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Breathing self-similar dynamics and oscillatory tails of the chirped dispersion-managed soliton

Sergei K. Turitsyn
Institut für Theoretische Physik I, Heinrich-Heine-Universita¨t Düsseldorf, 40225 Du¨sseldorf, Germany

~Received 17 March 1998!

An effective approach to describe a breathing soliton in systems with periodically varying dispersion is
developed. A generalized solution of the propagation equation is presented in terms of chirped Gauss-Hermite
orthogonal functions. As a particular example, developed theory describes both averaged slow evolution and
rapid oscillations of the dispersion-managed soliton in fiber links. Self-similar structure of the main peak is
described by a system of ordinary differential equations for root-mean-square width and integral chirp of the
pulse.@S1063-651X~98!51108-7#

PACS number~s!: 03.40.Kf, 42.81.Dp
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An increasing demand for telecommunication servic
stimulates intensive research in the field of high-bit-rate
tical data transmission. One of the key techniques to incre
the capacity of fiber communication links is the so-call
dispersion management@1–4#. Periodic dispersion manage
ment allows one to achieve stable optical signal transmis
both in the linear and nonlinear regime. The recently disc
ered dispersion-managed~DM! soliton @5,6# is a new type of
the information carrier with properties that differ substa
tially from that of a traditional fundamental soliton@soliton
solution of the integrable nonlinear Schroedinger equa
~NLSE!#. Main features of the DM soliton have already be
well understood and described theoretically and by mean
numerical modeling~see, e.g.,@2–20#!. However, due to a
wide range of possible system configurations many pract
and theoretical problems are still open. One such challeng
problem is to describe structure of the oscillatory tails of
DM soliton. As has been shown in@13#, the tails of the DM
soliton are not self-similar and this changes the soliton p
file during propagation along the compensation cell. In t
Rapid Communication we develop a useful method to
scribe in a systematic way a self-similar dynamics of the c
and non-self-similar oscillatory tails of the DM soliton. U
ing an orthogonal set of chirped Gauss-Hermite functions
derive average equation governing slow evolution and sh
of the DM soliton. We have obtained a set of ordinary d
ferential equations for the coefficients of expansion of D
soliton in terms of chirped Gauss-Hermite functions. W
show that in the limit of a strong dispersion managem
~large variations of local dispersion! the self-similar soliton
core and oscillatory tails can be well approximated by o
two ~the zero and fourth! terms in this expansion. The deve
oped approach can be used advantageously in nume
modeling of the dynamics of arbitrary initial signal in th
dispersion-managed communication systems.

Pulse evolution down the dispersion-managed opt
transmission line is governed by a rather general model,
NLSE with periodic coefficients~see, e.g.,@5–11# for details
and notations!:

iAz1d~z!Att1c~z!uAu2A50. ~1!

Here in optical application the propagation distancez is nor-
malized by the dispersion compensation periodL normalized
chromatic dispersiond(z)5d̃(z)1^d& represents the sum o
a rapidly varying~over one compensation period! high local
PRE 581063-651X/98/58~2!/1256~4!/$15.00
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dispersiond̃(z) and a constant residual dispersion^d& (^d&
!d̃); c(z) accounts for power decay between amplifiers d
to fiber loss. Angular brackets here and in the paper m
averaging over compensation period. Equation~1! possesses
the conserved quantityE5* uAu2dt, that is, the energy of the
system. Note that this equation describes many other ph
cal applications, such as a stretched pulse generatio
mode-locking fiber laser systems@16#, propagation of high
intensities beams in second-order nonlinear media with p
odic poling, evolution of soliton in a periodically modulate
nonlinear waveguide@19#, and others. Therefore, we hop
that the method developed in this paper can find applicati
in a range of similar physical problems.

It has already been shown in@15# that the dynamics of the
DM soliton can be presented as self-similar evolution of
main peak accompanied by oscillations of far-field tails th
have a non-self-similar structure@13#. Arbitrary input pulse
propagating down the dispersion-managed line typica
evolves into an asymptotic structure that presents a s
similar rapidly oscillating main peak and a dispersive ped
tal @11#. By a proper choice of the parameters of the inp
pulse this radiation can be significantly suppressed. Ho
ever, oscillatory far-field tails around the main peak can
be entirely suppressed, because they present an unalie
part of the DM soliton. Below we discuss the origin of the
oscillatory tails and present an effective method to desc
far-field tails of the DM soliton. To describe rapid sel
similar dynamics of the main peak let us consider the follo
ing @12# evolution of the integral-integral quantities@12# re-
lated to the pulse width, root mean square~RMS! width and
the integral pulse chirp:

Tint~z!5F * t2uAu2dt

* uAu2dt
G 1/2

,
Mint~z!

Tint~z!
5

i

4

* t~AAt* 2A* At!dt

* t2uAu2dt
.

