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Transition from propagating localized states to spatiotemporal chaos in phase dynamics
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We study the nonlinear phase equation for propagating patterns. We investigate the transition from a
propagating localized pattern to a space-filling spatiotemporally disordered pattern and discuss in detail to what
extent there are propagating localized states that breathe in time periodically, quasiperiodically, and chaoti-
cally. Differences and similarities to the phenomena occurring for the quintic complex Ginzburg-Landau
equation are elucidated. We also discuss for which experimentally accessible systems one could observe the
phenomena described.@S1063-651X~98!51910-1#

PACS number~s!: 05.70.Ln, 47.20.Ky, 47.10.1g
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Recently it has become clear@1,2# that localized states
that breathe periodically, quasiperiodically, or even cha
cally in time can stably exist for the complex quint
Ginzburg-Landau equation in one and two spatial dim
sions. This equation is of prototype character for pattern
mation in dissipative nonequilibrium systems. For this eq
tion the spatially localized state is embedded in a backgro
corresponding to zero amplitude, which is one of the t
locally stable states of the spatially homogeneous equa
As long as the perturbations propagating down the wings
the breathing localized states are sufficiently damped,
state stays localized. Larger dispersive contributions t
lead to a growth of these perturbations and to a filling in
the entire cell@1#.

Triggered by these results the question arises whethe
behavior found for the complex quintic Ginzburg-Land
equation is very special or to what extent phenomena suc
periodically and chaotically breathing localized states c
also be found for other prototype equations. To address
question we have investigated the transition from a propa
ing localized solution with fixed shape to irregular behav
in space and time for the whole cell in the framework of t
nonlinear phase equation for propagating phase motion.

In this context we denote by phase dynamics@3# the ap-
proach that represents the analog of hydrodynamics@4,5# for
large aspect ratio pattern-forming nonequilibrium syste
@6,7#. While there have been numerous studies, both exp
mental @8–11# and theoretical@3,7,12#, on linearized phase
dynamics, nonlinear phase dynamics has not yet attracte
much attention. For stationary patterns we have shown@13#
that the appropriate nonlinear phase equation can have
tionary localized states for which the wavelength of the p
tern varies as a function of space: the wave vectors i
localized area over part of the cell are different from t
constant background wavelength. The properties of these
tionary confined states in phase dynamics, which are int
sically nonlinear objects@13#, have been studied in som
detail theoretically@13–16#. On the experimental side ther
have been thorough investigations on slot convection
above onset@17–20#, both for straight and annular cells
which reveal, among other results, phenomena that h
many qualitative similarities with the localized states stud
PRE 581063-651X/98/58~4!/4064~4!/$15.00
i-

-
r-
-
d

o
n.
f
e
n
f

he

as
n
is
t-

r

s
ri-

as

ta-
t-
a

ta-
-

r

ve
d

theoretically. For the nonlinear phase equation associa
with propagating patterns@6# we have already shown@21#
that propagating localized patterns with fixed shape exist
bly and that there can be a transition to a space-filling pat
that is disordered in time and space, provided there are
ficiently large nonpotential contributions.

To investigate to what extent breathing localized sta
can arise in nonlinear phase dynamics, we start with the n
linear phase equation describing the long wavelength,
frequency modulations of a propagating pattern in one
mension@22#,

ḟ2vfx2Cfxxx5@D1Efx1Ffx
2#fxx1~H/2!fx

2

2Gfxxxx, ~1!

which reads when rewritten for the local wave vectorq
5fx

q̇2vqx2Cqxxx5@D1Eq1Fq2#qxx1@E12Fq#qx
21Hqqx

2Gqxxxx. ~2!

The terms} D, E, F, and G are already known from the
nonlinear phase equation for a stationary phase@13–15#. The
term} D corresponds to ordinary linear phase diffusion, t
term } G is a higher order gradient term necessary to sta
lize the system forD close to 0 or negative, the contributio
} E is the lowest order nonlinearity for a stationary pha
and the one} F is necessary to stabilize the system. We a
note that the existence of these nonlinear terms makes
local minima of the associated potential possible in the s
tionary case@13#. The three additional terms in the case o
propagating phase correspond to the convective term~pro-
portional to the group velocityv!, its higher order gradien
term ~} C!, and the nonlinear term~} H! characteristic of
propagating phase motions, which has been studied by K
moto @23,24#. We note that the term} H in Eq. ~2! is of the
form of a nonlinear gradient term and is similar to the co
vective nonlinearity of the one-dimensional Navier-Stok
equation.

