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Nature of crossover from classical to Ising-like critical behavior
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~Received 1 April 1998!

We present an accurate numerical determination of the crossover from classical to Ising-like critical behav-
ior upon approach of the critical point in three-dimensional systems. The possibility of varying the Ginzburg
number in our simulations allows us to cover the entire crossover region. We employ these results to scrutinize
several semiphenomenological crossover scaling functions that are widely used for the analysis of experimental
results. In addition, we present strong evidence that the exponent relations do not hold between effective
exponents.@S1063-651X~98!50510-7#

PACS number~s!: 64.60.Fr, 05.70.Fh, 75.10.Hk, 75.40.Cx
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It is now well established that the critical behavior
large classes of systems—including uniaxial ferromagn
binary alloys, simple fluids, fluid mixtures, and polym
blends—belongs to the three-dimensional~3D! Ising univer-
sality class. However, this behavior is only observed asym
totically close to the critical point, whereasclassicalcritical
behavior is ~sometimes! observed at temperatures farth
from the critical temperatureTc , before one enters the non
critical background. At intermediate temperatures, a conti
ous crossover occurs from one universality class to the ot
Due to the limited extent of the asymptotic~Ising! regime,
the thermodynamic behavior in this crossover region is
tremely relevant from an experimental point of view an
hence, has attracted long-standing attention. Despite thi
tention, several fundamental questions concerning the cr
over are still open to debate.

First, we note that the vast majority of all relevant stud
is limited to the one-phase region only. The behavior of
susceptibility~compressibility! in this region is described by
means of several approaches, which all consist of more
less phenomenological extensions of the renormalizat
group ~RG! description of the critical behavior. In Ref.@1#
three different descriptions have been compared. From
nonlinear treatment off4 theory at fixed dimensionalityd
53, Bagnuls and Bervillier@2,3# obtained functions describ
ing the full crossover from asymptotic critical behavior
classical critical behavior. Belyakov and Kiselev@4# carried
out a first-order« expansion, which was then phenomen
logically extended to yield the correct asymptotic behavior
the Ising regime. Finally, Ref.@1# discusses an extension b
Chen et al. of the work of Nicoll and Bhattacharjee@5#,
based on an RG matching technique. All three approac
yield rather similar results and suggest~for simple fluids! a
smooth monotonic crossover.

Yet, from the experimental side it has not been so eas
confirm this picture or even to make judgments concern
the quality of the various predictions. Widespread attent
attracted the findings@6# on micellar solutions, in which ex
ponents were observed that did not fit into any of the kno
universality classes. This was analyzed by Fisher@7# in terms
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of a crossover effect, suggesting that a nonmonotonic va
tion of the susceptibility exponent in the one-phase region
an intrinsic property of the universal crossover scaling fu
tion. This possibility of nonmonotonicity was then esse
tially confirmed in Ref.@8#, although an empirical extensio
of RG theory as well as extremely strong higher-order c
rections had to be invoked again. All of the authors stres
the need for much more accurate experimental results
explicit calculations of the crossover behavior. Indeed, s
eral experiments have been carried out on polymer ble
@9,10#, which were analyzed in terms of the crossover so
tion by Belyakov and Kiselev. Polymer systems offer t
advantage that the Ginzburg number ruling the crossover
be varied by varying the length of the polymer chains. Ne
ertheless, it proved difficult to cover the full crossover r
gion, and results for different polymer blends, with wide
varying chemical properties, had to be combined. This,
turn, led to conjectures concerning an unexpected pres
dependence of the Ginzburg numberG, which needed to be
fitted to each system separately@10#. A determination of ef-
fective exponents has not been attempted in these stu
More recently, Anisimovet al. @11# focused on the possibil
ity of nonmonotonic variations of effective exponents
complex fluids, whereas for polymer solutions a sharp, n
monotonic crossover of the susceptibility exponent has a
been reported@12#. However, it is unclear how the results o
micellar solutions fit into this picture; also, the applicabili
of the crossover solution by Chenet al. to systems that ex-
hibit a nonmonotonic crossover is subject to some deb
Nonuniversal crossover~depending on parameters in add
tion to the Ginzburg number! is suggested@11#, but this be-
havior may be specific to complex fluids, due to the occ
rence of mesoscopic lengths in addition to the correlat
length.

