RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 58, NUMBER 4 OCTOBER 1998

Transition from propagating localized states to spatiotemporal chaos in phase dynamics
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We study the nonlinear phase equation for propagating patterns. We investigate the transition from a
propagating localized pattern to a space-filling spatiotemporally disordered pattern and discuss in detail to what
extent there are propagating localized states that breathe in time periodically, quasiperiodically, and chaoti-
cally. Differences and similarities to the phenomena occurring for the quintic complex Ginzburg-Landau
equation are elucidated. We also discuss for which experimentally accessible systems one could observe the
phenomena describe51063-651X98)51910-]

PACS numbdrs): 05.70.Ln, 47.20.Ky, 47.16.g

Recently it has become cle@t,2] that localized states theoretically. For the nonlinear phase equation associated
that breathe periodically, quasiperiodically, or even chaotiwith propagating patterngs] we have already showj21]
cally in time can stably exist for the complex quintic that propagating localized patterns with fixed shape exist sta-
Ginzburg-Landau equation in one and two spatial dimenbly and that there can be a transition to a space-filling pattern
sions. This equation is of prototype character for pattern forthat is disordered in time and space, provided there are suf-
mation in dissipative nonequilibrium systems. For this equaficiently large nonpotential contributions.
tion the spatially localized state is embedded in a background TO investigate to what extent breathing localized states
corresponding to zero amplitude, which is one of the twocan arise in nonlinear phase dynamics, we start with the non-
locally stable states of the spatially homogeneous equatioinear phase equation describing the long wavelength, low
As long as the perturbations propagating down the wings offequency modulations of a propagating pattern in one di-
the breathing localized states are sufficiently damped, thEension[22],
state stays localized. Larger dispersive contributions then .
lead to a growth of these perturbations and to a filling in of ¢~ v $x— Cebyxx=[D +E b+ F 2]yt (H/2) 5

the entire cell 1].
[ ] _G¢xxxx1 (1)

Triggered by these results the question arises whether the
which reads when rewritten for the local wave vectpr

behavior found for the complex quintic Ginzburg-Landau
equation is very special or to what extent phenomena such asq,)
X

periodically and chaotically breathing localized states can
also be found for other prototype equations. To address thig . - _ _ 2 2
question we have investigatedyt)he t?ansition from a propagat§ v Chou=[D+Eq+FaTlaot[E+2Fqlai+Haa,
ing localized solution with fixed shape to irregular behavior — G Oyyxx- (2
in space and time for the whole cell in the framework of the
nonlinear phase equation for propagating phase motion. The termsx D, E, F, and G are already known from the

In this context we denote by phase dynanii8kthe ap- nonlinear phase equation for a stationary pijd8e-19. The
proach that represents the analog of hydrodynafdi¢s for ~ termo D corresponds to ordinary linear phase diffusion, the
large aspect ratio pattern-forming nonequilibrium systemgerm« G is a higher order gradient term necessary to stabi-
[6,7]. While there have been numerous studies, both experiize the system foD close to 0 or negative, the contribution
mental[8—11] and theoretical3,7,17, on linearized phase o E is the lowest order nonlinearity for a stationary phase,
dynamics, nonlinear phase dynamics has not yet attracted agd the onex F is necessary to stabilize the system. We also
much attention. For stationary patterns we have shd@h  note that the existence of these nonlinear terms makes two
that the appropriate nonlinear phase equation can have stwcal minima of the associated potential possible in the sta-
tionary localized states for which the wavelength of the pattionary casd13]. The three additional terms in the case of a
tern varies as a function of space: the wave vectors in @ropagating phase correspond to the convective tgmo-
localized area over part of the cell are different from theportional to the group velocity), its higher order gradient
constant background wavelength. The properties of these stterm (= C), and the nonlinear terrfc H) characteristic of
tionary confined states in phase dynamics, which are intrinpropagating phase motions, which has been studied by Kura-
sically nonlinear object$13], have been studied in some moto[23,24]. We note that the terrx H in Eq. (2) is of the
detail theoretically{13—16. On the experimental side there form of a nonlinear gradient term and is similar to the con-
have been thorough investigations on slot convection fawective nonlinearity of the one-dimensional Navier-Stokes
above onse{17-2(, both for straight and annular cells, equation.
which reveal, among other results, phenomena that have Since we are studying here the transition to spatiotempo-
many qualitative similarities with the localized states studiedral disorder, only the casB<O0 is relevant in the present
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FIG. 1. Three-dimensional space-time plot for the wave vegtor
of a propagating localized state with fixed shape as it arises for
=0,H=0.8(D =—1F=G=1E=0).

