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Elasticity near the vulcanization transition
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Signatures of the vulcanization transition—amorphous solidification induced by the random cross-linking of
macromolecules—include the random localization of a fraction of the particles and the emergence of a nonzero
static shear modulus. A semimicroscopic statistical-mechanical theory is presented of the latter signature,
which accounts for both thermal fluctuations and quenched disorder. It is foutitat the shear modulus
grows continuously from zero at the transition, and does so with the classical exponent, i.e., with the third
power of the excess cross-link density and, quite surprisirglythat near the transition the external stresses
do not spoil the spherical symmetry of the localization clouds of the parti®d€63-651X98)50907-3

PACS numbes): 61.43~j, 64.60.Ak, 82.70.Gg

INTRODUCTION higher thanu when the forces are centrig].
More microscopically oriented approaches to the elastic

When a sufficient density of randomly located cross-linksproperties of vulcanized matter have also been made, in
is imposed on a system of flexible linear macromolecules, ahich macromolecular degrees of freedom feature explicitly.
equilibrium phase transitiortknown as the vulcanization Among these are the “phantom networK5] and “affine
transition occurs. At this transition a liquid state is replaced network” [6] approaches, as well as the comprehensive dis-
by an amorphous solid state. This transition has two maigussion of rubber elasticity by Deam and Edwafdsand
equilibrium signatures(i) a nonzero fraction of the mono- others[8]. These approaches focus on the well-cross-linked
mers become localized around random mean positions arf@gime rather than the lightly cross-linked regime near the
with random localization lengthstructure; and(ii) the sys-  Vvulcanization transitio9].
tem, as a whole, acquires a nonzero static shear modulus Experimentally, the exponerit has been addressed for
(responsg The former signature has been discussed previseveral systemsalthough mostly for gelation rather than
ously; the purpose of the present Rapid Communication is tyulcanization; the results vary froni~2 [10] to t=3 [11].
address the latter signature. Specifically, our aim is to deThis wide discrepancy is not understood.
velop a statistical-mechanical theory of the elastic properties Stimulating though they certainly are, it must be recog-
of the amorphous solid state in the vicinity of the vulcaniza-hized that neither the classiddl2,13,] nor the percolation
tion transition. This theory incorporates both annediesl,  [2,3] approaches to the physics of vulcanized matter explic-
thermally equilibrating and quenched randorfi.e., cross- itly include both crucial ingredientshermal fluctuationsnd
link specifying variables. Its primary conclusions ate) quenched disordenn recent years, an approach to the vul-
that the amorphous solidn the sense of signatuf@] state  canization transition has been develop&d—17 that takes
emerging at the vulcanization transition is indeed a sotid  into account both of these ingredients in the context of a
the sense of signatur@)]; (b) that the shear modulus van- semimicroscopic model for flexible, randomly cross-linked
ishes continuously as the transition is approached, and do@acromolecules. This approach is very much inspired by the
so with the third power of the excess cross-link dengiy.,,  work of Edwards and collaboratofg,18], as well as by con-
the amount by which the cross-link density exceeds its criticepts from the field of spin glasses. Emerging from this more
cal valug; and(c) that the shearing of the container associ-recent approach has been a detailed picture oftheture
ated with elastic deformations doest lead to a shearing of of the amorphous solid state near to the vulcanization tran-
the probability clouds associated with the thermal fluctuasition, including, in particular, an explicit form for the distri-
tions of localized particles about their mean positions. bution of localization lengths. What has not yet been eluci-