~2!

It is easy to check that the evolution ofTint(z) andMint(z)
is given by

dTint

dz
54d~z!Mint~z!,

d

dz
~TintM int!5

4d~z!* uAtu2dt2c~z!* uAu4dt

4* uAu2dt
. ~3!
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To obtain a closed system of equations onTint andMint one
has to express integrals* uAtu2dt and* uAu4dt in terms ofTint
andMint . This is possible only under additional assumptio
about the structure of the solution. Based on the result
numerical simulations@5,11# and the parabolic-law~for Tint)
solution of the linear problem@10# let us make the following
exact transformation of the functionA @15#:

A~z,t !5
Q@x,z#

AT~z!
expS i

M ~z!

T~z!
t2D ,

t

T~z!
. ~4!

Here,T(z) and M (z) are periodic functions ofz to be de-
fined below. We expect that the rapid oscillations of pu
width and chirp are accounted byT(z) and M (z) and slow
evolution is given byQ(x,z). Applying transformation~4! to
Eq. ~1! we obtain a partial differential equation forQ(x,z),

i
]Q

]z
1

d

T2
Qxx1

c~z!

T
uQu2Q2@TMz2MTz14d~z!M2#x2Q

5 i
Tz24d~z!M

2T
Q1 i

Tz24d~z!M

T
xOx . ~5!

Integral pulse characteristicsTint and Mint are expressed in
terms of T and M and integrals ofQ(x,z), Q* (x,z) ~and
their derivatives!,

Tint~z!5T~z!F *x2uQ~x,z!u2dx

* uQ~x,z!u2dx
G 1/2

,

Mint~z!

Tint~z!
5

M ~z!

T~z!
1

i

4T~z!2

*x~QQx* 2Q* Qx!dx

*x2uQu2dx
. ~6!

Straightforward calculations yield equations for integ
characteristics of the fieldQ,

d

dz
^x2&5

2d~z!

T2
W~z!22

Tz24d~z!M

T
^x2&,

^x2&5
*x2uQu2dx

* uQu2dx
, W~z!5

*x~QQx* 2Q* Qx!dx

* uQu2dx
,

~7!

and

d

dz
W~z!524^x2&TS dM

dz
2

d~z!C1

T3
2

c~z!C2

T2 D
14M „Tz24d~z!M …^x2&,

C15
* uQxu2dx

*x2uQu2dx
, C25

* uQu4dx

4*x2uQu2dx
. ~8!

Note that up to now this is theexacttransform fromA to Q.
As a next step, we assume now that the DM soliton in
leading order is close to self-similar structure given by E
~4! under additional constraint] argQ/]x50. In other
words, we assume that first, in the leading order the ph
factor Mt2/T in the transformation~4! describes the pulse
chirp in the energy-containing central part~pulse core! and
second, RMS width for the transformed fieldQ does not vary
s
of

e

l

e
.

se

with z: d^x2&/dz50. These two assumptions lead to cond
tion W(z)50 and to the equations on the local functionsT
andM ,

dT

dz
54d~z!M . ~9!

Further, it can be easily checked that under condit
]/]x (argQ)50 quantitiesC1 andC2 don’t depend onz. As
a result, we get a second required ordinary differential eq
tion,

dM

dz
5

d~z!C1

T3
2

c~z!C2

T2
. ~10!

Equations~9! and~10! were first introduced in the contex
of DM cascaded systems by Gabitov and Turitsyn in@10#
using the variational approach. We emphasize that here t
equations are derived directly from basic Eq.~1! under a few
reasonable assumptions justified by numerical simulatio
Below we present a rigorous way to account for small dev
tions of the DM pulse from a self-similar wave form a
sumed above. Note also that the pulse shape is not fixe
this approach. Pulse power, width, and form affect rapid
namics only through integral coefficientsC1 andC2 . Addi-
tionally, one can moveC1 to the parameter in the third term
in Eq. ~10! by transform Told5C1

1/4Tnew and Mold

5C1
1/4Mnew that keeps the structure of Eqs.~9! and~10! the

same with newC1new51 andC2new5C2C1
23/4 and the cor-

responding change of the boundary conditions. Making
of this observation in what follows we slightly change not
tion using Eqs.~9! and ~10! with C151 and introducing
N25C2C1

23/4. It is interesting to note that a similar set o
simple equations can be derived for the pulse characteris
in the spectral domain@8#. In @8# equations in the spectra
domain have been introduced by means of the variatio
approach. We derive now the basic ordinary different
equation~ODE! model in the spectral domain using RM
pulse characteristics similar to those considered above.
us introduce the RMS pulse spectral bandwidth and chirp

VRMS~z!5F*v2uAu2dv

* uAu2dv G1/2

,

YRMS~z!5
i

4

*v~A* ]A/]v2A]A* /]v!dv

*v2uAu2dv
5

TintM int

VRMS
2

.

