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Synchronization of time-delay systems
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We present the linear stability analysis of synchronized states in coupled time-delay systems. There exists a
synchronization threshold, for which we derive upper bounds, which does not depend on the delay time. We
prove that at least for scalar time-delay systems, synchronization is achieved by transmitting a single scalar
signal, even if the synchronized solution is given by a high-dimensional chaotic state with a large number of
positive Lyapunov exponents. The analytical results are compared with numerical simulations of two coupled
Mackey-Glass equationS1063-651X98)51210-X]

PACS numbd(s): 05.45+b, 02.30.Ks

The problem of synchronization of dynamical systems iscoupling vanishes in the synchronized stafe)=y(t). But
one of the classical fields in engineering sciefité Re- we think, that the choice made in E(l) makes our argu-
cently, renewed interest in this field was stimulated in conments more transparent.
nection with the synchronization of chaotic motion. Espe- | et z denote the synchronized solution, i.e=F(z,z,).
cially, the potential applicability for communication has Considering deviations from that state accordingxtez
attracted much research in recent yela@s Yet, there are a 4 sy y=z+ 8y and performing a linear stability analysis,
lot of results available concerning the synchronization ofye obtain for the deviatiom :=3dy— dx from the synchro-

low-dimensional chaotic systems, theoretical as well as expized state the linear differential-difference equation
perimental [3]. Contrary, the synchronization of high-

dimensional chaotic systems with possibly a large number of A= a(H)A+B(HA,. ?)
positive Lyapunov exponents remains open. From the point
of view of numerical simulations the synchronization of Spe-Here, the time-dependent coefficients are given in terms of
cific high-dimensional chaotic systems has been achieveghe synchronized solution as(t)=4d,F(z,z,)—2K and
[4], while to our best knowledge only very few general re- g(t)=a,F(z,z,), where the symbod,,, denotes the deriva-
sults are availabléct. [5]). For that reason we address in this tive with respect to the first/second argument. An inspection
paper the question of the synchronization of coupled identiof Eq. (2) might suggest that the synchronized solution is
cal time-delay systems. We focus on time-delay systemsstaple ifa(t) is “sufficiently negative,” since the delay term
since on the one hand it is well established that these systengan be neglected. Although the outcome of this superficial
are prominent examples of high-dimensional chaotic motioryrgument will turn out to be correct, our analysis will reveal
with a large number of positive Lyapunov expone@i; and  that the delay term cannot be neglected at all. For that reason
on the other hand synchronization of Mackey-Glass-typeye are carrying out a rigorous stability analysis. Suppose the
electronic oscillators has been reported from the experimen:gefficients are bounded in the sense thet) < —a<0 and
tal point of view[7]. _ _ |B(t)|=<b holds for some fixed valuea andb. Since the

Let us consider a fairly general theoretical model and inequation is linear, it is sufficient to analyze the solution with
vestigate the stabil_ity proble_m of_a synchronized state: Fothe special initial conditiorA (0)=1,A(t)=04t<0. The gen-
that purpose consider two identical arbitrary scalar timegrg| case follows by a simple integration. There are different

delay systems with a symmetric coupling ways to estimate the stability of the trivial solutioA(t)
) =0, of Eq.(2). Here we use the fact that for scalar quantities
x=F(x,x,)—K(x—y), a simple closed analytical formula for the solution can be

(1)  written down. One just integrates the linear equatianin

the time intervals{N7,(N+1)7] and considers the delay
term as an inhomogeneous part. By this continuation method
(cf. [8], p. 45 the full solution is obtained as

y=F(y,y,)—K(y—x),

where we adopt the notatior,:=x(t—7) to indicate the

time-delayed variables. We specialize from the beginning to ¢

the frequently analyzed case that the coupling is bidirectional  A(t) — gJoalt)dt’ | f dt, B(ty)el1,«(0)d0

and acts additive to the single dynamical system. However, 4

we stress that the subsequent considerations apply with mi- ¢ 4

nor modifications to much more general situations, e.g., to +J dtlf dt,B(ty) B(t,— 7)el 20404 ...

vector-type variables, to systems with much more general 27 27

delay terms, or to a nonadditive coupling, as long as the ‘ t N1
+f dt; dtz---f dty

N7 N7 N7
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Here, the domains of integration for the exponents are given
by | k3=[0,t]/([t1 ,tl_ 7'] U [tz_ ’T,tz_ 27'] U.. U[tk_ (k
—1)7,t,—k7]). An upper bound folA(t)| is obtained, if
the maximal values(t) = —a andB(t) =b are inserted into
Eq. (3). But then, the expression reduces to a solufioof

the differential-difference equation with constant coefficients

I'=—al+brl,. (4)

Hence, a solution of Eq4) yields an upper bond fda\ (t)|.