The elastic properties of vulcanized matter and relatedlated using this approach is the second signature of the
chemically bonded systems, especially those near the amovulcanization transition, namely the emergence of staic
phous solidification transition, have received considerable atsponseto shear deformations. This issue is the focus of the
tention to date. Notable approaches include the classical ongsesent Rapid Communication.
[1], in which it was argued that near the transition the elastic

entropy in the solid phas@nd consequently the static shear MODEL
modulusk) grows as the third power of the excess cross-link
density €, i.e., E~ €' with t=3. Subsequently, it was pro- At the heart of the theory of thetructure of the amor-

posed that the amorphous solidification transition of polymeiphous solid stat¢17] is the analysis, employing the tech-
systems be identified with a percolation procgx8]. Thus, niques of replica statistical mechanics, of a semimicroscopic
the exponent was identified with the critical exponeptfor ~ model of N macromolecules subject to random cross-linking
percolation of conductivitywith x~2.0 in three spatial di- constraints. This analysis leads to an order param@ger
mensions Subsequently it was observed that the elasticityappropriate for diagnosing the amorphous solid state, as well
percolation exponent for a random network is substantiallyas a Landau free energ¥,({Qi}) in terms of this order
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parameter. A detailed review of this theory has been given in Qi=(1—0)8: a4 aSen  ve MUK 4
Ref.[17]. The order parameter is defined via (=(1-a)skota Za=ok"0 (k). 43
1N . P WH(k)= f dr p(r) e K27, (4b)
Q=5 > f dsexdik-c(s)] . (1) 0
i=1J0
n+1

The physical motivation for this hypothesis comes from a
. . icture in which a fractiorg of the monomers are localized
Here, tlatted vectors denote replicated collections ofA V?Ctorground random mean positiohs(s) about which they ex-
viz,, v={V°v!,...V"}; their scalar product isV-W  ecute harmonic thermal fluctuations over random localiza-
=3"_,v¥-w? and the trajectorie$f:(s)}iN=l are the semi- tion lengthsé;(s). Furthermore, the mean positions are as-
microscopic configurations of the replicated macromoleculesumed to be homogeneously distributed over the sample, and
(where O<s<1 is the arclength in units of the total ar- the localization lengths are characterized by the statistical
clength. ( )7,, denotes an average for an effective puredistribution 2:73p(£7%). Thus, delocalized and localized
(i.e., disorder-frepsystem ofn+1 coupled replicas of the particles are, respectively, represented by the first and second
original system. To model the disorder we make the Deamterms on the right-hand side of E@a). The & factor in the
Edwards assumptiof7] that the statistics of the cross-links second term comes from the homogeneity of the distribution
is determined by the instantaneous correlations of the uref mean positions. The functiow(k), which we refer to as
cross-linked system. This leads to the need to work with thehe continuous pariof the order parameter, encodes all the
n—0O limit of systems ofn+1 (as opposed tm) replicas. information about thermal fluctuationghe superscriptu
The additional replica, labeled by=0, represents the de- standing for “unstrainedy. The hypothesi$(4a and (4b)]
grees of freedom of the original system before cross-linkingsatisfies the saddle-point equations provided fh&f17]
or, equivalently, describes the cross-link distribution. Conse-
guently, any external strain applied to the systafter the 0=—2qge+ 307 (59
permanent constraints have been created will affect replicas
a=1,...n, but not replicaa=0 [7]. Thus, the order param- 2 P
eter measures the correlations between the positions of indi-  — ﬁ=(l— ) mr( 0)—f do'mw(6")m(6—6"), (5b)
vidual particles before and after the deformation is applied.
In the saddle-point approximatiofl9], the disorder- i i i i
averaged free enerdy(per particle in a d-dimensional sys- whe_rcze m(6) is an e—|n2dependent_sc_allng function such that
tem is obtained by minimizing the replicated free-energyP(é °)=(2/€) m(2/e£%), and satisfies the boundary condi-
functional F,({Q¢}) [20]: tion [ydém(6)=1. Equation(58) determines the localized
fraction q; for e<0 we obtaing=0 (i.e., the liquid phase,
_ ] which has a vanishing static shear modylusr e>0 we
f=d lim min F,({Q¢}). (2)  obtaing=2e/3, corresponding to the amorphous solid state,
n—0 {0k which is the state on which we shall focus from now on.

