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Gradient clogging in depth filtration
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We investigate clogging in depth filtration, in which a dirty fluid is “cleaned” by the trapping of dirt
particles within the pore space during flow through a porous medium. This leads to a self-generated gradient
percolation process that exhibits a power-law distribution for the density of trapped particles at downstream
distancex from the input. To achieve a nonpathological cloggipgrcolation threshold, the system length
should scale no faster than a power ofwnwherew is the system width. Nontrivial behavior for the
permeability arises only in this extreme anisotropic geom¢8§063-651X98)51208-1

PACS numbe(s): 47.55.Kf, 83.70.Hq, 64.60.Ak, 64.60.Fr

Depth filtration is a mechanism for cleaning a dirty fluid the dominant effect in processes such as gel permeation in
by passing it through a porous mediyt+3]. The medium porous media and liquid chromatography. While other influ-
promotes efficient filtering both by increasing the area avail€ences, such as van der Waals, hydrodynamic, and electro-
able for the trapping of suspended particles, as well as thstatic interactions, etc., may be important, their faithful mod-
exposure time of the suspension to the absorbing surfacesling is comple 1] and complicates the identification of the
This mechanism is therefore widely used in a variety of bio-governing mechanism for a given macroscopic property. Our
logical, chemical, and engineering separation procelsses approach is to retain size exclusion as the only trapping
While filtration has been extensively studied, many of thesénechanism in a geometric modeling of filtration and develop
investigations are empirical or numerical and a clear relatiohysical intuition for clogging from this idealized descrip-
between microscopic mechanisms and macroscopic behavien.
has not yet emerged. In this Rapid Communication, we pro- The connectivity of the medium is described by the quasi-
vide an intuitive, geometrical description for depth filtration one-dimensional “bubble” model. This system consistd.of
which provides insights about the clogging process and lead#ks in series, in which each link is a parallel bundlevof
to phenomenology outside the realm of classical percolatioRonds and each bond represents a (§big. 1). This model
and related breakdown processes. can be viewed as a square lattice in which all perpendicular

There are two salient features of depth filtration that conbonds are “shorted,” so that can be identified as the sys-
tribute to its unusual phenomenology. First is the feedbackem width. This model was introduced to account for the
between the continuous evolution of the medium by trappindreaking of fiberd9] and the extremal voltages in resistor
of particles, and the subsequent modification of the flow fielchetworks[10]. An appealing feature of this model in the
by trapped particles. Second, clogging occurs preferentiallgontext of percolation is that it exhibits finite-dimensional
in the upstream end of the network. This arises simply bebehavior wherl scales ag". Namely, if each bond is ran-
cause a particle proceeds downstream only until the first erdomly occupied with probabilityp, a percolation threshold
counter with a sufficiently small pore which blocks the par-p. strictly between 0 and 1 arises, and associated critical
ticle. Thus, particles rarely reach downstream pores. exponents can be easily computgtl0l. We adopt this

Each blockage event causes a small reduction in the filtepubble model as a convenient way to describe the reduced
permeability, and ultimately a clogging threshold is reachedconnectivity of the medium as individual bonds are blocked.
where the permeability vanishes. This clogging is gradient To adapt this model to filtration, we posit that each bond
driven, as the fraction of blocked bonds has a power-lawhas a radiug drawn from a specified distribution, with a
dependence on the longitudinal co-ordinate. Such a distribusolumetric flow rate proportional to*Vp (Poiseuille flow,
tion should be observable, for example, when opaque pawhereVp is the pressure gradient in the bond. Dynamically
ticles pass through a glass bead pptlk Due to the gradient, neutral suspended particles move through the medium at a
filter clogging is radically different than the failure of homo- rate governed by this local flow. We assume perfect mixing
geneous disordered medtl, where the formation of break- at each node, in which a suspended particle has a flow in-
down paths does not have a systematic gradient. While pretuced probability proportional toi4 to enter an unblocked
vious studies indicated that the filter permeability vanishes abond of radiusr; in the next downstream bundle. The par-
a power law near the clogging threshold, with an exponent
different from that of classical percolati$,7], we interpret
the clogging process as a situation where the percolation
threshold(fraction of open poresis very close to unity and % ...... @ ;
where the permeability does not have power-law behavior. _

