as
perimental @3#. Contrary, the synchronization of high
dimensional chaotic systems with possibly a large numbe
positive Lyapunov exponents remains open. From the p
of view of numerical simulations the synchronization of sp
cific high-dimensional chaotic systems has been achie
@4#, while to our best knowledge only very few general r
sults are available~cf. @5#!. For that reason we address in th
paper the question of the synchronization of coupled ide
cal time-delay systems. We focus on time-delay syste
since on the one hand it is well established that these sys
are prominent examples of high-dimensional chaotic mot
with a large number of positive Lyapunov exponents@6#, and
on the other hand synchronization of Mackey-Glass-ty
electronic oscillators has been reported from the experim
tal point of view @7#.

Let us consider a fairly general theoretical model and
vestigate the stability problem of a synchronized state.
that purpose consider two identical arbitrary scalar tim
delay systems with a symmetric coupling

ẋ5F~x,xt!2K~x2y!,
~1!

ẏ5F~y,yt!2K~y2x!,

where we adopt the notationxtªx(t2t) to indicate the
time-delayed variables. We specialize from the beginning
the frequently analyzed case that the coupling is bidirectio
and acts additive to the single dynamical system. Howe
we stress that the subsequent considerations apply with
nor modifications to much more general situations, e.g.
vector-type variables, to systems with much more gen
delay terms, or to a nonadditive coupling, as long as
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coupling vanishes in the synchronized statex(t)[y(t). But
we think, that the choice made in Eq.~1! makes our argu-
ments more transparent.

Let z denote the synchronized solution, i.e.,ż5F(z,zt).
Considering deviations from that state according tox5z
1dx, y5z1dy and performing a linear stability analysis
we obtain for the deviationDªdy2dx from the synchro-
nized state the linear differential-difference equation

Ḋ5a~ t !D1b~ t !Dt . ~2!

Here, the time-dependent coefficients are given in terms
the synchronized solution asa(t)5]1F(z,zt)22K and
b(t)5]2F(z,zt), where the symbol]1/2 denotes the deriva
tive with respect to the first/second argument. An inspect
of Eq. ~2! might suggest that the synchronized solution
stable ifa(t) is ‘‘sufficiently negative,’’ since the delay term
can be neglected. Although the outcome of this superfi
argument will turn out to be correct, our analysis will reve
that the delay term cannot be neglected at all. For that rea
we are carrying out a rigorous stability analysis. Suppose
coefficients are bounded in the sense thata(t)<2a,0 and
ub(t)u<b holds for some fixed valuesa and b. Since the
equation is linear, it is sufficient to analyze the solution w
the special initial conditionD(0)51,D(t)[0,t,0. The gen-
eral case follows by a simple integration. There are differ
ways to estimate the stability of the trivial solution,D(t)
[0, of Eq.~2!. Here we use the fact that for scalar quantiti
a simple closed analytical formula for the solution can
written down. One just integrates the linear equation~2! in
the time intervals@Nt,(N11)t# and considers the dela
term as an inhomogeneous part. By this continuation met
~cf. @8#, p. 45! the full solution is obtained as

D~ t !5e*0
t a~ t8!dt81E

t

t

dt1b~ t1!e* I 1
a~u!du

1E
2t

t

dt1E
2t

t1
dt2b~ t1!b~ t22t!e* I 2

a~u!du1•••

1E
Nt

t

dt1E
Nt

t1
dt2¯E

Nt

tN21
dtN

3b~ t1!b~ t22t!¯b~ tN2~N21!t!e* I N
a~u!du

for Nt<t<~N11!t. ~3!
R4072 © 1998 The American Physical Society
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Here, the domains of integration for the exponents are gi
by I kª@0,t#/(@ t1 ,t12t#ø@ t22t,t222t#ø...ø@ tk2(k
21)t,tk2kt#). An upper bound foruD(t)u is obtained, if
the maximal valuesa(t)52a andb(t)5b are inserted into
Eq. ~3!. But then, the expression reduces to a solutionG of
the differential-difference equation with constant coefficie

Ġ52aG1bGt . ~4!