Since we are studying here the transition to spatiotem
ral disorder, only the caseD,0 is relevant in the presen
R4064 © 1998 The American Physical Society
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paper. By going into the frame moving with velocityv one
can transform away the convective term in Eqs.~1 and 2!.

In the following we describe the results of our numeric
calculations, which have been obtained for periodic bou
ary conditions for the local wave vectorq. We used a time-
splitting method to integrate the linear part exactly in tim
using Fourier transforms and the nonlinear terms w
second-order Runge-Kutta using fourth-order spatial diff
encing~compare, for example, Ref.@15# for more details of
the numerical method!. We were typically running our simu
lations for about 106 iterations in time~using a time step of
Dt50.01!. Throughout the following we have transforme
Eqs.~1! and~2! into the moving frame and we have putC50
for simplicity.

In Fig. 1 we show for reference a space-time plot o
stable propagating localized state of fixed shape, which
be obtained, for example, from a Gaussian initial conditi
We use a value ofH50.8, which represents a nonlinear gr
dient term in the equation for the local wave vector@Eq. ~2!#.
Inspection of Fig. 1 shows that this localized state is asy
metric ~as is to be expected in the presence of a nonlin
gradient term! and travels to the left, while the shape is n
changing as a function of time. We also note that the ba
ground wave vector is constant and shows no spatiotemp
variation.

To study the transition from the localized states of fix
shape to the space-filling pattern with spatiotemporal dis
der, we have gradually increased the nonlinear gradient, n
potential term, thus increasing the importance of the non
tential term relative to the gradient parts, whose magnit
we keep fixed. In Fig. 2~a! we show a three-dimensiona
space-time plot forH51.4. As we see from Fig. 2~a! a local-
ized state results that is periodically breathing as a func
of time. In addition we note that in contrast to the case o
propagating pulse of fixed shape, the background wave
tor is no longer flat, but that small amplitude waves are be
sent out that are reminiscent of the linear excitatio
~‘‘phonons’’ or ‘‘radiation’’ ! in solitonic systems. We stres
that these excitations do not die out for the present syste
the long-time limit, but rather that they are emitted perio
cally in time. We would like to emphasize that the onset
these excitations on the flat background as a function oH
coincides with the onset of the breathing motion of t
pulses. In Fig. 2~b! we have plotted the quantityS

FIG. 1. Three-dimensional space-time plot for the wave vectoq
of a propagating localized state with fixed shape as it arises fov
50, H50.8 ~D 521,F5G51,E50!.
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5*q2dx. It is seen to show periodic oscillations. The quant
S can be thought of as a representative quantity show
oscillations and it has been selected for display, since
phase equations the integral over the wave vectorq vanishes.

As the value ofH is increased the speed at which th
localized object is traveling also increases. Eventually
observe a transition from a periodic breathing to a qua
periodic breathing of the localized state. This is shown
Fig. 3. In Fig. 3~a! we show a space-time plot forH52.2.
Inspecting this figure it is clear that the shedding of sm
amplitude excitations continues, although there is no lon
any detectable periodicity associated with this process
Fig. 3~b! and 3~c! we have plotted the logarithm of the sep
ration z5A*dq2dx ~wheredq is a linear perturbation abou
q! @25#, and the integral quantityS, respectively. We see tha
the separation levels off in the long-time limit. This clear
demonstrates that this state is not chaotic. From Fig. 3~c! we
infer that the state considered also shows no detectable
odicity. Combining all our data, we conclude that this state
quasi-periodic.

A further increase in the magnitude of the nonlinear g
dient term H leads to a transition from a quasi-period
breathing localized state to a state that breathes chaotic
and shows an increased frequency of low amplitude em
sions, which appear to occur at random time intervals.
demonstrate that the localized state shown in Fig. 4~a! is
chaotic, we plot in Fig. 4~b! the logarithm of the separationz
in the long-time limit. We see that two nearby states sepa
exponentially on the average, verifying that the state is
deed chaotic.