In Ref. @13#, we presented a numerical study of the cro
over to classical critical behavior on either side of the critic
temperature intwo-dimensionalsystems. This revealed
strictly monotonic crossover of the susceptibility exponent
the disordered phase~one-phase region! and a nonmonotonic
variation in the ordered phase. Although this was an inter
ing finding in itself, it also stressed the importance of a stu
of 3D systems, since only these systems can be comp
with the various theoretical crossover descriptions; also,
R4060 © 1998 The American Physical Society
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even qualitative difference with the two-dimensional cas
could not be excluded. It is the objective of this Rapid Co
munication to present the results of a major numerical ef
to determine the crossover in 3D spin systems. These re
allow a detailed and rigorous test of the above-mentio
crossover functions.

The crossover is ruled by the parametert/G, where t
[(T2Tc)/Tc is the reduced temperature andG is the so-
called Ginzburg number. Asymptotic critical behavior occu
for t/G!1 and classical critical behavior is expected f
t/G@1. The additional requirement thatt must be small im-
plies that only systems with a very smallG ~large interaction
range! allow an observation of the full crossover. In simp
fluids, e.g., the crossover is never completed before lea
the critical region. Numerical calculations offer the adva
tage thatG is known precisely and can be made arbitrar
small by increasing the range of the interactions. Thus,
could vary t/G over more than eight orders of magnitud
compared to four orders of magnitude in experiments
polymer blends@9#. The large variation oft/G requires the
simulation of systems with very large coordination numbe
Until now, this constituted the main bottleneck for explic
calculations. However, the advent of a new Monte Carlo
gorithm @14# for long-range interactions has now allowed
to cover the full crossover region.

We have simulated classical spin systems, consisting
3D simple cubic lattices with periodic boundary condition
The systems are described by the HamiltonianH/kBT5
2( i j Kd(r i2r j )sisj , where s561, the sum runs over al
spin pairs, and the coupling depends on the distanceur u be-
tween the spins asKd(r )5cRm

2d for ur u<Rm andKd(r )50
for ur u.Rm . For any finiteRm , the critical behavior of this
model belongs to the Ising universality class, but forRm
→` it will be classical. The consequent singular depende
on Rm of all critical amplitudes has been derived in Re
@15, 16#. In order to avoid lattice effects we formulate o
analysis in terms of aneffectiveinteraction rangeR @15#. The
R dependence of the Ginzburg number is given byG
5G0R22d/(42d), such that the crossover occurs as a funct
of tR6/G0 . By increasingR we can reach the classical re
gime while still keepingt!1 in order to stay within the
critical region. On the other hand, very small values ot
imply a strongly diverging correlation length and extreme
large system sizes are required to avoid finite-size effe
Thus, we have constructed all crossover functions by co
bining the results for systems with different Ginzburg nu
bers, such thatt had to be varied only within a limited range
Systems with a linear size up toL5160 ~about 4 million
spins! have been simulated, in which each spin interacts w
up to 8408 neighbors, corresponding to an effective inter
tion range of 9.8 intermolecular distances.

We first consider the experimentally most widely studi
case,viz. T.Tc . We have calculated the susceptibility fro
the magnetization densitym, x85Ld^m2&/kBT, and the
scaled susceptibilityx̃5kBTc(R)x8. In the Ising limit, the
latter quantity diverges asCI

1t2g, with g51.237 @17# and

CI
151.1025 @18#, whereas mean-field theory predictsx̃

51/t, i.e., gMF51. The leading range dependence of t
critical susceptibility amplitude is given byR2d(12g)/(42d)

