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Dynamic shear modulus of a semiflexible polymer network
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~Received 19 December 1997!

We construct a model for the dynamic shear modulusG(v) of entangled or crosslinked networks of
semiflexible polymer that can account for the high-frequency scaling behavior,G(v);v3/4, that has recently
been observed in solutions of the biopolymerF-actin. As we argue, this behavior should not be unique to
F-actin, but rather should be a clear characteristic of semiflexible polymers in general. We also report molecu-
lar dynamics simulations that support the single filament response that is the basis of our model for the network
shear modulus.@S1063-651X~98!51908-3#

PACS number~s!: 83.10.Nn, 83.50.Fc, 87.15.Da, 87.45.2k
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Semiflexible polymers fit in a continuum of behavior th
runs from flexible-chain systems~such as polystyrene! to
rodlike solutions. Nevertheless, accepted models of flex
and rodlike polymers@1,2# do not seem to be adequate
describe the behavior of semiflexible systems, and as ye
well-established models for viscoelasticity in semiflexib
networks exist. Perhaps one reason for this is that few s
thetic polymers display a sufficiently large aspect ratio
persistence lengthl p ~the e21 decay length of angular cor
relation along the filament! to molecular diameter for the
distinctive features of a semiflexible network to become
parent. Biopolymers, however, have proven to be excel
model systems in which to study semiflexible behavior
cause of their rather large molecular cross section: the
tein F-actin~filamentous actin!, with a diameter of about 5–7
nm, has a persistence length of 15–18mm @3,4#, while mi-
crotubules have diameters of 28 nm and persistence len
of several millimeters@4#. Networks of F-actin can provide
cells with mechanical stability while occupying a signi
cantly smaller volume fraction of the cytosol than would
required for a flexible network. This is in part why semifle
ible polymers have lately become the subject of much in
est and debate. Recent theoretical and experimental stu
of F-actin, in particular, have begun to resolve the unus
static and dynamic properties of semiflexible systems. H
we describe a model that can account for the anoma
power-law increase of the shear modulusG, as G(v)
}v3/4, that has been observed recently in experiments
F-actin above a frequency of about 1 Hz@5,6#. We also show
that this is a general signature of semiflexible polymer s
tems.

Our physical picture is as follows. A semiflexible polym
network is an isotropic, random array of long stiff chains th
are subject to constraints~either steric entanglements o
crosslinks! on a length scalel e shorter than the persistenc
length l p of the filaments. For our purposes, the defini
characteristic of a semiflexible network is that the filame
are much longer than either the persistence length or
entanglement length:L@l p*l e@a, where L is the fila-
ment length anda is a molecular dimension. Under an a
plied macroscopic shear strain of frequencyv, filaments un-
dergo a distortion that we assume to be affine above a le
scale of orderl e ; however, the precise value of this leng
will not be important for the high-frequencyG(v) as we
PRE 581063-651X/98/58~2!/1241~4!/$15.00
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show below. A shear strain implies extension or compress
in the fluctuating segments, depending on their orientat
with respect to the shear direction. The longitudinal rela
ation of the chain conformation through the surrounding v
cous solvent results in a specific time-dependence of the
sponse ~microscopically, tension in the filamen
macroscopically, stress in the solution! that is governed by
the incompressibility of the filament along its contour leng
It is this time-dependent, single filament response that res
in a simple frequency dependence of the macroscopic st
response of the polymer network, in much the same way
the ~single-filament! Rouse model describes the stress
both dilute and entangled flexible polymer solutions, a
even of gels at high frequency. As such, this high-freque
response provides for a more quantitative comparison of
periment with theory than may be possible for the plate
modulus, which is highly sensitive to entanglement a
crosslinking@7–10#, and for which experimental values hav
varied widely@11#.