Hence, a solution of Eq.~4! yields an upper bond foruD(t)u.
But the last equation is easily solved by a Laplace trans
mation ~cf., Ref. @8#! or loosely speaking by an exponenti
ansatzG(t)5est. Since the corresponding eigenvalues ob

s52a1b exp~2st!, ~5!

negative real parts, i.e., stability, occur if and only ifa.b.
This inequality yields an upper bondK1 for the critical cou-
pling strength beyond which synchronization is achieved
we take the definitions ofa(t) andb(t) into account it reads
explicitly

K151/2@max
t

]1F~z,zt!1max
t

u]2F~z,zt!u#. ~6!

We note as a by-product that Eq.~4! may be viewed as a
kind of Grownwall-like lemma@9# for the time-dependen
equation~2!.

Before we proceed let us comment on our estimate for
stability. It cannot be improved without taking details of th
equation of motion~2! into account, since the estimate b
comes exact for time independent coefficients. Of course
concrete mathematical models of the type~1! one may suc-
ceed in deriving better estimates. Furthermore, our estim
~5! yields for large values ofa the asymptotic behaviors
.2 ln(a/b)/t1O(1) for the dominant eigenvalue, whic
governs the transient behavior. Hence, one cannot neg
the delay term in general, even for sufficiently negative v
ues ofa(t). In that respect our estimate~6! is a nontrivial
consequence of the delay dynamics. In fact, for several d
times the situation may become even more intricate, si
the problem of stable operators@10# may become important

In what follows, we compare our analytical result to n
merical simulations. We specialize to the Mackey-Glass s
tem, i.e.,

F~x,xt!52x1
Axt

11xt
10

. ~7!

In order to investigate the properties of the synchronizat
mechanism by numerical methods, we chose the dista
between trajectories as a suitable measure. For that re
the quantity

DT~ t !5E
t

t1T

ux~ t8!2y~ t8!udt8, ~8!

which of course depends on the range of averagingT and the
point of referencet, was analyzed.

We used a Runge-Kutta algorithm of fourth order w
step size 0.1. The simulations have been performed for
parameter valueA53, starting withK50.35. A constant ini-
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tial condition for x and y, which differs by an amount of
1023, has been chosen. The system was allowed to relax
a timet580t. After that, the distanceD was integrated on a
trajectory of the lengthT580t. For the next value of cou-
pling strengthK we again distorted the last state of the tr
jectory by adding an amount of 1023 to the y coordinates
and used it as initial condition. We performed the compu
tion for increasing as well as decreasing coupling const
Figure 1 summarizes our findings.

For t510 we observe distinct jumps, indicating that th
system switches between coexisting periodic states wit
pronounced hysteresis. Fort5100, the overall behavior o
the system appears to be quite similar as fort510, except
that no switching and no hysteresis is observed. Within
resolution of the graphics the same behavior has alre
been observed for a smaller valuet550. From the numeri-
cal simulations the synchronization threshold is estimated
Kc(t510)'0.24,Kc(t5100)'0.28. If we evaluate our
analytical estimate Eqs.~6! and ~7! using upper bounds fo
the derivatives we obtain values which differ by an order
magnitude but are independent of the delay timet, K1

5(81A/4021)/252.53. Since we have applied a rath
graceful rigorous estimate, such a discrepancy is far fr
being astonishing.

In order to understand the dynamics in the vicinity of t
synchronization threshold, time traces of the differen
x(t)2y(t) have been computed~cf. Fig. 2!. Slightly below
the synchronization thresholdKc we observe an intermitten
behavior very similar to on-off intermittency@11#. Addition-
ally, we investigated the distribution of laminar and turbule
phases under variation of the coupling strengthK and the
delay time t. To this end, the distanceDT(t) of the two
systems in the phase space has been computed on a
series of lengtht3106. With the threshold valueDT<0.10
(DT.0.10) the laminar~turbulent! phases have been re
corded. In the vicinity of the critical coupling strengthKc we
observe a power-law scaling with exponential cutoff for t
distribution Pl of the laminar phases over a wide range,Pl