@15,16#. Thus, if one plots the data as a function of the
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duced variablet/G, a data collapse should be obtained f
x̃G0 /R6. We will now test whether this quantity reproduce
the predicted crossover behavior and how well it is descri
by various theoretical expressions. First, we consider
phenomenological generalization of first-order«-expansion
results obtained in@4#. The main significance of this function
lies in its rather widespread use for the analysis of crosso
effects in polymer systems. It is given in the following form

t/G5@11k~x̃G!u/g#~g21!/u$~ x̃G!21

1@11k~x̃G!u/g#2g/u%, ~1!

whereu50.508(25) @19# is Wegner’s correction-to-scaling
exponent andk'2.333 is a universal constant. Asympto
cally close to the critical point, x̃5Gg21(1
1kg/u)gk2g/ut2g and fort/G@1 x̃ exhibits the limiting be-
havior 1/t. As the curve reproduces the amplitude of t
mean-field asymptote, the only remaining adjustable par
eter is a multiplicative constant inG. This is precisely the
way G is determined in experimental analyses. Consider
x̃ given by Eq. ~1! as the master curve, we setG0

5@CI
1kg/u(11kg/u)2g#1/(g21)'0.1027, such that the 3D

Ising asymptote coincides with the curve in the limitt/G
!1. On the other hand, we may also calculate theexact
Ginzburg number from the expression given in Ref.@4#
which, for our model, reduces toG527/(p4R6)
'0.27718/R6. The former valueG050.1027 leads to a pre
cise reproduction of the Ising asymptote and, hence, has b
used in the graph of the crossover curve, but the exact v
of G may yield a better description of the overall crossov
behavior. Second, we consider the crossover function res
ing from the nonlinear RG treatment of Ref.@2#. It is pre-
sented in terms of a phenomenological functi
x* (t/g0

2)/g0
2, which represents the RG calculations with

relative error of less than 1024 @2#. The merit of this field-
theoretic treatment is that it has a more solid foundation t
Eq. ~1!. Also, x* reproduces the mean-field asymptote an
thus, we adjust the parameterg0 , such thatx* (t/g0

2)/g0
2 co-

incides with x̃ in the Ising regime. As mentioned before,
third crossover function for the susceptibility exists, based
an RG matching technique. However, we have not includ
this function in the present discussion because of its v
close resemblance to the solution of Ref.@4#.

Figure 1 shows our results for the susceptibility in t
symmetric phase (T.Tc) along with the two theoretica
curves. One observes that the simulations accurately re
duce both the Ising and the mean-field asymptote~dotted
lines!. In between, the data exhibit a gradual crossover,
predicted by both theoretical curves. However, the verti
scale of the graph covers ten decades, which makes it d
cult to observe subtle deviations. The logarithmic derivat
of the susceptibility,geff

1 [2d ln x̃/d lnutu, constitutes a much
more stringent test~see Fig. 2!. The excellent collapse of the
data, for all of our models with widely differing interactio
ranges, on a master curve suggests that an interpretatio
the crossover in terms of a universal crossover function~i.e.,
described by a single crossover argumentt/G! is appropriate
here. In this graph, we have also included a third calculat
by Seglar and Fisher@7,20#, which was shifted along the
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horizontal axis, such as to reproduce the initial deviations
geff

1 from the mean-field value. Apart from this somewh
arbitrary shift, the curve resembles the other predictions
is given by

geff
1 511~g2gMF!E@ ln~ t/G!#, ~2!

with E(ln y)51/(11y«/2), where«542d. Our results for
geff

1 display a smooth, monotonic crossover from the Is
value 1.237 to the classical value 1. While this agrees w
the various theoretical functions shown, it clearly contradi
the conjecture of Ref.@7#, according to which anonmono-
tonic variation of geff

1 in the symmetric phase might be
property of the universal crossover scaling function. T
good description of the initial increase ofgeff

1 upon the ap-
proach of the critical point is an encouraging result, sinceG
has been set to its exact value~see above! in Fig. 2 and,
hence, there isno adjustable parameter in the solution~1!.
However, we note that the figure also reveals a remarka
discrepancy between the theoretical calculations and ou
sults. Namely, after the initial deviation fromgMF , the actual
curve proceeds with a considerably steeper increase than

FIG. 1. Crossover curve for the magnetic susceptibility abo
Tc . The numbers in the key refer to the effective interaction ra
R. ‘‘BK’’ and ‘‘BB’’ indicate the crossover functions of Refs.@4#
and @2#, respectively.