Of the many microscopic interactions that underlie filtra- L T
tion, we focus on size exclusidgm,8], where a particle of
radius r paricie IS trapped within the first pore encountered  FIG. 1. Bubble model. Each line represents a separate fluid-
whose radius satisfies,oe<r paricie- ThiS size exclusion is carrying pore and fluid mixes completely at each node.
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10" and assuming Poiseuille flow, the probability that a particle
of radiusr gets trapped in a bubble is, for large

.
r'4dr’
L r>—ad
P.= - . )

< b 5_ 45
f r'4dr’ b”-a
a

n n (Exact calculation shows that this largeform is asymptoti-
FIG. 2. (3) Trapping probability(P,) vs n at the percolation cglly correct forw=5.) Cons_equently, the pro_bablllty that
threshold for a bubble model of widtw=50 for coincident and NS paj'tllcle gets trapped in thath bubble is P,=(1
uniform distributions of particle and bond radii. Shown are data,~ P<)" "P<, which decays exponentially in. Averaging
based on 1 configurations, for 4,b)=(0,1) (O) and (a,b) over the distribution of particle radii gives
=(0.7,1.0)(A), with the latter divided by 10 for visualization. The

_ _ : : b r5-a5\""1(5_25 (r
straight lines have slopes6/5 and— 2 respectively(b) Trapping (Py= f (1_
probability, based on injecting410° particles into an unperturbed n a b°—a® b°—a®b—a’
500X 1000 square lattice whose axes are oriented at 45° with re- @)
spect to the average flow, for coincident, uniform particle and bond 1(b°—a% (1 ov(1-v)" tdv
radius distributions ori0,1). The straight line has slope 1.27. = 5 (b—a) Jo [v(b5—a5)+a5]4/5’

ticles, whose radii are also drawn from a distribution, areherev = r5—as/b5— ad
injected singly and tracked until each is trapped or escapes Depending on the lower cuto, there are two different

the system. Upon capture, the particle is defined to block thgls : : ; : o
! . . . ymptotic behaviors for this trapping probability.d# 0,
bond completely so that there is no further fluid flow in th|sthe inl'[[)egral is elementary, while aia‘ﬂoo,gth?a integra?/reduces

bond. More realistically, particle trapping may not COM-4 " the B function [11] so that (P,)=T(6/5)'(n)/5T'(n

pletely block a bond, but rather, the permeability should be+ 6/5), wherel'(n) is the gamma function. In the large-

reduced to a nonzero value. However, this partial blockinqimit these give
has the same asymptotic behavior as in complete blockage,

since large-distance properties are governed by the smallest b5— a5

particles for which the state of the already modified pore _ mn’z, a#0,

space is relatively unimportant. After each blockage event, (Pp)= )
the new flow field is computed to determine the trajectory of 0.1836..n % a=0.

the next suspended patrticle.

This system exhibits three regimes of behavior. For pore Py > X
typically smaller than particlegsubcritica), the particles get  CTOSSOVET betsween the > andn EehaV|orssoccurs when
trapped almost immediately and rapid clogging ensues. Cor:(P°—@°)<@>, or equivalentlyn>n* =(b/a)°. While the
versely, for pores typically larger than particlesipercriti- exponents 6/5 and 2.are specific to the uniform rady; distri-
cal), a steady state is eventually reached for a finite lengtffution and the flow-induced bond entrance probability, the
system, in which the smallest pores are blocked and the su§Xistence of the power law is generic and requires only the
pension flows freely through the remaining unblockablePVverlap of the bond an_d p_artlt_:le radius gllstrlbutlons. For ex-
pores. These cases can be viewed as corresponding to pd'gpple, for tr21e Hertz distribution of particle and bond radii,
filter performance. At the boundary between these regimes iB(r)=2re ™", (Pyon=43,
the critical case, where the particle and pore radius distribu- Qualitatively similar behavior foP,) occurs in lattice
tions overlap substantially. Here, particle trapping is gradualpetworks. In the spirit of our unperturbed approximation, we
with considerable penetration of the medium before cloggindocus on the spatial distribution of the initially injected par-
is reached. This may be viewed as efficient filtration becausticle. Later particles exhibit nearly the same spatial distribu-
of the large number of particles filtered before clogging andion of trapping location, but much more time is needed for
the relatively long filter lifetime. Thus, both from practical computing this distribution, since the network permeability
and theoretical perspectives, the critical case is the most irmust be recalculated after each trapping event.refl0, a

