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Breathing self-similar dynamics and oscillatory tails of the chirped dispersion-managed soliton
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An effective approach to describe a breathing soliton in systems with periodically varying dispersion is
developed. A generalized solution of the propagation equation is presented in terms of chirped Gauss-Hermite
orthogonal functions. As a particular example, developed theory describes both averaged slow evolution and
rapid oscillations of the dispersion-managed soliton in fiber links. Self-similar structure of the main peak is
described by a system of ordinary differential equations for root-mean-square width and integral chirp of the
pulse.[S1063-651X98)51108-7

PACS numbegps): 03.40.Kf, 42.81.Dp

An increasing demand for telecommunication servicesjispersiond(z) and a constant residual dispersiah ((d)

stimulates intensive research in the field of high-bit-rate op-<a). c(2) accounts for power decay between amplifiers due
tical data transmission. One of the key techniques to increasg filr;er loss. Angular brackets here and in the paper mean
the capacity of fiber communication links is the so-called

X . S . averaging over compensation period. Equatibnpossesse
dispersion managemefit—4]. Periodic dispersion manage- veraging ov P 'or) per quatibnp ses

, . . J%° the conserved quantifg= [|A|?dt, that is, the energy of the
ment allows one to achieve stable optical signal transmlssmgystem Note that this equation describes many other physi-
both in the linear and nonlinear regime. The recently discov .

. . : . cal applications, such as a stretched pulse generation in
ered dispersion-manag€ébM) soliton[5,6] is a new type of b £ : :
the information carrier with properties that differ substan—mOde locking fiber laser systeni$6], propagation of high

dially f that of a traditional fund tal solitdsolit intensities beams in second-order nonlinear media with peri-
ially from that of a traditional fundamental solitgsoliton odic poling, evolution of soliton in a periodically modulated

solution of the integrable nonlinear Schroedinger equatior), 1o \yavequi
. . guid¢19], and others. Therefore, we hope
(NLSB)]. Main features of the DM soliton have already beent at the method developed in this paper can find applications

well understood and described theoretically and by means % a range of similar physical problems

ngmencal modelmgsee, e.g.[Z—201). However, due to a It has already been shown [ih5] that the dynamics of the
wide range .Of possible system _conﬂguratlons many practlgaﬂ)M soliton can be presented as self-similar evolution of the
and theo_ret|ca| prot_)lems are still open. On_e such challengln%ain peak accompanied by oscillations of far-field tails that
problem is to describe structure of the oscillatory tails of they ..\« 2 non-self-similar structufa3]. Arbitrary input pulse

Dl\l/]tsol|ton.A.;, ha; b_ee_ln shO\(/jvr;h[_QB],hthe ta'l‘:’hOf th?.tDM propagating down the dispersion-managed line typically
;Ict)elcci)tTriirge;r?)pzZa-tng:I;[)r?g theli;mggazztior? (S;g|; OI?\ ?rrlios'evolves into an asymptotic structure that presents a self-
Rapid Communication we develop a useful method to deS|m|lar rapidly oscillating main peak and a dispersive pedes-

scribe in a systematic way a self-similar dynamics of the cor fal [11]. By a proper choice of the parameters of the input
L : - ; Ise this radiation can ignificantl r . How-
and non-self-similar oscillatory tails of the DM soliton. Us- %u se this radiation can be significantly suppressed. Ho

: h | set of chiroed G Hermite functi ever, oscillatory far-field tails around the main peak cannot
Idngriig Z:/erosgoengqi?c\tigncgg\?:rningL:S\;v ee\r/g]l'uﬁoﬂn;nggi;‘?e entirely suppressed, because they present an unalienable

. . | ~*part of the DM soliton. Below we discuss the origin of these
of the DM soliton. We have obtained a set of ordinary d|f-8 9

. X o X oscillatory tails and present an effective method to describe
ferential equations for the coefficients of expansion of DM y P

liton in t t chirped G Hermite. funct W far-field tails of the DM soliton. To describe rapid self-
soliton in terms of chirpe auss-riermie functions. Weg;qqijay dynamics of the main peak let us consider the follow-

L . . . . ‘ng [12] evolution of the integral-integral quantiti€s2] re-
(large varlatlo_ns of Ioc'al dispersipithe self-5|mllar soliton lated to the pulse width, root mean squéRMS) width and
core and oscillatory tails can be well approximated by only,

two (the zero and fourthterms in this expansion. The devel- the integral pulse chirp:
oped approach can be used advantageously in numerical 212
modeling of the dynamics of arbitrary initial signal in the T, (2)= Jt°|A["dt _
dispersion-managed communication systems. nt J|Al2dt Tin(z) 4 Jt2|Al2dt

