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Elasticity near the vulcanization transition
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~Received 14 April 1998!

Signatures of the vulcanization transition—amorphous solidification induced by the random cross-linking of
macromolecules—include the random localization of a fraction of the particles and the emergence of a nonzero
static shear modulus. A semimicroscopic statistical-mechanical theory is presented of the latter signature,
which accounts for both thermal fluctuations and quenched disorder. It is found~i! that the shear modulus
grows continuously from zero at the transition, and does so with the classical exponent, i.e., with the third
power of the excess cross-link density and, quite surprisingly,~ii ! that near the transition the external stresses
do not spoil the spherical symmetry of the localization clouds of the particles.@S1063-651X~98!50907-5#

PACS number~s!: 61.43.2j, 64.60.Ak, 82.70.Gg
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INTRODUCTION

When a sufficient density of randomly located cross-lin
is imposed on a system of flexible linear macromolecules
equilibrium phase transition~known as the vulcanization
transition! occurs. At this transition a liquid state is replac
by an amorphous solid state. This transition has two m
equilibrium signatures:~i! a nonzero fraction of the mono
mers become localized around random mean positions
with random localization lengths~structure!; and~ii ! the sys-
tem, as a whole, acquires a nonzero static shear mod
~response!. The former signature has been discussed pr
ously; the purpose of the present Rapid Communication i
address the latter signature. Specifically, our aim is to
velop a statistical-mechanical theory of the elastic proper
of the amorphous solid state in the vicinity of the vulcaniz
tion transition. This theory incorporates both annealed~i.e.,
thermally equilibrating! and quenched random~i.e., cross-
link specifying! variables. Its primary conclusions are~a!
that the amorphous solid@in the sense of signature~i!# state
emerging at the vulcanization transition is indeed a solid@in
the sense of signature~ii !#; ~b! that the shear modulus van
ishes continuously as the transition is approached, and
so with the third power of the excess cross-link density~i.e.,
the amount by which the cross-link density exceeds its c
cal value!; and ~c! that the shearing of the container asso
ated with elastic deformations doesnot lead to a shearing o
the probability clouds associated with the thermal fluct
tions of localized particles about their mean positions.

The elastic properties of vulcanized matter and rela
chemically bonded systems, especially those near the a
phous solidification transition, have received considerable
tention to date. Notable approaches include the classical
@1#, in which it was argued that near the transition the ela
entropy in the solid phase~and consequently the static she
modulusE! grows as the third power of the excess cross-l
density e, i.e., E;e t with t53. Subsequently, it was pro
posed that the amorphous solidification transition of polym
systems be identified with a percolation process@2,3#. Thus,
the exponentt was identified with the critical exponentm for
percolation of conductivity~with m'2.0 in three spatial di-
mensions!. Subsequently it was observed that the elastic
percolation exponent for a random network is substanti
PRE 581063-651X/98/58~1!/24~4!/$15.00
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higher thanm when the forces are central@4#.
More microscopically oriented approaches to the ela

properties of vulcanized matter have also been made
which macromolecular degrees of freedom feature explici
Among these are the ‘‘phantom network’’@5# and ‘‘affine
network’’ @6# approaches, as well as the comprehensive
cussion of rubber elasticity by Deam and Edwards@7# and
others@8#. These approaches focus on the well-cross-link
regime rather than the lightly cross-linked regime near
vulcanization transition@9#.

Experimentally, the exponentt has been addressed fo
several systems~although mostly for gelation rather tha
vulcanization!; the results vary fromt'2 @10# to t*3 @11#.
This wide discrepancy is not understood.

Stimulating though they certainly are, it must be reco
nized that neither the classical@12,13,1# nor the percolation
@2,3# approaches to the physics of vulcanized matter exp
itly include both crucial ingredients:thermal fluctuationsand
quenched disorder. In recent years, an approach to the vu
canization transition has been developed@14–17# that takes
into account both of these ingredients in the context o
semimicroscopic model for flexible, randomly cross-link
macromolecules. This approach is very much inspired by
work of Edwards and collaborators@7,18#, as well as by con-
cepts from the field of spin glasses. Emerging from this m
recent approach has been a detailed picture of thestructure
of the amorphous solid state near to the vulcanization tr
sition, including, in particular, an explicit form for the distr
bution of localization lengths. What has not yet been elu
dated using this approach is the second signature of
vulcanization transition, namely the emergence of staticre-
sponseto shear deformations. This issue is the focus of
present Rapid Communication.