~11!

Evaluating first derivatives of these quantities withz and
assuming as above the self-similar structure of the core
pulse we get two equations for theVRMS andYRMS,

dVRMS

dz
52

4N2c~z!C2YRMSVRMS
4

^x2&@C114YRMS
2 VRMS

4 /^x2&#3/2
, ~12!

dYRMS

dz
2d̃~z!

5^d&2
N2c~z!C2@C1^x

2&24YRMS
2 VRMS

4 #

^x2&VRMS@C114YRMS
2 VRMS

4 /^x2&#3/2
.

~13!

HereC1, C2, ^x2& are integrals defined above. Advantage
these equations is that after trivial redefinition of the functi
YRMS(z)5YRMS

(new)(z)1R̃0(z) @with known function R̃0(z)
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found fromdR̃0 /dz5d̃(z)] and treating nonlinearity and re
sidual dispersion as small perturbations during one period
obtain ODEs with small parameters on the right-hand-s
@8,17,18#. Using this approach the conditions of the statio
ary propagation of the DM soliton in the system with stro
dispersion management have been obtained in@17,18#. For
the Gaussian trial functionA(t,z)5NB0 exp@iM(z)t2/
T(z)]exp$2t2/@2T2(z)#1il(z)%/AT(z)Ap such conditions
give uB0u252A2p, ^dM&50, ^d(1/T214M2)&5N2^c/T&
@17,18#. Below these conditions of the periodic DM puls
propagation will be obtained by exact expansion of the D
soliton in the complete set of chirped Gauss-Hermite fu
tions.

Now we consider slow evolution of the DM soliton an
will describe the dynamics of non-self-similar oscillato
tails. To remove from Eq.~1! rapid self-similar dynamics
that occurs due to large variations of the local dispersion
us apply the following@15# the exact transformation:

A~ t,z!5N expF i
M ~z!

T~z!
t2G Q~x,z!

AT~z!
, x5

t

T~z!
. ~14!

Here we also slightly change notation~compared with the
above consideration!, putting power coefficientN explicitly
in the field transform.T and M in Eq. ~14! are periodic
solutions of the equations

dT

dz
54d~z!M ,

dM

dz
5

d~z!

T3
2

c~z!N2

T2
. ~15!

HereN is a constant that is determined by requirement thaT
and M are periodic solutions to Eq.~15!. We obtain then a
partial differential equation forQ(x,z),

i
]Q

]z
1

d

T2
~Qxx2x2Q!1b~z!~ uQu2Q1x2Q!50,

b~z!5
c~z!N2

T
. ~16!

Since the system of the eigenfunctions of the harmonic
cillator is complete, we can expandQ(x,z) using the or-
thogonal normalized Gauss-Hermite functionsQ(x,z)
5(nBn(z) f n(x) exp@iR(z)ln# with

~ f n!xx2x2f n5lnf n , ln52122n,

f n~x!5
1

A2nn!Ap
expS 2

x2

2 DHn~x!. ~17!

Here,Hn(x) is thenth-order Hermite polynomial and coe
ficients Bn are given by the ordinary scalar product inL 2

with f m .
Function R(z) is found from dR/dz5d(z)/T(z)2

2^d/T2&. Inserting this expansion into Eq.~16!, after scalar
multiplication with f m we obtain a system of ordinary differ
ential equations for the coefficientsBm ,

i
dBm

dz
1 K d

T2L lmBm1b~z! (
n50

`

ei ~ln2lm!R~z!Sn,mBn

1b~z! (
n,l ,k

ei ~ln1l l2lk2lm!R~z!BnBlBk* Vm,n,l ,k50.

~18!
e
e
-

-

t

s-

Here we introduce notationSn,m5*2`
1` f m(x)x2f n(x)dx,

Vn,m,l ,k5*2`
1` f n(x) f m(x) f l(x) f k(x)dx. Since integrals of

the form *xne2ax2
can be calculated analytically, it is pos

sible to determine anySn,m and Vn,m,l ,k . For instance,S0,0
50.5, S0,251/&, S2,255/2, S4,459/2 and first few coeffi-
cientsVn,m,l ,k are

V0,0,0,05
1

A2p
, V1,1,0,05

1

2

1

A2p
, V2,0,0,052

1

4

1

Ap
.

Equation ~18! can be averaged directly@in contrast to the
master Eq.~1!#. Averaging over one period gives

i
dUm

dz
1K d

T2L lmUm1(
n

^b~z!ei ~ln2lm!R~z!&Sn,mUn

1 (
n,l ,k

^b~z!ei ~ln1l l2lk2lm!R~z!&UnUlUk* Vm,n,l ,k50.

~19!

