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Nature of crossover from classical to Ising-like critical behavior

Erik Luijten'?* and Kurt Bindef
Max-Planck-Institut fu Polymerforschung, Postfach 3148, D-55021 Mainz, Germany
2Institut fir Physik, WA 331, Johannes Gutenberg-Univétsita55099 Mainz, Germany
(Received 1 April 1998

We present an accurate numerical determination of the crossover from classical to Ising-like critical behav-
ior upon approach of the critical point in three-dimensional systems. The possibility of varying the Ginzburg
number in our simulations allows us to cover the entire crossover region. We employ these results to scrutinize
several semiphenomenological crossover scaling functions that are widely used for the analysis of experimental
results. In addition, we present strong evidence that the exponent relations do not hold between effective
exponents[S1063-651X98)50510-7
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It is now well established that the critical behavior of of a crossover effect, suggesting that a nonmonotonic varia-
large classes of systems—including uniaxial ferromagnetdjon of the susceptibility exponent in the one-phase region is
binary alloys, simple fluids, fluid mixtures, and polymer an intrinsic property of the universal crossover scaling func-
blends—belongs to the three-dimensio(&D) Ising univer-  tion. This possibility of nonmonotonicity was then essen-
sality class. However, this behavior is only observed asymptially confirmed in Ref[8], although an empirical extension
totically close to the critical point, whereatassicalcritical  of RG theory as well as extremely strong higher-order cor-
behavior is (sometimes observed at temperatures farther rections had to be invoked again. All of the authors stressed
from the critical temperatur&., before one enters the non- the need for much more accurate experimental results and
critical background. At intermediate temperatures, a continuexplicit calculations of the crossover behavior. Indeed, sev-
ous crossover occurs from one universality class to the otheeral experiments have been carried out on polymer blends
Due to the limited extent of the asymptotilsing) regime,  [9,10], which were analyzed in terms of the crossover solu-
the thermodynamic behavior in this crossover region is extion by Belyakov and Kiselev. Polymer systems offer the
tremely relevant from an experimental point of view and,advantage that the Ginzburg number ruling the crossover can
hence, has attracted long-standing attention. Despite this abe varied by varying the length of the polymer chains. Nev-
tention, several fundamental questions concerning the crossertheless, it proved difficult to cover the full crossover re-
over are still open to debate. gion, and results for different polymer blends, with widely

First, we note that the vast majority of all relevant studiesvarying chemical properties, had to be combined. This, in
is limited to the one-phase region only. The behavior of theturn, led to conjectures concerning an unexpected pressure
susceptibility(compressibility in this region is described by dependence of the Ginzburg numitgr which needed to be
means of several approaches, which all consist of more ditted to each system separat¢h0]. A determination of ef-
less phenomenological extensions of the renormalizationfective exponents has not been attempted in these studies.
group (RG) description of the critical behavior. In Re€fl]  More recently, Anisimoet al. [11] focused on the possibil-
three different descriptions have been compared. From &y of nonmonotonic variations of effective exponents in
nonlinear treatment of* theory at fixed dimensionalitg complex fluids, whereas for polymer solutions a sharp, non-
=3, Bagnuls and Bervillief2,3] obtained functions describ- monotonic crossover of the susceptibility exponent has also
ing the full crossover from asymptotic critical behavior to been reportefl12]. However, it is unclear how the results of
classical critical behavior. Belyakov and Kiselgd] carried  micellar solutions fit into this picture; also, the applicability
out a first-ordere expansion, which was then phenomeno-of the crossover solution by Cheat al. to systems that ex-
logically extended to yield the correct asymptotic behavior inhibit a nonmonotonic crossover is subject to some debate.
the Ising regime. Finally, Refl] discusses an extension by Nonuniversal crossoveidepending on parameters in addi-
Chen et al. of the work of Nicoll and Bhattacharjefs],  tion to the Ginzburg numbgis suggested11], but this be-
based on an RG matching technique. All three approachdsavior may be specific to complex fluids, due to the occur-
yield rather similar results and suggégir simple fluidg a  rence of mesoscopic lengths in addition to the correlation
smooth monotonic crossover. length.