MODEL

At the heart of the theory of thestructureof the amor-
phous solid state@17# is the analysis, employing the tech
niques of replica statistical mechanics, of a semimicrosco
model ofN macromolecules subject to random cross-linki
constraints. This analysis leads to an order parameterV k̂
appropriate for diagnosing the amorphous solid state, as
as a Landau free energyFn($V k̂%) in terms of this order
R24 © 1998 The American Physical Society



n

or

le
r-
re

m
s
u
th

-
ng
se

ic
-
in
d

g

t
m
lu

s
he

et
e

or

e
sis

a
d

za-
s-
and
ical
d
cond

ion

he

at
i-

te,

so-
m.
of

ry

int

re-

as-

l

fi-
nc-
es
ter

RAPID COMMUNICATIONS

PRE 58 R25ELASTICITY NEAR THE VULCANIZATION TRANSITION
parameter. A detailed review of this theory has been give
Ref. @17#. The order parameter is defined via

V k̂[K 1

N (
i 51

N E
0

1

ds exp@ i k̂• ĉi~s!#L
n11

P

. ~1!

Here, hatted vectors denote replicated collections of vect
viz., v̂[$v0,v1,...,vn%; their scalar product is v̂•ŵ
[(a50

n va
•wa, and the trajectories$ĉ(s)% i 51

N are the semi-
microscopic configurations of the replicated macromolecu
~where 0<s<1 is the arclength in units of the total a
clength!. ^ &n11

P denotes an average for an effective pu
~i.e., disorder-free! system ofn11 coupled replicas of the
original system. To model the disorder we make the Dea
Edwards assumption@7# that the statistics of the cross-link
is determined by the instantaneous correlations of the
cross-linked system. This leads to the need to work with
n→0 limit of systems ofn11 ~as opposed ton! replicas.
The additional replica, labeled bya50, represents the de
grees of freedom of the original system before cross-linki
or, equivalently, describes the cross-link distribution. Con
quently, any external strain applied to the systemafter the
permanent constraints have been created will affect repl
a51,...,n, but not replicaa50 @7#. Thus, the order param
eter measures the correlations between the positions of
vidual particles before and after the deformation is applie

In the saddle-point approximation@19#, the disorder-
averaged free energyf ~per particle! in a d-dimensional sys-
tem is obtained by minimizing the replicated free-ener
functionalFn($V k̂%) @20#:

f 5d lim
n→0

min
$V k̂%

Fn~$V k̂%!. ~2!

As discussed in detail in Ref.@17#, the minimization in Eq.
~2! yields the liquid–amorphous-solid phase transition a
certain critical value of the cross-link density. We para
etrize the excess cross-link density beyond this critical va
by the control parametere. As the transition is continuou
~i.e., near the critical point the gel fraction is small and t
typical localization length of localized particles is large!,
Fn($V k̂%) can be expanded in powers of the order param
and gradients, with only low orders needing to be retain
@21#:

ndFn~$V k̂%!5(
k̂

~2e1 1
2 uk̂u2!uV k̂u2

2 (
k̂1 ,k̂2 ,k̂3

V k̂1
V k̂2

V k̂3
d k̂11 k̂21 k̂3 ,0̂ . ~3!

The symbol(̄ denotes a sum over replicated wave vect
that contain at least two nonzero component vectorska @22#.
The saddle-point equation for the free-energy functional n
the transition is exactly solved by the following hypothe
@16,17#:
in
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V k̂5~12q!d k̂,0̂1qd(
a50
n ka,0W

u~ k̂!, ~4a!

Wu~ k̂![E
0

`

dt p~t! e2 k̂2/2t. ~4b!

The physical motivation for this hypothesis comes from
picture in which a fractionq of the monomers are localize
around random mean positionsbi(s) about which they ex-
ecute harmonic thermal fluctuations over random locali
tion lengthsj i(s). Furthermore, the mean positions are a
sumed to be homogeneously distributed over the sample,
the localization lengths are characterized by the statist
distribution 2j23p(j22). Thus, delocalized and localize
particles are, respectively, represented by the first and se
terms on the right-hand side of Eq.~4a!. Thed factor in the
second term comes from the homogeneity of the distribut
of mean positions. The functionWu( k̂), which we refer to as
the continuous partof the order parameter, encodes all t
information about thermal fluctuations~the superscriptu
standing for ‘‘unstrained’’!. The hypothesis@~4a! and ~4b!#
satisfies the saddle-point equations provided that@16,17#

0522qe13q2, ~5a!

u2

2

dp

du
5~12u!p~u!2E

0

u

du8p~u8!p~u2u8!, ~5b!

where p~u! is an e-independent scaling function such th
p(j22)5(2/e)p(2/ej2), and satisfies the boundary cond
tion *0

`dup(u)51. Equation~5a! determines the localized
fraction q; for e<0 we obtainq50 ~i.e., the liquid phase,
which has a vanishing static shear modulus!; for e.0 we
obtainq52e/3, corresponding to the amorphous solid sta
which is the state on which we shall focus from now on.