As discussed in detail in Ref17], the minimization in Eq. RESPONSE TO SHEAR STRAIN

(2) yields the liquid—amorphous-solid phase transition at a o

certain critical value of the cross-link density. We param- We now set about determining the free-energy cost asso-
etrize the excess cross-link density beyond this critical valu€iated with making static shear deformations of the system.
by the control parameter. As the transition is continuous 10 do this, we consider the effect of changing the shape of
(i.e., near the critical point the gel fraction is small and thethe containefon which we have imposed periodic boundary
typical localization length of localized particles is layge conditions. We characterize the deformation by tr(d)
F-({Q¢}) can be expanded in powers of the order parametefatrix S, which describes the change in position of any point

and gradients, with only low orders needing to be retained at the boundary of the system as follows:>S-b. For
[21]: example, ford=3 and for a deformation in which the vy,

and z Cartesian components of the position vector are, re-
spectively, elongated by the factoks, Ay, and\,, the
AV S L LRIV O -]2 matrix S has the form diag(.\,.,\,). As we are concerned
ndz({2ih) % (= etz |kl with the free-energy cost of pl);re shear strains, we shall as-
sume that the deformation leaves the volwhef the system
_ E Qe 0; Q08 vinis 3 unchangeq, ie., [)_6=1. qu considering_ infini_tesimal
Rykgoky — 2 o b strains, it is convenient to define tigymmetrig strain ten-
sorJ=3(S+S")—1I. HereS' is the transpose o and| is
o the identity matrix. As DeS=1, we have TiJ=0, to first
The symbolX denotes a sum over replicated wave vectorsorder in the deformation.
that contain at least two nonzero component vedt6rg22]. Before taking the thermodynamic limit, the system is fi-
The saddle-point equation for the free-energy functional neanite in extent, so that the Fourier representation of any func-
the transition is exactly solved by the following hypothesistion of position consists of a superposition of plane waves
[16,17: with discrete wave vectors. In particular, the order parameter
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(which is a function in replicated Fourier spage only de-  torted. On the other hand, if;(s) =0, then the probability
fined for a discrete set of points. Now, under strain thecloud would remain spherical. Assuming further that the ran-
boundaries in position space are displaced and, as a consgem displacement;(s) also has a probability distribution
guence, the discretization in replicated Fourier spaceshaped by a combination bfandJ, and expanding to lowest
changes. As mentioned above, any external strain that is apontrivial order in the deformatiof24], we obtain the hy-
plied to the system after the permanent constraints have begothesis

created will affect replicag=1,...,n, but not replicaa=0

[7]. Therefore, the change in the discretization of the wave . I w(0) <

vectors occurs only fow=1,...n, but not for a=0. For V\/S(k):qu doe "< m(6) - —— 21 k- J-k*|.
convenience, we shall use the symbBlsand R® to denote “ 9)

the sets of allowed replicated wave vectors corresponding,

respectively, to the unstrained and strained systems. Here,w(#) is a second scaling function, which describes the

Conceptually, there are two sources for the change in fregpange in the continuous part of the order parameter due to
energy{Eq. (2)] under deformation: the change in the expres-ihe deformation.

sion for the free-energy functional itself, and the consequent . oo AL
change in the value %)1{ the order parameter that solvgs the An alternative motivation for the form OWS(Ak), IS as
saddle-point equation. The free-energy functional for thefollows. Let us assume that for small straMé&(k) is un-
strained systenF;({Q;}) is obtained by repeating, step-by- changed under simultaneous rotationsSoand k. As it is
step, the construction of the free-energy functional for theonly a function ofk? this property certainly holds fan(k),
unstrained systenf,({€2¢}). The resulf23] is that the co-  anq it therefore also holds for the difference betw@éigk)
efficient in front of each term is unaltered, the only change

. and W“(R). To first order inJ this difference can only
being the replacement of each siip over the old set of contain the following terms:(i) a linear function of

discrete replicated wave vectafise., keRY) by a sum over 3" _ ke J-k® and(ii) a product of an invariant linear func-
the new set of discrete replicated wave vec®gsgs. As a

result, the saddle-point equation for the strained system b tion of J with an invariant function ok. The only quantity