But the last equation is easily solved by a Laplace transfor-
mation (cf., Ref.[8]) or loosely speaking by an exponential
ansatzl’(t) =e®. Since the corresponding eigenvalues obey

s=—a+b exp —s7), (5)

negative real parts, i.e., stability, occur if and onhaifb.
This inequality yields an upper bord, for the critical cou-

0.8
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FIG. 1. DistanceD for two coupled Mackey-Glass systems for

pling strength beyond which synchronization is achieved. If;= 10 (dashed lingand r= 100 (solid line).

we take the definitions ak(t) andB(t) into account it reads
explicitly

K. =1/ maxd;F(z,2,)+maxd,F(z,z,)|]. (6) tial condition forx andy, which differs by an amount of
t t 103, has been chosen. The system was allowed to relax for
a timet=80r. After that, the distancB was integrated on a

We note as a by-product that E@l) may be viewed as a
kind of Grownwall-like lemma[9] for the time-dependent
equation(2).

Before we proceed let us comment on our estimate for th
stability. It cannot be improved without taking details of the
equation of motion(2) into account, since the estimate be-

concrete mathematical models of the tyfi¢ one may suc-

trajectory of the lengtil =807. For the next value of cou-
pling strengthK we again distorted the last state of the tra-
'éectory by adding an amount of 18 to they coordinates
and used it as initial condition. We performed the computa-
tion for increasing as well as decreasing coupling constant.

comes exact for time independent coefficients. Of course, fofiguré 1 summarizes our findings. o
For 7=10 we observe distinct jumps, indicating that the

ceed in deriving better estimates. Furthermore, our estimat@ystem switches between coexisting periodic states with a
(5) yields for large values of the asymptotic behavics pronounced hysteresis. Fer= 100, the overall behavior of
=—In(a/lb)/7+O(1) for the dominant eigenvalue, which the system appears to be quite similar asferl0, except
governs the transient behavior. Hence, one cannot neglethat no switching and no hysteresis is observed. Within the
the delay term in general, even for sufficiently negative val-resolution of the graphics the same behavior has already
ues ofa(t). In that respect our estimaté) is a nontrivial been observed for a smaller valae-50. From the numeri-
consequence of the delay dynamics. In fact, for several delagal simulations the synchronization threshold is estimated as
times the situation may become even more intricate, sinc&.(7=10)~0.24,K.(7=100)~0.28. If we evaluate our
the problem of stable operatdis0] may become important. analytical estimate Eq$6) and (7) using upper bounds for

In what follows, we compare our analytical result to nu- the derivatives we obtain values which differ by an order of
merical simulations. We specialize to the Mackey-Glass sysmagnitude but are independent of the delay timeK.
tem, i.e., =(81A/40—1)/2=2.53. Since we have applied a rather

F( | AX
X,X,)=—X+ ———.
1+ x20

graceful rigorous estimate, such a discrepancy is far from
. (7)  being astonishing.
In order to understand the dynamics in the vicinity of the

) ) ) _ . synchronization threshold, time traces of the difference
In order to investigate the properties of the synchromzauor;((t)_y(t) have been compute@f. Fig. 2. Slightly below
mechanism by numerical methods, we chose the distanGge synchronization threshold, we observe an intermittent
between trajectories as a suitable measure. For that reasgppavior very similar to on-off intermittendyL1]. Addition-

the quantity

ally, we investigated the distribution of laminar and turbulent

t+T iati i
_ N e , phases under variation of the coupling strenfftrand the
DT(t)_Jt [x(t)—y(t")]dt’, (8) delay time . To this end, the distancB(t) of the two
systems in the phase space has been computed on a time
which of course depends on the range of averagiagd the  series of lengthrx 10°. With the threshold valu®;<0.10

point of referencd, was analyzed.