paper. By going into the frame moving with velocityone 0 \

can transform away the convective term in E(sand 2. & J
In the following we describe the results of our numerical

calculations, which have been obtained for periodic bound

ary conditions for the local wave vectgr We used a time- = \\ K{,”A /
splitting method to integrate the linear part exactly in time R 1 ; ‘ i
using Fourier transforms and the nonlinear terms with 00 125.0 250.0 5750 5000
second-order Runge-Kutta using fourth-order spatial differ- f

encmg(cor_‘npare, for example, Rdj_l5] for more deta|I§ of FIG. 2. (a) Three-dimensional space-time plot for a periodically
the numerical methgdWe were typically running our simu-

- 7 ] - L . ! breathing localized state is shown fdr=1.4. We note the onset of

lations for about 1iterations in time(using a time step of (he phonongradiation as soon as the propagating localized state

At=0.01). Throughout the following we have transformed starts to breathib) fq2(x)dx shows periodic oscillations.

Egs.(1) and(2) into the moving frame and we have pDt0

for simplicity. =[qg?dx It is seen to show periodic oscillations. The quantity
In Fig. 1 we show for reference a space-time plot of aS can be thought of as a representative quantity showing

stable propagating localized state of fixed shape, which caascillations and it has been selected for display, since for
be obtained, for example, from a Gaussian initial conditionphase equations the integral over the wave vegtanishes.
We use a value dfi=0.8, which represents a nonlinear gra- As the value ofH is increased the speed at which the
dient term in the equation for the local wave vedtigg. (2)].  localized object is traveling also increases. Eventually we
Inspection of Fig. 1 shows that this localized state is asymebserve a transition from a periodic breathing to a quasi-
metric (as is to be expected in the presence of a nonlineaperiodic breathing of the localized state. This is shown in
gradient term and travels to the left, while the shape is not Fig. 3. In Fig. 3a) we show a space-time plot fdi1=2.2.
changing as a function of time. We also note that the backinspecting this figure it is clear that the shedding of small
ground wave vector is constant and shows no spatiotemporamplitude excitations continues, although there is no longer
variation. any detectable periodicity associated with this process. In
To study the transition from the localized states of fixedFig. 3(b) and 3c) we have plotted the logarithm of the sepa-
shape to the space-filling pattern with spatiotemporal disoration ¢ = /[ 8gdx (where &q is a linear perturbation about
der, we have gradually increased the nonlinear gradient, nomy) [25], and the integral quantit$, respectively. We see that
potential term, thus increasing the importance of the nonpothe separation levels off in the long-time limit. This clearly
tential term relative to the gradient parts, whose magnitudelemonstrates that this state is not chaotic. From Fig).\8e
we keep fixed. In Fig. @ we show a three-dimensional infer that the state considered also shows no detectable peri-
space-time plot foH=1.4. As we see from Fig.(3) a local-  odicity. Combining all our data, we conclude that this state is
ized state results that is periodically breathing as a functiomuasi-periodic.
of time. In addition we note that in contrast to the case of a A further increase in the magnitude of the nonlinear gra-
propagating pulse of fixed shape, the background wave vedient termH leads to a transition from a quasi-periodic
tor is no longer flat, but that small amplitude waves are beindreathing localized state to a state that breathes chaotically
sent out that are reminiscent of the linear excitationsand shows an increased frequency of low amplitude emis-
(“phonons” or “radiation”) in solitonic systems. We stress sions, which appear to occur at random time intervals. To
that these excitations do not die out for the present system idemonstrate that the localized state shown in Figy 4
the long-time limit, but rather that they are emitted periodi-chaotic, we plot in Fig. é) the logarithm of the separatiqh
cally in time. We would like to emphasize that the onset ofin the long-time limit. We see that two nearby states separate

these excitations on the flat background as a functiofl of exponentially on the average, verifying that the state is in-
coincides with the onset of the breathing motion of thedeed chaotic.