Erom the denominator in the second line of Eg), the

teresting. best fit power law to the data i,)~n"*, with u~1.27
For simplicity and concreteness, consider a uniform dis{Fig. 2(b)], fortuitously close to the bubble model exponent.
tribution of both particle and bond radii in the ranggb]. In the supercritical regimébonds larger than particlgs

More general continuous distributions can be straightfor{P,) exhibits near-critical behavior, except that some par-
wardly treated, but little new qualitative insight emerges. Letticles can escape from the system. Conversely, in the sub-
us first determine the spatial distribution of trapped particlesritical regime(bonds smaller than particlesEq. (2) gives
during filtration. The gradient nature of the trapping procesg P,,)xexd —n(@®—A%/(B°—A%], where @,b) and (A,B)
implies that the number of blocked bonds in downstreanare, respectively, the ranges of the particle and bond radius
bubbles remains small, even at the percolation threstselel ~ distributions. Asa—A—0, the decay lengthB®>—A®)/(a®

Fig. 2. We therefore employ an “unperturbed” approxima- —A®) diverges and power-law behavior ¢P,) is recov-

tion in which the initial bond radius distribution is used ered. It is in this sense that coincident bond and particle
throughout the clogging process. Within this approximationradius distributions correspond to a critical phenomenon.
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12.0 ‘ ‘ - cally, the percolation thresholg,=1—N./Lw approaches
100 | o] 1, whereLw is the total number of bonds in the system. To
o C obtain a threshold value less than unity requires exponential
g 807 et ] anisotropy in whichL~In w. This result is qualitatively ro-
= 6.0 | o ] bust with respect to different particle and bond radius distri-
. butions. For example, for the Hertz distribution, following
4.0 ¢ P 1 analogous computations to those just outlined gives
20 o ‘ . «w(In w)2. For the square lattice, on the other hand, simula-
10 100 1000 10000 tions indicate thai\, is linearly proportional to the system
W width. This corresponds to a percolation threshold that scales

FIG. 3. Number of particles injected at percolatigrormalized gs 1~ 1/L.' Thus, eitheil. should be const_ant, or an alt_ern.a-
by w) vs Inw. The number of configurations is 16or w<1C%, 10° tive relation between t.he bond and part!cle_ radius d|§t(|bu—
for 10P<w=10%, and 16 for w>10°. tions may be appropriate to define criticality for a finite-

dimensional network.

Let us now determine the number of particles that need to_ Finally, consider the behavior of the permeability during
be injected to reach the cloggitigercolation threshold; see f||trat|9n., for which the bupble model again provides a useful
Fig. 3. For the bubble model, this means that all bonds in &l€scription. From the series geometry of the bubble model,
single bubble are blocked. Sind®,) monotonically de- the _nverse permeabilityx can be written as«
creases im, the probability that allv bonds are blocked in = Zn-1(xn) ~*, Wherex, denotes the permeability of tmth
thenth bubble is nonzero only for smail (Numerically, for ~ bubble. When a single particle is injected, the permeability
w=100, for example, the probability of blocking in bublsile ~ Of the nth bubble decreases byi,, where the radius-
is approximately 78.2%, 15.8%, 4.44%, and 1.21% fior average change in this permeability can be written as
=1, 2, 3, and 4, respective)yin the following, we therefore

use the approximation that it is only the first bubble that 1, ré 1 A
clogs, and that both the particle and bond radius distributions Kn= fo drr 1 fr (1—u)""*du|. (6
are uniform on{0,1]. f rédr