As the value ofH is increased further a transition to

FIG. 2. ~a! Three-dimensional space-time plot for a periodica
breathing localized state is shown forH51.4. We note the onset o
the phonons~radiation! as soon as the propagating localized st
starts to breath.~b! *q2(x)dx shows periodic oscillations.
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space-filling state that is disordered in time and space ta
place@21#. Thus we see that we obtain the sequence lo
ized state with fixed shape, periodically breathing localiz
state, quasi-periodically breathing localized state, chaotic
breathing localized state, and eventually space-filling s
tiotemporal disorder asH is increased. We emphasize th
the breathing localized states for the nonlinear phase e
tion studied are always accompanied by the emission
small amplitude excitations~phonons, radiation!. Their regu-
larity and frequency also reflects the regularity and freque
of the underlying state. This is different from the case of
breathing localized states in the complex quintic Ginzbu
Landau equation, where there was no radiation sent off fr
the localized states in the long-time limit. It appears that t

FIG. 3. ~a! Space-time plot for a quasiperiodically breathin
localized solution forH52.2. We draw the attention to the highe
speed with which the localized state propagates compared to
periodically breathing localized states. Note that the shedding o
linear excitations also does not show any obvious regularity a
more.~b! The separation shows that this state is not chaotic.~c! The
integralS does not show any detectable periodicity.
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difference is related to the fact that the background has am
plitude zero for the complex quintic Ginzburg-Landau equa
tion, while there is a nonzero constant background value f
the breathing localized states in nonlinear phase dynami
described here.

In this Rapid Communication we have shown that i
is possible to get propagating breathing localized state
in phase dynamics for traveling patterns: a localized excita
tion that travels and breathes has wavelengths that are diff
ent from that in the bulk of the pattern. As the control pa
rameter is varied, the pulses in the wavelength distributio
breathe periodically, quasi-periodically and eventually cha
otically. Simultaneously with the onset of the breathing
motion, we obtain the onset of the emission of small ampl
tude excitations~phonons, radiation!, which are emitted pe-
riodically or chaotically even after a long time. Eventually
~that is, at higher values of the nonlinear gradient term! a
space-filling pattern that is disordered in space and tim
results.

Stimulated by the experimental results of Dubois and co
workers @17–20# on slot convection~in slot convection the
width of the cell is much less that the height! in rectangular
and annular slots in simple fluids, we speculate that on
might see propagating confined states in this geometry f
binary fluid mixtures. It is important to note in this connec-
tion that the experiments in Refs.@17–20# focused on simple
fluids, while systematic experiments on binary fluid convec
tion in the slot geometry have apparently not been performe
as yet. In Refs.@17# and@20# a localized spatial variation of
the pattern wavelength has been observed well above t

he
e

y-

FIG. 4. Behavior of a chaotically breathing localized state fo
H52.8. ~a! The space-time plot shows an increased frequency
low amplitude emissions.~b! The separation clearly shows an ex-
ponential growth.



c
t
a
e
o
ic

am
uc
th

u
A
ti

e-
iners
p-
in
ing

d
the
ra-
art-
ge-
e

y-

RAPID COMMUNICATIONS

PRE 58 R4067TRANSITION FROM PROPAGATING LOCALIZED . . .
instability onset, sometimes accompanied by temporal os
lations. Since we have focused on phase dynamics here,
is on the analog of hydrodynamics for large aspect ratio p
tern forming systems, the scenario described is one of sev
possibilities. Alternative scenarios include the generation
spatiotemporal disorder via the generation of defects, wh
are characterized by space-time locations of vanishing
plitude. Other candidates of physical systems for which s
phenomena might be observable include the spirals in
Taylor instability between counter-rotating cylinders@26#,
the flow between corotating cylinders~where domains in
wavelength have been observed@27,28#, and traveling waves
in convective systems far above onset, such as binary fl
mixtures and electroconvection in nematic liquid crystals.
we have studied here spatial variations in only one spa
ry,
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direction, clearly experimental setups involving quasi-on
dimensional geometries, such as annular shaped conta
for thermal and electroconvection or Taylor cylinders a
proaching the narrow gap limit, will be more promising
observing the route to spatiotemporal chaos via breath
localized states described here.
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