Yet, from the experimental side it has not been so easy to In Ref.[13], we presented a numerical study of the cross-
confirm this picture or even to make judgments concerningver to classical critical behavior on either side of the critical
the quality of the various predictions. Widespread attentiortemperature intwo-dimensionalsystems. This revealed a
attracted the findingg6] on micellar solutions, in which ex- strictly monotonic crossover of the susceptibility exponent in
ponents were observed that did not fit into any of the knowrthe disordered phagene-phase regigrand a nonmonotonic
universality classes. This was analyzed by Figfi¢m terms  variation in the ordered phase. Although this was an interest-

ing finding in itself, it also stressed the importance of a study
of 3D systems, since only these systems can be compared
*Electronic address: luijten@lomond.physik.uni-mainz.de with the various theoretical crossover descriptions; also, an
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even qualitative difference with the two-dimensional case duced variabld/G, a data collapse should be obtained for

could not be excluded. It is the objective of this Rapid Com—;(Go/Rﬁ_ We will now test whether this quantity reproduces
munication to present the results of a major numerical efforthe predicted crossover behavior and how well it is described
to determine the crossover in 3D spin systems. These resulks various theoretical expressions. First, we consider the
allow a detailed and rigorous test of the above-mentionegghenomenological generalization of first-ordeexpansion
crossover functions. results obtained if4]. The main significance of this function
The crossover is ruled by the parameté®, wheret lies in its rather widespread use for the analysis of crossover
=(T-T.)/T, is the reduced temperature a@lis the so- effects in polymer systems. It is given in the following form:
called Ginzburg number. Asymptotic critical behavior occurs - -
for t/G<1 and classical critical behavior is expected for t/G:[1+K(XG)oly](y_l)/a{(XG)_l
t/G> 1. The additional requirement thetmust be small im- ~ _
plies that only systems with a very smé@l(large interaction L1+ K(XG) "7, @)
range allow an observation of the full crossover. In simple
ﬂUidS'.?'g" thg crossover .iS never completed before IeaVingxponent ande~2.333 is a universal constant. Asymptoti-
the critical region. Numerical calculations offer the advan- . i ~ 1
tage thatG is known precisely and can be made arbitrarily €/ly ~ close to  the critical  point, x=G”"*(1
small by increasing the range of the interactions. Thus, wet «”'%)7«~?'%t™7 and fort/G> 1y exhibits the limiting be-
could varyt/G over more than eight orders of magnitude, havior 1t. As the curve reproduces the amplitude of the
compared to four orders of magnitude in experiments ornean-field asymptote, the only remaining adjustable param-
polymer blendg9]. The large variation of/G requires the €ter is a multiplicative constant i6. This is precisely the
simulation of systems with very large coordination numbersway G is determined in experimental analyses. Considering
Until now, this constituted the main bottleneck for explicit y given by Eq. (1) as the master curve, we s&,
calculations. However, the advent of a new Monte Carlo al-=[C," x”%(1+ «”%)~7]¥(»~1~0.1027, such that the 3D
gorithm[14] for long-range interactions has now allowed us|sing asymptote coincides with the curve in the limiG
to cover the full crossover region. <1. On the other hand, we may also calculate éxact
We have simulated classical spin systems, consisting obinzburg number from the expression given in REf]
3D simple cubic lattices with periodic boundary conditions.\hich, for our model, reduces toG=27/(7*R®)
The systems are described by the HamiltonlfkgT=  ~0.27718R®. The former values,=0.1027 leads to a pre-
—2;jKy(ri—rj)sis;, wheres==1, the sum runs over all cise reproduction of the Ising asymptote and, hence, has been
spin pairs, and the coupling depends on the distdridee-  used in the graph of the crossover curve, but the exact value
tween the spins ay(r)=cR,® for [r|<R, andK4(r)=0  of G may yield a better description of the overall crossover
for [r|>Ry,. For any finiteR,,, the critical behavior of this behavior. Second, we consider the crossover function result-
model belongs to the Ising universality class, but Ry ing from the nonlinear RG treatment of Rég]. It is pre-
— o it will be classical. The consequent singular dependenceented in terms of a phenomenological function
on R, of all critical amplitudes has been derived in Refs. y*(t/g3)/g3, which represents the RG calculations with a
[15, 16]. In order to avoid lattice effects we formulate our relative error of less than 16 [2]. The merit of this field-
analysis in terms of aeffectiveinteraction rang® [15]. The  theoretic treatment is that it has a more solid foundation than
R dependence of the Ginzburg number is given By Eq.(1). Also, x* reproduces the mean-field asymptote and,
=GR 2", such that the crossover occurs as a functionhus, we adjust the parametgy, such thaty* (t/g2)/g? co-
of tR%/Gy. By increasingR we can reach the classical re- i ides with in the Ising regime. As mentioned before, a
gime while still keepingt<1 in order to stay within the = yhirq crossover function for the susceptibility exists, based on
critical region. On the other hand, very small valuestof 5, rg matching technique. However, we have not included
imply a strongly diverging correlation length and extremelyyis function in the present discussion because of its very
large system sizes are required to avoid finite-size effects|yse resemblance to the solution of Rieff].
Thus, we have constructed all crossover functions by com- Figure 1 shows our results for the susceptibility in the
bining the results for systems with differgnt Qin;burg NUM-gymmetric phase T>T.) along with the two theoretical
bers, such thathad to be varied only within a limited range. ¢;ryes. One observes that the simulations accurately repro-
Systems with a linear size up to=160 (about 4 million  4,ce both the Ising and the mean-field asympt@atetted
sping have been simulated, in which each spin interacts withineg) 1n petween, the data exhibit a gradual crossover, as
up to 8408 neighbors, corresponding to an effective interacyyegicted by both theoretical curves. However, the vertical
tion range of 9.8 intermolecular distances. scale of the graph covers ten decades, which makes it diffi-