Pulse evolution down the dispersion-managed optical 2
transmission line is governed by a rather general model, the
NLSE with periodic coefficientésee, e.g.[5-11] for details It is easy to check that the evolution ©f,,(z) andM;(2)

P Mind2) i SUAAE = AR A

and notations is given by
iA,+d(z)Ay+c(2)|A]?A=0. ) dTine
a4z =4d(2)Min(2),
Here in optical application the propagation distamds nor- z
malized by the dispersion compensation petiodormalized q q 24 4
chromatic dispersiod(z)=a(z)+<d> represents the sum of d_(TintMint): 4d@J]Aldt=c(2)f|A] t_ 3
z

a rapidly varying(over one compensation perijokigh local 4f|A|2dt
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To obtain a closed system of equationsTg andM;,, one  with z: d(x?)/dz=0. These two assumptions lead to condi-
has to express integraf$A,|dt and[|A|*dt in terms ofT;,,  tion W(z)=0 and to the equations on the local functiohs
andM, . This is possible only under additional assumptionsand M,

about the structure of the solution. Based on the results of

numerical simulationf5,11] and the parabolic-lawfor T;y;) d_T =4d(2)M. 9
solution of the linear probleriL0] let us make the following dz
exact transformation of the functiok [15]: Further, it can be easily checked that under condition
dlox (argQ)=0 quantitiesC,; andC, don’t depend orz. As
Q[x,z] M(2) t a result, we get a second required ordinary differential equa-

A(z,t)= (4 tion,

2
T TR ) @'
Here, T(z) and M(z) are periodic functions of to be de- dM _d(z)C,_ c(2)Cy
fined below. We expect that the rapid oscillations of pulse dz T3 T2
width and chirp are accounted (yz) andM(z) and slow
evolution is given byQ(x,z). Applying transformatior{4) to
Eq. (1) we obtain a partial differential equation fQ(x,z),

(10

Equationg9) and(10) were first introduced in the context
of DM cascaded systems by Gabitov and Turitsyn 10]
using the variational approach. We emphasize that here these
0 d c(2) equations are derived directly from basic Efj. under a few
e Y ArzA_ _ 2192 reasonable assumptions justified by numerical simulations.
! 9z 2 Qoct T QI*Q=[TM,~MT,+4d(2)M]xQ Below we present a rigorous way to account for small devia-

tions of the DM pulse from a self-similar wave form as-

. T,—4d(zM _ T,—4d(z)M sumed above. Note also that the pulse shape is not fixed in

! T Qi T XOx. (3 this approach. Pulse power, width, and form affect rapid dy-

namics only through integral coefficien®; andC,. Addi-

Integral pulse characteristi@,, and My, are expressed in tionally, one can move€, to the parameter in the third term
terms of T and M and integrals ofQ(x,2), Q*(x,z) (and N EQ. (10 by transform Toq=Ci"Tpey, and Mg

their derivatives, =C7*M pew that keeps the structure of Eq§) and(10) the
, o 102 same With NewC,ew=1 andConew=C,C; >* and the cor-
T.(2)=T(2) Ix%|Q(x,2)|“dx responding change of the boundary conditions. Making use
int 11Q(x,2)|%dx of this observation in what follows we slightly change nota-
tion using Eqgs.(9) and (10) with C;=1 and introducing
Min(z)  M(2) i IX(QQF —Q*Qudx N?=C,C; ¥*. It is interesting to note that a similar set of
T =7 + > TP . () simple equations can be derived for the pulse characteristics
int(2) (2)  4aT(2) Ix?[Q|*dx in the spectral domaifi8]. In [8] equations in the spectral

domain have been introduced by means of the variational
approach. We derive now the basic ordinary differential
equation(ODE) model in the spectral domain using RMS

Straightforward calculations yield equations for integral
characteristics of the fiel@®,

_ pulse characteristics similar to those considered above. Let
E<X2>: 2d(2) z)—Zw(x2>, us introduce the RMS pulse spectral bandwidth and chirp as
dz T2 T Jw?|Al2dw] 2
Orud2) = —arza. |
o DPIQPAx | fX(QQ5-Q*Q,)dx [1AI*dew
)= 1Ql2dx (2= J|QJ2dx ’ i Jo(A*0Aldo—AdA*[dw)do  TinMin
(7) Yrvs(2)= 5 - =—.
Jw?Al“dw Qrus
and (13)
d dM d(2)C, ¢(2)C, Evaluating first derivatives of these quantities withand
—W(z2)=—4(x*)T| ——— FR— assuming as above the self-similar structure of the core of a
dz dz T T pulse we get two equations for tfigzys and Yrus,
2
TAM(T,~4d@M)OC), drus  AN2C(DCoYrushys 2
 J1Q%dx ~ JIQI*dx ® dz () C1+4YauQRud (X313
CrelQPdx” TP afx?QlRdx dYeus .,
Note that up to now this is thexacttransform fromA to Q. dz
As a next step, we assume no.w.that the DM spliton in the 3 N2c(2)Co[C(X?) —4YEuQhms]
leading order is close to self-similar structure given by Eq. =(d)~