For a strainui j 5
1
2 (¹ iuj1¹ jui), a segment of orientation

n̂ and lengthl undergoes a relative change in end-to-e
length ofdl /l 5ninjui j , and there will be an induced ten
sion tv , given bydl v5avtv , whereav5av8 1 iav9 is the
longitudinal response function of the segment of filame
For a spatial densityr of filaments, the stress due to filame
tension is

s i j
~t!5r^tninj&5

rl e

av
^ninjnknl&ukl . ~1!

There is an additional stress22ivhui j due to the solvent
~with h the viscosity!. For an isotropic distribution of fila-
ments, ^ninjnknl&5(1/15)$d i j dkl1d ikd j l 1d i l d jk%. Assum-
ing incompressibility (uii 50) and identifying s i j
[2G(v)ui j , one finds

G~v!5 1
15 rl e /av2 ivh. ~2!

In this way, at least for high frequencies, the macrosco
shear modulus of a network can be obtained from the sin
filament response.

We calculate the response functionav of a filament seg-
ment with lengthl and bending modulusk5l pkT. The
bending energy in the absence of tension is
R1241 © 1998 The American Physical Society
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0

l

ds
k

2
~]2r' /]s2!2. ~3!

Writing the lateral deviation asr'(s)5@u(s),v(s)#, the
tension-free equation foru(s,t) is zu̇52k]u/]s4, wherez
is the transverse drag coefficient. If the segment ends
laterally constrained, the motion is a sum of modes

u~s!5
2

l (
q

uqsin qs ~q5np/l ,n>1!, ~4!

and similarly for v(s). Modes of differingq are uncorre-
lated. Denoting quantities at timet.0 and at time 0 as
primed and unprimed respectively, one finds

^uq8uq&5^vq8vq&5~ l /2q4l p!e2vqt, ~5!

where the relaxation rate isvq5(k/z)q4.
We definedav as the response of a fluctuating segmen

inextensible filament to a tensiont(t) @12#. A real filament,
however, must possess some longitudinal compliance w
will contribute to the response at very short times. We w
discuss this restriction further below.

The total projected length change is given by

dl '2 1
2 E

0

l

ds~]r' /]s!252
1

l (
q

q2~uq
21vq

2!. ~6!

Correlations ofdl evidently involve fourth-order correla
tions of uq and vq . However, since the energy@Eq. ~3!# is
quadratic inu andv, we can factor the fourth-order correla
tions using Wick’s theorem:̂ uq8

2uq
2&5^uq&

212^uq8uq&
2.

The end-to-end correlation functionf(t)5^dl 8dl &
2^dl &2 is then easily found to be

f~ t !5
4

l 2 (
q

q4^uq8uq&
25

1

l p
2 (

q
q24e22vqt. ~7!

Transforming this correlation function and puttingq5np/l ,
we find the spectral density@13#

~dl 2!v5
1

v1q1
4l p

2 (
n51

`
1

n81~v/2v1!2
, ~8!

wherev15(k/z)(p/l )4 is the relaxation rate of the slowe
mode,q5q15p/l . The imaginary partav9 of the response
function is given by the fluctuation-dissipation theorem,av9
5(v/2T)(dl 2)v , from which ~choosing the poles to lie in
the lower v-plane for causality! we obtain the end-to-end
response function of a segment of inextensible filament,

av5
1

Tq1
4l p

2 (
n51

`
1

n42 iv/2v1
. ~9!

At low frequencies (v!v1) Eq. ~9! becomes aplateau

5(1/90)(l 4/Tl p
2). Using Eq.~2!, and puttingl 5l e , we

find the plateau modulus of an entangled solution or
static modulus of a crosslinked gel:G(0)56rTl p

2/l e
3 . This

form of the plateau modulus agrees with a previous sca
result @7#. However, the physical validity of thisG(0) is not
re

f

ch
l

e

g

clear from the present discussion; for example, if the netw
is not crosslinked, the filaments will slide past their entang
ment points at low enough frequencies, and allow flow. T
low-frequency regime is discussed in Refs.@14,9# and by
Morse @10#.