pulses. In Fig. th) we have plotted the quantitys As the value ofH is increased further a transition to a
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FIG. 4. Behavior of a chaotically breathing localized state for
& H=2.8. (@) The space-time plot shows an increased frequency of

{ A low amplitude emissiongb) The separation clearly shows an ex-
ponential growth.

difference is related to the fact that the background has am-
| 1\',}‘1‘5 plitude zero for the complex quintic Ginzburg-Landau equa-
‘]]J P tion, while there is a nonzero constant background value for
s the breathing localized states in nonlinear phase dynamics
i described here.
0.0 250.0 500.0 750.0 1000.0 In this Rapid Communication we have shown that it
t is possible to get propagating breathing localized states
in phase dynamics for traveling patterns: a localized excita-
FIG. 3. (a) Space-time plot for a quasiperiodically breathing tion that travels and breathes has wavelengths that are differ-
localized solution foH=2.2. We draw the attention to the higher ent from that in the bulk of the pattern. As the control pa-
speed with which the localized state propagates compared to theymeter is varied, the pulses in the wavelength distribution
periodically breathing localized states. Note that the shedding of thgregthe periodically, quasi-periodically and eventually cha-
linear excitations also does not show any obvious regularity anyoptically. Simultaneously with the onset of the breathing
more.(b) The separation shows that this state is not cha@icthe  motion, we obtain the onset of the emission of small ampli-
integral S does not show any detectable periodicity. tude excitationgphonons, radiation which are emitted pe-
riodically or chaotically even after a long time. Eventually
space-filling state that is disordered in time and space takgshat is, at higher values of the nonlinear gradient jeam
place[21]. Thus we see that we obtain the sequence localspace-filling pattern that is disordered in space and time
ized state with fixed shape, periodically breathing localizedesults.
state, quasi-periodically breathing localized state, chaotically Stimulated by the experimental results of Dubois and co-
breathing localized state, and eventually space-filling spaworkers[17—20 on slot convectior(in slot convection the
tiotemporal disorder a#l is increased. We emphasize that width of the cell is much less that the heigltt rectangular
the breathing localized states for the nonlinear phase equand annular slots in simple fluids, we speculate that one
tion studied are always accompanied by the emission ofight see propagating confined states in this geometry for
small amplitude excitationghonons, radiation Their regu-  binary fluid mixtures. It is important to note in this connec-
larity and frequency also reflects the regularity and frequencyion that the experiments in Refd.7—2( focused on simple
of the underlying state. This is different from the case of thefluids, while systematic experiments on binary fluid convec-
breathing localized states in the complex quintic Ginzburgtion in the slot geometry have apparently not been performed
Landau equation, where there was no radiation sent off fronas yet. In Refs[17] and[20] a localized spatial variation of
the localized states in the long-time limit. It appears that thighe pattern wavelength has been observed well above the
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instability onset, sometimes accompanied by temporal oscildirection, clearly experimental setups involving quasi-one-
lations. Since we have focused on phase dynamics here, thditmensional geometries, such as annular shaped containers
is on the analog of hydrodynamics for large aspect ratio patfor thermal and electroconvection or Taylor cylinders ap-
tern forming systems, the scenario described is one of severgtoaching the narrow gap limit, will be more promising in
possibilities. Alternative scenarios include the generation Of)bserving the route to spatiotemporal chaos via breathing
spatiotemporal disorder via the generation of defects, whiclycalized states described here.

are characterized by space-time locations of vanishing am-

plitude. Other candidates of physical systems for which such It is a pleasure for H.R.B. to thank Yoshiki Kuramoto and
phenomena might be observable include the spirals in th&akao Ohta for interesting discussions. The work done at the
Taylor instability between counter-rotating cylind€r26], Center for Nonlinear Studies, Los Alamos National Labora-
the flow between corotating cylindefsvhere domains in tory, has been performed under the auspices of the Depart-
wavelength have been obsenj@¥,2§, and traveling waves ment of Energy. H.R.B. thanks the Deutsche Forschungsge-
in convective systems far above onset, such as binary fluicheinschaft for partial support of this work through the
mixtures and electroconvection in nematic liquid crystals. AsGraduiertenkolleg “Nichtlineare Spektroskopie und Dy-
we have studied here spatial variations in only one spatiahamik.”
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