We_firs_IE>c$nsi3\(/er thhe expelrir?etn'ijal:ry]/ most Wi?§¥t5t?di6dcult to observe subtle deviations. The logarithmic derivative
caseviz. c: W€ nave caicuialec the SUSCEptibiity from ¢ susceptibility;y.=—d In y/d In|t|, constitutes a much

¢ . s
the magnehzat_pn_ ~den5|tyn, X N L%m >/kE_‘T’ gn_d the more stringent tegisee Fig. 2 The excellent collapse of the
scaled S“S‘?ept'p'“ty(:kBTg('?)X - In the Ising limit, the (5 for all of our models with widely differing interaction
latter quantity diverges a6, t™”, with y=1.237[17] and  yanges, on a master curve suggests that an interpretation of
C, =1.1025 [18], whereas mean-field theory predicis the crossover in terms of a universal crossover fundien,

=1k, i.e.,, yyue=1. The leading range dependence of thedescribed by a single crossover argunté() is appropriate
critical susceptibility amplitude is given bR?d(1=7/(4=d)  here. In this graph, we have also included a third calculation
[15,16. Thus, if one plots the data as a function of the re-by Seglar and Fishef7,20], which was shifted along the

where #=0.508(25)[19] is Wegner's correction-to-scaling
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] o FIG. 3. Effective susceptibility exponengy below T, . “App”

T.. The numbers in the key refer to the effective interaction range
R. “BK” and “BB” indicate the crossover functions of Refd4]

and[2], respectively. dicted by any of these functions. Following FisH&l, we

define the gradierff=—dy2;/dlogt. Indeed[I reaches val-

horizontal axis, such as to reproduce the initial deviations of/€S as high as 0.84 per decade, in contrast to the theoretical
yi from the mean-field value. Apart from this somewhatfunctions for which the maximum of" lies in the range

arbitrary shift, the curve resembles the other predictions anf-64—0-74. In practice, this implies that the full crossover is
is given by completedn one to two decades letisan predicted. A final