At high frequencies, we replace the sum in Eq.~9! by an
integral to find

av'
1

2A2

l

Tl p
2 S 2k

2 i zv D 3/4

~v@v1!. ~10!

Again using Eq.~2!, we find the shear modulus at high fre
quencies (v@v1),

G~v!' 1
15 rkl p~22i z/k!3/4v3/42 ivh. ~11!

We see thatl does not appear. Equation~9! displays a scal-
ing regime ofG(v)}v3/4, up to an upper frequencyvvisc

that is very sensitive to network density@15,16#, vvisc}r4.
Above vvisc, Eq. ~9! crosses over to simple viscous scalin
G(v)}v. The v3/4 scaling response depends solely on t
density of filaments, their bending stiffness and their late
drag coefficientz. It does not depend, for example, on ne
work parameters such as the entanglement lengthl e . Fila-
ments contribute independently to the shear modulus at h
frequency, and there is no distinction between crosslin
networks and entangled solutions, as is also the case for
ible systems. For intermediate frequencies, Eq.~9! is in fact
summable analytically; rather than evaluate that closed fo
however, we perform the sum numerically: Fig. 1 shows
resulting real and imaginary parts ofG(v) that result via Eq.
~2!.

To test the predicted spectrum of end-to-end distance
Eq. ~8!, we performed a molecular dynamics simulation
an overdamped, semiflexible chain of twenty rigid segme
which we defined to be of unit length. The drag coefficient
each vertex~equal to the drag per unit length! was taken to
be z52T. This choice determines the time stepdt5«2,
where«2 is the random variance of displacement for an u

FIG. 1. Real partG8 ~solid line! and the absolute value2G9 of
the imaginary part~dotted line! of the frequency-dependent she
modulus computed from Eq.~2!, neglecting the term2 ivh. G8
and G9 are given relative to the plateau modulusG(0)

56rTl p
2/l e

3 , and the frequency is given in units of 2v1 , where
v15(k/z)(p/l e)

4. The plateauG85G(0) extends to indefinitely
low frequencies~as shown! only if the network is crosslinked.
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constrained vertex. Finally, the elastic bending force o
vertex is2dU/dr52l pT]4r /]n4, whereU is given in Eq.
~3!. Here, because we are interested in the end-to-end
tance fluctuations of a stiff filament, it was crucial to perfor
this simulation with strictly imposed arc length constrai
This required, at each time step, a random collective mo
of the entire set of chain vertices within the constraint s
space @16#. The results of the dynamical calculation a
shown in Fig. 2. We find good agreement, with no adjusta
parameters, between the dynamics calculation and pre
tions of the model in Eq.~8!.

We now ask how a small degree of longitudinal exten
bility will change the foregoing results. Forl !l p , exten-
sional dynamics and bending dynamics should occur in
pendently. For a homogeneous elastic rod, extensio
modes are described byz iẋ5EA]2x/]s2, wherex(s) is the
deformed longitudinal coordinate,z i is the longitudinal drag
coefficient (z i'z/2 @17,18#!, E is Young’s modulus, andA
is the cross-sectional area. Longitudinal deformation pro
gates as

dx~s!}e~ i 21!s/l c, l c5~2EA/z iv!1/2. ~12!

The lengthl c characterizes the decay of compressional
fects at a frequencyv.