?i_near in J and invariant under rotations is Ut which is

comes zero for infinitesimal shear strains, as mentioned above. Thus
. _ we recover Eq(9).
0=2(—e+3|k|)Q—3 > Qi O, Sk +ic k- (6) By inserting the hypothesis given by Eqg) and(9) into

kik, e RS the saddle-point conditio(6), we recover Eqs5a and(5b)
for g and 7(6), together with the condition
We now obtain the order parameter for the strained sys-

tem by making a physically motivated hypothesis similar to 2 do 2 (o , ,
the one made for the unstrained system. First, for each local- 5 g7 = (1~ )= ()~ 22 fo do' 0" “w (0" )m(6—06").
ized monomer in the unstrained system we envision that its (10)
old mean positiorb;(s) is displaced to a new mean position
S-bi(s) +ri(s), whereS-b;(s) is the affine displacement of 1o boundary condition lig...6%w(8)=0 stems from the
the old po_sitior[6] andr,(s) is a random ad(_jitional d_isplace— fact that, by Eq(1), "mlﬁl—»wQR; 0. The only solution of Eq.
ment, which we take to be uncorrelated wilfs). With the (1) that satisfies the boundary condition is the null function
assumption thatas in the unstrained systgrthere is no ()= [25]. This result implies the firsiand,a priori, the
correlation between the extefincluding shapeof the ther- 6t surprising result of this Rapid Communication: the

mal fluctuations of a monomer about its mean position anq yntinuous part of the order parametises not changéo

the mean position itself, we arrive at the hypothesis first order in the strain, i.e\Ws(k) =W(k). This conclusion
is consistent with the phantom network pictyifg9]. It also
suggests thatvs(k) =WU(k) for finite (and not merely in-
. finitesima) deformations, and indeed the resulting order-
whereWs(k) is the continuous part of the order par?meter inp‘—jlr‘—jlmeter hypothesis turns out to satisfy the saddle-point
the strained system. Now, to construct a formWéi(k) we  equation for arbitrarily strained systems.
consider a conjecture for the form ¢&'*%)* [i.e., the We now have all the ingredients necessary to compute the
thermal expectation values of the Fourier-transformed indichange in the free energy, to leading orderejrdue to the
vidual particle densities in the straines)) (system for a spe- deformation of the system:
cific disorder realizationy]:

Qﬁ:(1_CI)5|2,6+q5k0+sT.2’;:1kw,oVVS(|2), (7

268

exilik-{S-b(s)+ri(9)}exi — o)k {1+ (93} kizl.  Af=d IMIFRAOE) = F({Q)] =57 THS-ST-1),
®) -

We expect the Gaussian probability cloud to be isotropicwhereQ? and Q; are, respectively, the saddle-point values
except for a correction due to the distortion. For infinitesimalof the order parameter for the strained and unstrained sys-
distortions, this correction should be proportional@nd tems. Thus we can extract the value of the static shear modu-
have a random magnitude (s). For example, ify;(s)=2, lus for the amorphous solid state near the solidification tran-
then the probability cloud would have been affinely dis-sition (with physical units restored E=kgTNCe®, where
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kg is Boltzmann’s constant is the temperature, ard is a  power of the excess cross-link densityeyond its value at

model-dependent positive constant. Hence, we see that thiee transition [26]; and (iii) the form of localization that is

static shear modulus near the vulcanization transition is chaexhibited by the particles is left unchanged by the strain. It

acterized by the exponent3, in agreement with the clas- is, however, not implausible that strain-induced changes

sical result[1,2]. A simple scaling argument, viz., that the would emerge from a more detailed analysis of the effects of

modulus should scale as two powers of the order parametéie excluded-volume interaction, at least at higher cross-link

(g?) and two powers of the gradienf&g), leads to the same densities. Being dependent only on the form of the free-

value fort. energy functiona[27,21], and not any specific semimicro-
scopic model, the approach to elasticity described here

CONCLUDING REMARKS should be generally applicable not only to systems of ran-
domly cross-linked flexible macromolecules, but also to
We have presented a microscopic derivation of the statigther equilibrium amorphous solid forming systems.

elastic response of a system of randomly cross-linked mac-
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