RESPONSE TO SHEAR STRAIN

We now set about determining the free-energy cost as
ciated with making static shear deformations of the syste
To do this, we consider the effect of changing the shape
the container~on which we have imposed periodic bounda
conditions!. We characterize the deformation by the (d3d)
matrix S, which describes the change in position of any po
b at the boundary of the system as follows:b→S•b. For
example, ford53 and for a deformation in which thex, y,
and z Cartesian components of the position vector are,
spectively, elongated by the factorslx , ly , and lz , the
matrix S has the form diag(lx ,ly ,lz). As we are concerned
with the free-energy cost of pure shear strains, we shall
sume that the deformation leaves the volumeV of the system
unchanged, i.e., DetS51. For considering infinitesima
strains, it is convenient to define the~symmetric! strain ten-
sor J[ 1

2 (S1ST)2I . HereST is the transpose ofS and I is
the identity matrix. As DetS51, we have TrJ50, to first
order in the deformation.

Before taking the thermodynamic limit, the system is
nite in extent, so that the Fourier representation of any fu
tion of position consists of a superposition of plane wav
with discrete wave vectors. In particular, the order parame
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~which is a function in replicated Fourier space! is only de-
fined for a discrete set of points. Now, under strain
boundaries in position space are displaced and, as a co
quence, the discretization in replicated Fourier sp
changes. As mentioned above, any external strain that is
plied to the system after the permanent constraints have
created will affect replicasa51,...,n, but not replicaa50
@7#. Therefore, the change in the discretization of the wa
vectors occurs only fora51,...,n, but not for a50. For
convenience, we shall use the symbolsRu andRs to denote
the sets of allowed replicated wave vectors correspond
respectively, to the unstrained and strained systems.

Conceptually, there are two sources for the change in
energy@Eq. ~2!# under deformation: the change in the expre
sion for the free-energy functional itself, and the consequ
change in the value of the order parameter that solves
saddle-point equation. The free-energy functional for
strained systemF n

s($V k̂%) is obtained by repeating, step-by
step, the construction of the free-energy functional for
unstrained systemFn($V k̂%). The result@23# is that the co-
efficient in front of each term is unaltered, the only chan
being the replacement of each sum( k̂ over the old set of
discrete replicated wave vectors~i.e., k̂PRu! by a sum over
the new set of discrete replicated wave vectors( k̂PRs. As a
result, the saddle-point equation for the strained system
comes

052~2e1 1
2 uk̂u2!V k̂23 (

k̂1k̂2PRs

V k̂1
V k̂2

d k̂11 k̂2 ,k̂ . ~6!

We now obtain the order parameter for the strained s
tem by making a physically motivated hypothesis similar
the one made for the unstrained system. First, for each lo
ized monomer in the unstrained system we envision tha
old mean positionbi(s) is displaced to a new mean positio
S•bi(s)1r i(s), whereS•bi(s) is the affine displacement o
the old position@6# andr i(s) is a random additional displace
ment, which we take to be uncorrelated withbi(s). With the
assumption that~as in the unstrained system! there is no
correlation between the extent~including shape! of the ther-
mal fluctuations of a monomer about its mean position a
the mean position itself, we arrive at the hypothesis

V k̂5~12q!d k̂,0̂1qdk01ST
•(

a51
n ka,0W

s~ k̂!, ~7!

whereWs( k̂) is the continuous part of the order parameter
the strained system. Now, to construct a form forWs( k̂) we
consider a conjecture for the form of^eik•ci (s)&x

s @i.e., the
thermal expectation values of the Fourier-transformed in
vidual particle densities in the strained (s) system for a spe-
cific disorder realizationx#:

exp@ ik•$S•bi~s!1r i~s!%#exp@2j i
2~s!k•$I1h i~s!J%•k/2#.

~8!