In actin filaments the compressional decay lengthl c is
much larger thanl p up to very high frequencies. With

FIG. 2. Top: Power spectral density~solid line! of the projected
end-to-end length of a fluctuating filament, with its ends constrai
to lie on a fixed line. The persistence length is four times the fi
ment length. Twenty inextensible segments of unit length were u
to represent the filament. 33220 time steps were taken, with a ste
frequency off s51.13103. Equation~8! is shown for comparison
~dotted line!. There are no adjustable parameters. The final uptur
aliased diffusive power inherent in the discrete time steps. Bott
The same curves multiplied byf 7/4; note the expanded scale. Th
limiting high-frequency power-law implicit in Eq.~8! would predict
a horizontal line with value 0.0044.
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straightforward modeling of the actin filaments as homo
neous cylinders@4#, one estimatesEA'531028 N, and a
frequency off 5150 kHz is needed to makel c as small as
10 mm. Thus we can assume instantaneous tension prop
tion in F-actin up to very high frequencies. On length sca
shorter thanl c , we can put the static extensional respon
ac5l /EA in parallel with the response function, Eq.~9!.
The latter is completely dominant out to frequencies of s
eral MHz, so that extensional compliance is not relevan
experiments in F-actin.

Many of the parameters of our model have been measu
for F-actin, which allows for quantitative comparison wi
experiment. Fluorescent, phalloidin-stabilized actin filame
have been estimated by observation of their thermal fluc
tions @4# to have a persistence length ofl p5k/T517.7
61.1 mm; other measurements have given similar resu
@3#. It is not known to what degree rigidity changes in th
absence of phalloidin. The effective lateral drag coefficie
of a filament includes a weak logarithmic dependence on
wavelength of motion,l, or on some other large-scale cuto
to the hydrodynamics, such as mesh size. We arbitrarily
this length scale atl;1 mm. Using the diameter of the fila
ment (d'5 nm for actin!, we have z'4ph/ ln(0.6l/d)
'0.0023 Ns/m2 @18#. Using this drag coefficient,vq
5(k/z)q4 implies a decay rate of 5 sec21 for a mode of
wavelengthl510 mm, and of 53104 sec21 for a mode
with l51 mm.

In the case ofF-actin, the predicted amplitude of th
high-frequency modulus in Eq.~11! is somewhat higher than
experiment. Each actin filament contains fourteen 43-
monomers per 38-nm half-pitch; it follows that the density
filament length in 1 mg/mL polymerized F-actin isr53.8
31013 m22. Using Eq.~11!,

G~ f !'~1.6 Pa!S c

1 mg/mLD S f

1 HzD
3/4

i 23/4. ~13!

At a concentration ofc52 mg/mL, the imaginary part of Eq
~13! is about seven times larger than an observed power-
modulus ofG9( f )'0.44 Pa(f /1 Hz)3/4, between 10 and 100
Hz, in Fig. 1B of@5#. We consider this acceptable agreeme
The experimental value might be depressed by incomp
polymerization or by a high fraction of short filaments~much
shorter than the entanglement length!. It is also possible that
the persistence length may be shorter without phalloi
present.

The power-law dependenceG(v)}v3/4 in Eq. ~11!, is in
contrast with well-understood flexible polymer systems t
exhibit shear moduli obeying power-laws in the range ofv1/2

to v2/3 @2#. Identical conclusions to ours have been obtain
independently by Morse@10#. This scaling ofG(v) is in
good agreement with prior results ofF-actin by microrheol-
ogy @5# and multiple light scattering@6# experiments, both of
which were able to measure the shear modulus at sig
cantly higher frequencies than previously possible for F-ac
by conventional rheology. Macroscopic rheology expe
ments have reported Rouse-like scaling@20#, although the
range of frequencies~below 3 Hz! may not have been ad
equate to show the scaling regime above the plateau. M
over, the experiments of Ref.@20# consistently showedG9 in
excess ofG8 at the highest frequencies, indicating a powe
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law greater than 1/2@2#. Other microrheology experiment
on F-actin @19# have also reported dynamics consistent w
G(v)}v3/4, although the actin concentrations were low
and the authors suggested an alternative explanation. A
have noted above, this high-frequency modulus may pe
the most direct comparison of experiment with theory in
actin systems, given the large variation in measured pla
moduli, which may result from the sensitivity to entangl
ments and crosslinking in semiflexible systems.
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