0

We first compute the number of particles that need to be
injected into a bond of radius<Or<1 before it is blocked
[12]. For N particles, the probability that all have their radii The last factor is the probability that a particle of radius
in the range[0r] is rN. This can be reinterpreted as the greater tham reaches thath bubble, the second factor is the
probability that the maximum radius amohgparticles lies  probability that this particle enters a bond of radiusn
between 0 andr. Thus, rN=[{Py(r')dr’, with Py(r) bubblen, and the first factor gives the change«p when a
=NrN"1 the probability density that the maximum radius bond of radiug is blocked. From scaling, this integral varies
equalsr. Thus, the average radius of this largest particle i28Sh~ 2, a result that holds for any entrance probability rule
(Hn=J3rPy(r)dr=N/(N+1). Inverting this relation which is proportior_1al to the bond permeability. Simulations
shows that of the order of (4r)~! particles need to be ©ON the square lattice also clearly show mn? dependence
injected before a particle of sufficiently large radius enters tdor ¥n- _ _
block a bond of radius. Thus, k,<w—A/n?, whereA is proportional to the total
For a single bubble ofv=>1 bonds, the number of par- Number of particles injected. Herd—w corresponds to
ticles needed to block bonds whose radii are in the rang€l09ging (up to logarithmic factorsso that we identifyA
[r,r+dr]isw(dr/1—r). Consequently, the total number of —W With p—p;. The inverse permeability now becomes

particles needed to block the bubble is k1~ [idn(w—A/n?) "1 This integral is approximately
constant and gives '~ L/w, except close to clogging. To
N~ fl‘llwwi 7 estimate the integral in this limit, note that forclose to 1,
< i 1—r’ the integrand is dominated by the divergence in the denomi-

nator, while forn>(A/w)*? the second term in the denomi-
where the above extreme value considerations give, for theator can be neglected. Splitting the integral according to
largest and smallest bond radii in the bubbig,~1—1Av this prescription gives
andr in=~1Av, respectively. The integral is dominated by the

upper limit and gives a*dn L dn
fl W—A/n2+f

—, 7
Nexw Inw. (5) n* W 0

Notice that a naive determination of the threshold from

ith n* = (A/w)Y2. The first int | is estimated by defin-
Nc(P;)=w givesN.=6w. The logarithmic factor in Eq.5) with n® = (A/w) e TIrs: integra’ IS estmaied by aein

. . : . ing v=wn?/A and treating th Iting slow! ing fac-
arises from the widest bonds for which many particles nee : 0? lé)f l\ﬁg in ;]ne nrueﬁlq(Ierrlgtorearsescté)r:rsltgaztozvo);n\g;rr)gggtoaihe
to be injected before blocking occurs. . _ -

Simulations on the bubble model indicate that this Ioga_dlvergent factor 14—1). We thereby obtain
rithmic w dependence foN, is independent of the precise 2
form of the entrance probability for a particular bond and L [1_(A) 1 (W

I . ! L . . ~— —In| -—-1
similar details. Thus, if the system size increases isotropi- K w L \A

w

} . ®
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where the correction term in~ ! is manifestly positive near tion results of a threshold valyg, close to unity and a per-
the clogging thresholdA—w from below. This crude esti- meability rapidly varying in concentration nepg [4].
mate shows that the permeability of an isotropic systtm ( The gradient nature of filtration has ramifications for ef-
=w) is essentially unaffected by individual bond blocking ficient filter design. A relatively wide system>L allows a
events until one bubble is nearly completely blocked, aftefinite fraction of the medium to actually trap particles, i.e.,
which « discontinuously drops to zero. If, howevel, p <1.0On the other hand, the radius-average probability that
~Inw, then « decreases logarithmically iA—w, or p 3 particle escapes a system of lengthanishes a& = * for
~Pe- o ) (Pn)~n"*. Thus, a small escape rate apg strictly less

In summary, depth filtration is a gradient-controlled pro-,an ynity, both desired properties of a depth filter, cannot
cess for which the bubble model provides a simple geometrigim jraneously be satisfied in a spatially homogeneous me-
cal description. For coincident bond and particle radius disyiym. A more appropriate design would be a filter with a

tributions, the number of particles trapped a distamce |gngitydinally varying local permeability, which effectively
downstream varies as™*, where u is distribution depen-  5ncels the gradient in particle trapping.

dent, but invariably between 1 and 2. From extreme value

considerations, the length must scale logarithmically in the We thank J. Koplik and P. L. Krapivsky for helpful dis-
system width to have a percolation threshold strictly lesscussions and a critical reading of the manuscript. We also
than unity. For this geometry, the permeability varies loga-gratefully acknowledge NSF Grant No. DMR-9632059 and
rithmically in (p—p.). This may explain previous simula- ARO Grant No. DAAH04-96-1-0114.
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