2 2 4 2\13/2°
(4) under additional constrain®argQ/dx=0. In other (X rud C1+4YRurMd (X))
words, we assume that first, in the leading order the phase (13
factor Mt?/T in the transformation(4) describes the pulse HereCi, C,, (x?) are integrals defined above. Advantage of
chirp in the energy-containing central p&pulse corg and  these equations is that after trivial redefinition of the function
second, RMS width for the transformed figddoes notvary  Ygug(2)=Y9e¥(2) +Ro(z) [with known function Ry(2)
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found fromdR,/dz="(z)] and treating nonlinearity and re- Here we introduce notatiorS, m= /"% fmn(X)x*fo(x)dX,
sidual dispersion as small perturbations during one period wb’n,mJ,k:ffﬁfn(x)fm(x)f|(x)fk(x)dx. Since integrals of
obtain ODEs with small parameters on the right-hand-sidene formfxne*axz can be calculated analytically, it is pos-
[8,17,18. Using this approach the conditions of the station-gjple to determine ang, » andV, . For instanceS; o

ary propagation of the DM soliton in the system with strong=0.5, 5,,=1#2, S, ,=5/2, S, ,=9/2 and first few coeffi-
dispersion management have been obtainell1g. For  cientsv, . are ’

the Gaussian trial functionA(t,z)=NB, exdiM ()t%/
T(2)]exp{—t[2T42)]+iN@)}/T(z)ym such conditions

give |Bol?=2\2m, (dM)=0, (d(1T2+4MD)=N¥c/T) L, 2 1 11
[17,18. Below these conditions of the periodic DM pulse " 2z’ w2 24 S A g

propagation will be obtained by exact expansion of the DM

soliton in the complete set of chirped Gauss-Hermite func- . . :

tions P P Equation(18) can be averaged directlyn contrast to the
Now we consider slow evolution of the DM soliton and Master Eq(1)]. Averaging over one period gives

will describe the dynamics of non-self-similar oscillatory

tails. To remove from Eq(1) rapid self-similar dynamics du, /d '

that occurs due to large variations of the local dispersion leti — + = )\mUm+; (B(z)e M~ MmR@NS Y

us apply the followind 15] the exact transformation: dz
AL =N exgi Pz QXD L Ly + 3 (BN NARON U, UE Vi 4= 0.
| @ | T = T ATk
Here we also slightly change notatigapompared with the (19

above consideratignputting power coefficienN explicitly

in thg field transform:T and M in Eq. (14) are periodic  Here Bn=Upy+ 7+ is composed as a sum of slowly
solutions of the equations (U,) and rapidly (7,) varying parts @7,/dz>7,) and
dT dM  d(z) c(z)N? 7m<U,,. The stationary solution of Eq19 having the
—=4d(z)M, —=—-— (15)  form Up,,=F, exp(kz) with F,, nondependent on presents
dz dz 713 T? the expansion of the DM soliton in terms of chirped Gauss-
HereN is a constant that is determined by requirementthat Hermite functions for given dispersion map. The path-
andM are periodic solutions to Eq15). We obtain then a 2veraged equatiofL9) allows one to describe in a rigorous
partial differential equation fo©(x,z), way properties of DM solitons gnd more generally propaga-
0 d tion of any |nputh§|gr1natll fkor artl)ltraryfd|speLS|ﬁn r2nap.dRap||d
. 9 2 P convergence, which takes place for a bell-shaped pulse,
=7 _ITZ(Qxx_X Q)+ B(2)(IQI*Q+x°Q)=0, means that the localized pulse will be well presented by a
) limited number of terms in the expansion. This makes such a
_ c(2N (16) basis very useful in different practical applications. As a par-
T ticular example, consider now DM soliton close to Gaussian

Since the system of the eigenfunctions of the harmonic osin the core assumingo>F, for m= 0. First let us keep only
cillator is complete, we can expar@(x,z) using the or- WO first modes. Because of the symmetry it will be=0

thogonal normalized Gauss-Hermite functior®(x,z) andm=2. We assume th&t,>F, and neglect as a first step
=3B (2)f1(X) exiR(2\,] with all other modes and terms quadratic and qubi€ jn