FIG. 1. DistanceD for two coupled Mackey-Glass systems fo
t510 ~dashed line! andt5100 ~solid line!.
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}t2a l (t), where the exponenta l depends slightly on the de
lay time. In the low-dimensional chaotic case, fort510.0,
we observea(10)51.50 in agreement with the value pre
dicted by the scenario of on-off intermittency. For increas
delay time, we observe a decreasing exponent:a(30.0)
51.41,a(50.0)51.38,a(100.0)51.27, indicating that there
might be deviations from the simple on-off intermitten
scenario~cf. Fig. 3!. Note that in the latter cases the dynam
ics is high-dimensional. From the estimation of t
Lyapunov exponents of the synchronized solution we e
mated the Kaplan-Yorke dimensions to beDKY(t530.0)
'26.5,DKY(t550.0)'48.0,DKY(t5100.0)'96.0. There-
fore, the synchronization transition corresponds to a hi
dimensional chaos-chaos transition. Even the distribution
turbulent phases seems to follow a power-law scaling in
t region.

At the moment we have no theoretical explanation at
hand for our findings in the case of larget, i.e., in the case of
high-dimensional dynamics.

We conclude with how our results depend on noise
other imperfections that are present in realistic systems
fact, in order to apply a concept like synchronization su
perturbations have to be small and we may assume a ge
linear dependence. Formally such contributions are in
duced into Eq.~1! by adding the two termsG(x,xt)j and
G(y,yt)h, wherej andh denote, for example, realization
of a noise. Considering the perturbations of the same orde
magnitude like the deviation from the unperturbed synch
nized state and proceeding as above we finally end up w

Ḋ5a~ t !D1b~ t !Dt1G~z,zt!~h2j!, ~9!

which differs from Eq.~2! just by an inhomogeneous contr
bution. The theory of linear difference-differential equatio

FIG. 2. Time series fort510 and different values of the cou
pling ~a! K50.2595,~b! K50.250, ~c! K50.240.
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tells us@8# that Eq.~9! inherits its stability properties from
the corresponding homogeneous system~2! except that the
perturbations cause fluctuations around the unperturbed
chronized state. Whenever the perturbations are so large
contributions beyond the linear order have to be taken i
account, one has to resort to different methods. One of th
cases, which are also relevant from the experimental poin
view, is given by the synchronization of nearly identic
time-delay systems. Since, in this case, no strict synch
nized solutionx[y exists, one has to rely on more gener
concepts, such as the generalized synchronization@12#.

In summary, we emphasize that an analytical upper b
for the solution of Eq.~2! is obtained if one replaces the tim
dependency of the coefficients by their extreme values. O
might get better estimates in special cases. In particular
might argue, that Eq.~4! already determines the stability,
the time averages of the coefficients are inserted. This st
ment is in fact true if either the coefficients are period
functions of time with the delayt being an integer multiple
of the period or, if the coefficients are almost constant~cf.
@8#, p. 277!. Whether or not the general case can be trea
by this refined estimate remains open. Nevertheless, we h
shown that for sufficiently large coupling constantK the syn-
chronized solution of Eq.~1! becomes stable wheneve
ud1/2F(z,zt)u are uniformly bounded. In particular the critica
coupling strength remains bounded even in the limit of la
delay times, i.e., it does not increase with the dimension
the attractor. In fact, our numerical simulations indicate o
a weak dependence of the actual critical coupling strength
the delay time. Last but not least our approach clearly de
onstrates that the success of the synchronization is inde
dent of the number of positive Lyapunov exponents, eve
our coupling uses one scalar variable only, illustrating
results of Stojanovskiet al. @5#.

We acknowledge discussions with U. Parlitz, K. Pyrag
and Th. Meyer, and the assistance of R. Hegger for the c
putation of the Lyapunov spectra.

FIG. 3. ~a! Distribution of laminar phases;~b! distribution of
turbulent phases fort5100 and K5Kc50.28 ~solid line!, K
50.26 ~circles!, and K50.24 ~dotted line!. The dashed line indi-
cates a shifted power-law fit witha l51.27 anda t52.19.
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