Here Bm5Um1hm1¯ is composed as a sum of slowl
(Um) and rapidly (hm) varying parts (dhm /dz@hm) and
hm!Um . The stationary solution of Eq.~19! having the
form Um5Fm exp(ikz) with Fm nondependent onz presents
the expansion of the DM soliton in terms of chirped Gau
Hermite functions for given dispersion map. The pa
averaged equation~19! allows one to describe in a rigorou
way properties of DM solitons and more generally propa
tion of any input signal for arbitrary dispersion map. Rap
convergence, which takes place for a bell-shaped pu
means that the localized pulse will be well presented b
limited number of terms in the expansion. This makes suc
basis very useful in different practical applications. As a p
ticular example, consider now DM soliton close to Gauss
in the core assumingF0@Fm for mÞ0. First let us keep only
two first modes. Because of the symmetry it will bem50
andm52. We assume thatF0@F2 and neglect as a first ste
all other modes and terms quadratic and qubic inF2 .

2kF01 K d

T2 L l0F01^b&S0,0F01^b~z!e24iR~z!&S0,2F2

1^b&uF0u2F0V0,0,0,01V0,0,0,2~^be24iR~z!&2uF0u2F2

1^be4iR~z!&uF0u2F2* !50, ~20!

2kF21 K d

T2 L l2F21^b&S2,2F21^b~z!e4iR~z!&S2,0F0

1^be4iR~z!&uF0u2F0V0,0,0,21V2,0,0,2~^b&2uF0u2F2

1^be8iR~z!&uF0u2F2* !50. ~21!

It is interesting that these equations always have an e
solution that in the leading order approximates DM soliton
this ~strong management! limit. Namely,
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uF0u252S2,0/V0,0,0,252A2p, F250,

k52^d/T2&1^b&S 1

2
1

uF0u2

A2p
D 52^d/T2&12.5̂ b&.

~22!

Note that this solution givesexactlythe same conditions o
the stationary propagation of DM pulse obtained above
the RMS momentum method. This can be considered a
solution that gives the best approximation of the DM solit
by a Gaussian-shaped pulse. In a true DM solitonB2 is not
exactly zero due to higher order terms neglected in the ab
consideration, but as it has been observed in@21# B2 is in-
deed smaller than the next few terms in the expansion. M
involved calculations allow one to find similar solution co
sidering a three-mode approximation form50,2,4. Again,
requiring thatB250 and neglecting terms quadratic and q
bic in F4 we can solve the three-mode model and obtain

F45F0uF0u2
J04* J44F0

22J04~K01K2uF0u2!

~K01K2uF0u2!22uJ44u2uF0u4
,

J045V0,0,0,4̂ be8iR&, J445V4,0,0,4̂ be16iR&,

K05^d/T2&~l42l0!1^b&~S4,42S0,0!,

K25^b&~2V4,0,0,42V0,0,0,0!. ~23!

HereF0
2 (F0 is real without loss of generality! is found from

the cubic algebraic equation

^be4iR&~S2,01V0,0,0,2F0
2!@~K01K2F0

2!22uJ44u2F0
4#

1^be24iR&~S2,412V2,0,0,4F0
2!F0

2@J04* J44F0
22J04

3~K01K2F0
2!#1^be12iR&V2,0,0,4F0

4@J04J44* F0
22J04*
nd

x,
d

ic

n,

et

n

y
a

ve

re

-

3~K01K2F0
2!#50. ~24!

By construction we are interested in the root close toF0
2

52S2,0/V0,0,0,252A2p. Note that in the proper expansio
of the sech-shaped pulse in the basis of chirped Ga
Hermite functions the terms withm54k12, k50,1,2,̄ are
zero @20#. This indicates that the developed approximati
based on the zero and fourth modes can effectively allow
to describe with good accuracy the evolution of the DM so
ton form with increasing of the map strength. Details will b
presented elsewhere. Neglecting the nonlinear terms fom
>2 in the expansion the coefficientF0 can also be expresse
through the soliton energyF0'AE/N. The power distribu-
tion is then given by@Fn5uFnuexp(Fn)#

uA~z,t !u25
E

T~z!

exp@2t2/T2~z!#

Ap

1
2NAE

T~z! (
n51

n5`

f 0f 2nuF2nucos@4nR~z!2F2n#.

~25!

The last term here is responsible for non-self-similar osci
tions of the tails inside compensation cell. Note that no
Gaussian oscillating tails are always present in the DM s
ton, even if the main peak is very close to the Gauss
shape.

In conclusion, we have presented a direct method to
scribe both self-similar core and the oscillating tails of
pulse propagating in dispersion-managed systems. Usin
complete set of chirped Gauss-Hermite functions we
scribe the evolution of an arbitrary DM pulse and presen
simple two-mode model describing the DM soliton in sy
tems with strong dispersion management.
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