(D1>0.10) the laminar(turbulen} phases have been re-

We used a Runge-Kutta algorithm of fourth order with corded. In the vicinity of the critical coupling strendth we
step size 0.1. The simulations have been performed for thebserve a power-law scaling with exponential cutoff for the
parameter valu& =3, starting withK =0.35. A constant ini-  distribution P, of the laminar phases over a wide rangg,
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FIG. 3. (a) Distribution of laminar phasegp) distribution of
turbulent phases forr=100 and K=K;=0.28 (solid line), K
=0.26 (circles, and K=0.24 (dotted ling. The dashed line indi-
cates a shifted power-law fit withy=1.27 anda,=2.19.

t tells us[8] that Eq.(9) inherits its stability properties from

the corresponding homogeneous syst@nexcept that the
perturbations cause fluctuations around the unperturbed syn-
chronized state. Whenever the perturbations are so large that
contributions beyond the linear order have to be taken into
account, one has to resort to different methods. One of these

lay time. In the low-dimensional chaotic case, for 10.0, . : .
we observea(10)=1.50 in agreement with the value pre- cases, which are also relevant from the experimental point of
' view, is given by the synchronization of nearly identical

dicted by the scenario of on-off intermittency. For increasing’. , X X )
delay time, we observe a decreasing exponer(30.0) tl_me—delay _systems. _Slnce, in this case, no strict synchro-
—1.412(50.0)=1.384(100.0)=1.27, indicating that there nized solutionx=y exists, one _has to rely on more general
might be deviations from the simple on-off intermittency CONCepts, such as the generalized synchronizfiah
scenario(cf. Fig. 3. Note that in the latter cases the dynam-  In summary, we emphasize that an analytical upper bond
ics is high-dimensional. From the estimation of the for the solution of Eq(2) is obtained if one replaces the time
Lyapunov exponents of the synchronized solution we estidependency of the coefficients by their extreme values. One
mated the Kaplan-Yorke dimensions to Bg(7=30.0) might get better estimates in special cases. In particular one
~26.5,Dyy(7=50.0=48.0,D(7=100.0=96.0. There- might argue, that Eq4) already determines the stability, if
fore, the synchronization transition corresponds to a highthe time averages of the coefficients are inserted. This state-
dimensional chaos-chaos transition. Even the distribution ofment is in fact true if either the coefficients are periodic
turbulent phases seems to follow a power-law scaling in thigunctions of time with the delay being an integer multiple

T region. of the period or, if the coefficients are almost constafit

At the moment we have no theoretical explanation at thegg], p. 277. Whether or not the general case can be treated
hand for our findings in the case of largei.e., in the case of py this refined estimate remains open. Nevertheless, we have
high-dimensional dynamics. shown that for sufficiently large coupling const#hthe syn-

We conclude with how our results depend on noise Oichronized solution of Eq(1) becomes stable whenever
other imperfections that are present in realistic systems. Ins, ,F(z,z,)| are uniformly bounded. In particular the critical
fact, in order to apply a concept like synchronization suchcoupling strength remains bounded even in the limit of large
perturbations have to be small and we may assume a gene@lay times, i.e., it does not increase with the dimension of
linear dependence. Formally such contributions are introthe attractor. In fact, our numerical simulations indicate only
duced into Eq.(1) by adding the two term&(x,X,)é and  a weak dependence of the actual critical coupling strength on
G(y,y,) n, where¢ and » denote, for example, realizations the delay time. Last but not least our approach clearly dem-
of a noise. Considering the perturbations of the same order @nstrates that the success of the synchronization is indepen-
magnitude like the deviation from the unperturbed synchrodent of the number of positive Lyapunov exponents, even if
nized state and proceeding as above we finally end up withbur coupling uses one scalar variable only, illustrating the
results of Stojanovsket al. [5].

FIG. 2. Time series forr=10 and different values of the cou-
pling (a) K=0.2595, (b) K=0.250, (c) K=0.240.

«t~ () where the exponent, depends slightly on the de-

A=a()A+B(DA.+G(z,2.)(n—§), 9
(DA+AM) (22)(n=4) ® We acknowledge discussions with U. Parlitz, K. Pyragas,

which differs from Eq.(2) just by an inhomogeneous contri- and Th. Meyer, and the assistance of R. Hegger for the com-
bution. The theory of linear difference-differential equationsputation of the Lyapunov spectra.
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