We expect the Gaussian probability cloud to be isotrop
except for a correction due to the distortion. For infinitesim
distortions, this correction should be proportional toJ and
have a random magnitudeh i(s). For example, ifh i(s)52,
then the probability cloud would have been affinely d
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torted. On the other hand, ifh i(s)50, then the probability
cloud would remain spherical. Assuming further that the ra
dom displacementr i(s) also has a probability distribution
shaped by a combination ofI andJ, and expanding to lowes
nontrivial order in the deformation@24#, we obtain the hy-
pothesis

Ws~ k̂!5qE
0

`

due2 k̂2/euFp~u!2
Ã~u!

e (
a51

n

ka
•J•kaG .

~9!

Here,Ã~u! is a second scaling function, which describes t
change in the continuous part of the order parameter du
the deformation.

An alternative motivation for the form ofWs( k̂) is as
follows. Let us assume that for small strainsWs( k̂) is un-
changed under simultaneous rotations ofS and k̂. As it is
only a function ofk̂2 this property certainly holds forWu( k̂),
and it therefore also holds for the difference betweenWs( k̂)
and Wu( k̂). To first order in J this difference can only
contain the following terms:~i! a linear function of
(a51

n ka
•J•ka and~ii ! a product of an invariant linear func

tion of J with an invariant function ofk̂. The only quantity
linear in J and invariant under rotations is TrJ, which is
zero for infinitesimal shear strains, as mentioned above. T
we recover Eq.~9!.

By inserting the hypothesis given by Eqs.~7! and~9! into
the saddle-point condition~6!, we recover Eqs.~5a! and~5b!
for q andp~u!, together with the condition

u2

2

dÃ

du
5~12u!Ã~u!2

2

u2 E
0

u

du8u82Ã~u8!p~u2u8!.

~10!

The boundary condition limu→`u2Ã(u)50 stems from the
fact that, by Eq.~1!, limuk̂u→`V k̂50. The only solution of Eq.
~10! that satisfies the boundary condition is the null functi
Ã(u)[0 @25#. This result implies the first~and,a priori, the
most surprising! result of this Rapid Communication: th
continuous part of the order parameterdoes not changeto
first order in the strain, i.e.,Ws( k̂)5Wu( k̂). This conclusion
is consistent with the phantom network picture@5,9#. It also
suggests thatWs( k̂)5Wu( k̂) for finite ~and not merely in-
finitesimal! deformations, and indeed the resulting orde
parameter hypothesis turns out to satisfy the saddle-p
equation for arbitrarily strained systems.

We now have all the ingredients necessary to compute
change in the free energy, to leading order ine, due to the
deformation of the system:

D f 5d lim
n→0

@F n
s~$V k̂

s
%!2Fn~$V k̂

u
%!#5

2e3

27
Tr~S•ST2I !,

whereV k̂
s and V k̂

u are, respectively, the saddle-point valu
of the order parameter for the strained and unstrained
tems. Thus we can extract the value of the static shear mo
lus for the amorphous solid state near the solidification tr
sition ~with physical units restored!: E5kBTNCe3, where
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kB is Boltzmann’s constant,T is the temperature, andC is a
model-dependent positive constant. Hence, we see tha
static shear modulus near the vulcanization transition is c
acterized by the exponentt53, in agreement with the clas
sical result@1,2#. A simple scaling argument, viz., that th
modulus should scale as two powers of the order param
(q2) and two powers of the gradient (j typ

22), leads to the same
value for t.

CONCLUDING REMARKS

We have presented a microscopic derivation of the st
elastic response of a system of randomly cross-linked m
romolecules near the amorphous solidification transition
the picture that emerges, it is seen that~i! the amorphous
solid state, which was previously shown to be characteri
structurally by the localization of a nonzero fraction of pa
ticles, is also characterized by having a nonzero static s
modulus; ~ii ! the static shear modulus scales as the th
l.

o

s.
he
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ter

ic
c-
n

d

ar
d

power of the excess cross-link density~beyond its value at
the transition! @26#; and ~iii ! the form of localization that is
exhibited by the particles is left unchanged by the strain
is, however, not implausible that strain-induced chan
would emerge from a more detailed analysis of the effects
the excluded-volume interaction, at least at higher cross-
densities. Being dependent only on the form of the fre
energy functional@27,21#, and not any specific semimicro
scopic model, the approach to elasticity described h
should be generally applicable not only to systems of r
domly cross-linked flexible macromolecules, but also
other equilibrium amorphous solid forming systems.
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