interesting aspect of Fig. 2 is the fact that, evenRer1, no
yie=1+(y— ymp) E[IN(/G)], (2)  significant overshoot of the effective exponent above the
Ising value can be observed. This is remarkable, since it is
with E(In y)=1/(1+y®/?), wheree=4—d. Our results for €xpected21] that the 3D nearest-neighbor Ising model ex-
yZ display a smooth, monotonic crossover from the Isingh'b'ts anegativeleading Wegner_ correction. Since the form
value 1.237 to the classical value 1. While this agrees wittPf the curve makes a further increase 2y for smaller
the various theoretical functions shown, it clearly contradicts/alues oft rather unlikely, we conclude that the actual effect

the conjecture of Ref[7], according to which aonmono- Must be very small. _

tonic variation of y in the symmetric phase might be a  Now we proceed to the temperature region below We
property of the universal crossover scaling function. Thehave caI%uIatgd the suzsceptlblllty from the fluctyatlon. rela-
good description of the initial increase gf; upon the ap- 1ON X=L*((m )—(Im[)?)/kgT. We find that the simulation
proach of the critical point is an encouraging result, sice data faithfully reproduce both the Ising and the mea}n-ﬁeld
has been set to its exact valégee abovein Fig 2’ and asymptote, and that the crossover curve never deviates far
hence, there im0 adjustable parameter in the soluti()h)., from these asymptotes. The overall graph is very similar to

However, we note that the figure also reveals a remarkabl at forT>Tc. .TO our knowledge, it constltute_s one of the
discrepancy between the theoretical calculations and our r Irst determinations of the fuI_I crossover functlon n _the or-
sults. Namely, after the initial deviation froge, the actual dered phase. Indeed, experimentally it is very difficult to

curve proceeds with a considerably steeper increase than p leasure the coexistence curve and, hence, the crossover
unction. Also, from the theoretical side very few results ex-

ist. Bagnulset al. [22] have carried out a calculation using
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FIG. 2. Effective susceptibility exponent,; aboveT. along logo(~1G)

with three theoretical calculations for this quantity. “SF” refers to
the first-orders expansion of Refd.7, 20]. FIG. 4. Quantity 2-(y.;+2B8.x) as a function ot/G.
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massive field theory. Just as fdr>T. (see abovg they Finally, we have also considered the crossover behavior
present their results in the form of an approximative continu-of the order parametditm|) for T<T.. The corresponding
ous function. However, this function is only valid for rela- exponentB. turns out to vary monotonically from its Ising
tively small values oft/G and does not cover the entire value 0.3267 to the classical value 0.5. In Fig. 4 we display
crossover region. Indeed, fa/G large it approaches an an interesting consequence of this behavior. Namely, we
asymptote with the slope 0.97 instead of the classical valugaye plotted the quantity 2(yay+28.x), Which should be

1.. Thu;, it is pot possible to accurately describg our resultéqual to the effective specific-heat exponeg if the stan-
W'th.th's functu_)n..The exponent.; from our data is showr_l dard scaling relations hold between effective exponents
in Fig. 3, and it displays several noteworthy features. Firstyy, veyer this quantity varies between the classical and the

also in the ordered phase no nonmonotonicity can be ob-. . i S
served within the statistical accuracy, in contrast with thgISIng value in a strongly nonmonotonic way, which is very

two-dimensional case. Second, the increase of the effecti\)én“kely N view of the smooth behaVIor F et and,BEff_'

exponent upon approach of the critical point is even faste hus, we consider this as strong evidence for the violation of

than forT>T,, with I" as high as 0.11. Whilg/; gradually scaling relations between effective critical exponents.
[} . . e . .

starts to deviate fromy,e whent is decreased, the increase 'Ntérestingly, such a breakdown has been inferred feom

Of ye is rather abrupt. We view this effect as the precursol£XPansions over 18 years ags], but could not be con-

of the “underswing” observed fod=2 [13]. In the absence firmed experimentally. It has now been explicitly demon-

of further calculations ofy;, we have attempted to describe strated.

the data by a phenomenological generalization of the expo- Stimulating discussions with Henk Bto are gratefully

nent crossover functiofi2). We found that the expression acknowledged. We thank the HLRZ libh for access to
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a Cray-T3E on which the computations have been per-
well (see Fig. 3, although the parametgrin the denomina- formeg P P
tor might carry an even larger exponent. '
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