(fn)xx_xzfn:)\nfn, )\n=—1—2n,

B(2)

d .
1 X2 _kFo+<-I_—2>)\0F0+<,3>So,o|:o+(ﬁ(2)9_4'R(Z)>So,2F2
fa(X)=————exp — 5 |Hn(X). (17
Nl T
. 2tV . _ +(B)|Fol*FoVoo,00t Voood(Be™ ") 2|Fq|*F;
Here,H,(x) is thenth-order Hermite polynomial and coef- 4RE) _—
ficients B, are given by the ordinary scalar product 4r? +(Be™ W) Fo|°F3)=0, (20)
with f,,.
Function R(z) is found from dR/dz=d(z2)/T(z)? d
—<d_/T_2>. !nsert_ing this expar_13ion into E{L6), after sca_1lar —kF,+ <_|Tz>)\2|:2+<’3>SZ’2|:2+<B(Z)e4iR(Z)>SZ’O|:0
multiplication with f ,, we obtain a system of ordinary differ-
ential equations for the coeff;men&n, +( BEHR@Y| Fo|2F 0V 0.0 2+ Vo004 B) 2| F ol 2F 5
dB d . A
! _dzm+<'|_'z>7\m|3m+/3(2)z et AnRaS, B, (BT FolFE) =0, @
n=0
+B(z) >, et N AmR2B BBV, | =0. It is interesting that these equations always have an exact
n,lk e

solution that in the leading order approximates DM soliton in
(18 this (strong managementimit. Namely,
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[Fol*= =S20/Vo0072V2m, F,=0, X (Ko+KFg)1=0. (24
1 |Fy? By construction we are interested in the root closeFfp
k=—(dITA+(B)| 5+ 0 ) =—(d/T?)+2.5R). =—=5,0/Vo007=2v2m7. Note that in the proper expansion
2 2= of the sech-shaped pulse in the basis of chirped Gauss-

(220 Hermite functions the terms witm=4k+2, k=0,1,2;-- are
. . . . zero[20]. This indicates that the developed approximation
Note that this solution givesxactlythe same conditions of 5564 on the zero and fourth modes can effectively allow one
the stationary propagation of DM pulse obtained above byq gescribe with good accuracy the evolution of the DM soli-
the RMS momentum method. This can be considered as @n form with increasing of the map strength. Details will be
solution that gives the best approximation of the DM solitonpresented elsewhere. Neglecting the nonlinear termsnfor
by a Gaussian-shaped pulse. In a true DM solBgnis not =2 in the expansion the coefficieR, can also be expressed
exactly zero due to higher order terms neglected in the abov@yrough the soliton energf,~E/N. The power distribu-
consideration, but as it has been observef?ii B, is in-  tion is then given by F,=|F,|exp@®,)]
deed smaller than the next few terms in the expansion. More
involved calculations allow one to find similar solution con- , E exd —t2/T%(2)]
sidering a three-mode approximation for=0,2,4. Again, Az, D) :T(z) J
requiring thatB,=0 and neglecting terms quadratic and qu-
bic in F, we can solve the three-mode model and obtain 2NVE "

T 2, fofanlFanlcog 4nR(z) — by,

JbadadF 5= Joa( Ko+ Ka|Fol?)

Fa=Fol|Fol?

(Kot KalFol?)?=[344?Fol*’ @9
. , The last term here is responsible for non-self-similar oscilla-
J04=Vo,004B€%R),  Ju=V4004Be%), tions of the tails inside compensation cell. Note that non-
) Gaussian oscillating tails are always present in the DM soli-
Ko=(d/IT)(Ng=No) +(B)(Ss4— S0, ton, even if the main peak is very close to the Gaussian
shape.
K2=(B)(2Va004~Voo,00- (23 In conclusion, we have presented a direct method to de-

scribe both self-similar core and the oscillating tails of a
pulse propagating in dispersion-managed systems. Using a
complete set of chirped Gauss-Hermite functions we de-

Herng (Fg is real without loss of generalitys found from
the cubic algebraic equation

<1864iR>(82'0+ Vo,o,o,f(z))[(Ko+ KZFS)Z— |J44|2Fé] spribe the evolution of an arbit_ra_ry DM pulse and present a
simple two-mode model describing the DM soliton in sys-
+{Be “RY(S, 4+ 2V 00 F D) FIL It adF5— Jos tems with strong dispersion management.
) 19R 4 .o The support of RFBRGrant No. 96-02-19131}as ac-
X (Ko+KzF5) 1+ (Be ")V 0040l JoadisF5— I5a knowledged.
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