FIG. 2. Effective susceptibility exponentgeff
1 aboveTc along

with three theoretical calculations for this quantity. ‘‘SF’’ refers
the first-order« expansion of Refs.@7, 20#.
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dicted by any of these functions. Following Fisher@7#, we
define the gradientG[2]geff

1 /] log t. Indeed,G reaches val-
ues as high as 0.84 per decade, in contrast to the theore
functions for which the maximum ofG lies in the range
0.64–0.74. In practice, this implies that the full crossover
completedin one to two decades lessthan predicted. A final
interesting aspect of Fig. 2 is the fact that, even forR51, no
significant overshoot of the effective exponent above
Ising value can be observed. This is remarkable, since
expected@21# that the 3D nearest-neighbor Ising model e
hibits anegativeleading Wegner correction. Since the for
of the curve makes a further increase ofgeff

1 for smaller
values oft rather unlikely, we conclude that the actual effe
must be very small.

Now we proceed to the temperature region belowTc . We
have calculated the susceptibility from the fluctuation re
tion x5Ld(^m2&2^umu&2)/kBT. We find that the simulation
data faithfully reproduce both the Ising and the mean-fi
asymptote, and that the crossover curve never deviates
from these asymptotes. The overall graph is very similar
that for T.Tc . To our knowledge, it constitutes one of th
first determinations of the full crossover function in the o
dered phase. Indeed, experimentally it is very difficult
measure the coexistence curve and, hence, the cross
function. Also, from the theoretical side very few results e
ist. Bagnulset al. @22# have carried out a calculation usin

e
e

FIG. 3. Effective susceptibility exponentgeff
2 belowTc . ‘‘App’’

denotes the approximation discussed in the text.

FIG. 4. Quantity 22(geff
2 12beff) as a function oft/G.
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massive field theory. Just as forT.Tc ~see above!, they
present their results in the form of an approximative conti
ous function. However, this function is only valid for rela
tively small values oft/G and does not cover the entir
crossover region. Indeed, fort/G large it approaches a
asymptote with the slope 0.97 instead of the classical va
1. Thus, it is not possible to accurately describe our res
with this function. The exponentgeff

2 from our data is shown
in Fig. 3, and it displays several noteworthy features. Fi
also in the ordered phase no nonmonotonicity can be
served within the statistical accuracy, in contrast with
two-dimensional case. Second, the increase of the effec
exponent upon approach of the critical point is even fas
than forT.Tc , with G as high as 0.11. Whilegeff

1 gradually
starts to deviate fromgMF when t is decreased, the increas
of geff

2 is rather abrupt. We view this effect as the precur
of the ‘‘underswing’’ observed ford52 @13#. In the absence
of further calculations ofgeff

2 , we have attempted to describ
the data by a phenomenological generalization of the ex
nent crossover function~2!. We found that the expressio
E(ln y)51/(11y) captures the actual behavior reasona
well ~see Fig. 3!, although the parametery in the denomina-
tor might carry an even larger exponent.
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Finally, we have also considered the crossover beha
of the order parameter̂umu& for T,Tc . The corresponding
exponentbeff turns out to vary monotonically from its Ising
value 0.3267 to the classical value 0.5. In Fig. 4 we disp
an interesting consequence of this behavior. Namely,
have plotted the quantity 22(geff

2 12beff), which should be
equal to the effective specific-heat exponentaeff

2 if the stan-
dard scaling relations hold between effective expone.
However, this quantity varies between the classical and
Ising value in a strongly nonmonotonic way, which is ve
unlikely in view of the smooth behavior ofgeff

2 and beff .
Thus, we consider this as strong evidence for the violation
scaling relations between effective critical exponen
Interestingly, such a breakdown has been inferred from«
expansions over 18 years ago@23#, but could not be con-
firmed experimentally. It has now been explicitly demo
strated.
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