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Gradient clogging in depth filtration
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We investigate clogging in depth filtration, in which a dirty fluid is ‘‘cleaned’’ by the trapping of dirt
particles within the pore space during flow through a porous medium. This leads to a self-generated gradient
percolation process that exhibits a power-law distribution for the density of trapped particles at downstream
distancex from the input. To achieve a nonpathological clogging~percolation! threshold, the system lengthL
should scale no faster than a power of lnw, where w is the system width. Nontrivial behavior for the
permeability arises only in this extreme anisotropic geometry.@S1063-651X~98!51208-1#

PACS number~s!: 47.55.Kf, 83.70.Hq, 64.60.Ak, 64.60.Fr
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Depth filtration is a mechanism for cleaning a dirty flu
by passing it through a porous medium@1–3#. The medium
promotes efficient filtering both by increasing the area av
able for the trapping of suspended particles, as well as
exposure time of the suspension to the absorbing surfa
This mechanism is therefore widely used in a variety of b
logical, chemical, and engineering separation processes@1#.
While filtration has been extensively studied, many of the
investigations are empirical or numerical and a clear rela
between microscopic mechanisms and macroscopic beha
has not yet emerged. In this Rapid Communication, we p
vide an intuitive, geometrical description for depth filtratio
which provides insights about the clogging process and le
to phenomenology outside the realm of classical percola
and related breakdown processes.

There are two salient features of depth filtration that c
tribute to its unusual phenomenology. First is the feedb
between the continuous evolution of the medium by trapp
of particles, and the subsequent modification of the flow fi
by trapped particles. Second, clogging occurs preferenti
in the upstream end of the network. This arises simply
cause a particle proceeds downstream only until the first
counter with a sufficiently small pore which blocks the pa
ticle. Thus, particles rarely reach downstream pores.

Each blockage event causes a small reduction in the fi
permeability, and ultimately a clogging threshold is reach
where the permeability vanishes. This clogging is gradi
driven, as the fraction of blocked bonds has a power-
dependence on the longitudinal co-ordinate. Such a distr
tion should be observable, for example, when opaque
ticles pass through a glass bead pack@4#. Due to the gradient
filter clogging is radically different than the failure of homo
geneous disordered media@5#, where the formation of break
down paths does not have a systematic gradient. While
vious studies indicated that the filter permeability vanishes
a power law near the clogging threshold, with an expon
different from that of classical percolation@6,7#, we interpret
the clogging process as a situation where the percola
threshold~fraction of open pores! is very close to unity and
where the permeability does not have power-law behavio

Of the many microscopic interactions that underlie filtr
tion, we focus on size exclusion@4,8#, where a particle of
radius r particle is trapped within the first pore encountere
whose radius satisfiesr pore,r particle. This size exclusion is
PRE 581063-651X/98/58~2!/1203~4!/$15.00
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the dominant effect in processes such as gel permeatio
porous media and liquid chromatography. While other infl
ences, such as van der Waals, hydrodynamic, and ele
static interactions, etc., may be important, their faithful mo
eling is complex@1# and complicates the identification of th
governing mechanism for a given macroscopic property. O
approach is to retain size exclusion as the only trapp
mechanism in a geometric modeling of filtration and deve
physical intuition for clogging from this idealized descrip
tion.

The connectivity of the medium is described by the qua
one-dimensional ‘‘bubble’’ model. This system consists ofL
links in series, in which each link is a parallel bundle ofw
bonds and each bond represents a pore~Fig. 1!. This model
can be viewed as a square lattice in which all perpendic
bonds are ‘‘shorted,’’ so thatw can be identified as the sys
tem width. This model was introduced to account for t
breaking of fibers@9# and the extremal voltages in resist
networks @10#. An appealing feature of this model in th
context of percolation is that it exhibits finite-dimension
behavior whenL scales asew. Namely, if each bond is ran
domly occupied with probabilityp, a percolation threshold
pc strictly between 0 and 1 arises, and associated crit
exponents can be easily computed@10#. We adopt this
bubble model as a convenient way to describe the redu
connectivity of the medium as individual bonds are blocke

To adapt this model to filtration, we posit that each bo
has a radiusr drawn from a specified distribution, with
volumetric flow rate proportional tor 4¹p ~Poiseuille flow!,
where¹p is the pressure gradient in the bond. Dynamica
neutral suspended particles move through the medium
rate governed by this local flow. We assume perfect mix
at each node, in which a suspended particle has a flow
duced probability proportional tor i

4 to enter an unblocked
bond of radiusr i in the next downstream bundle. The pa

FIG. 1. Bubble model. Each line represents a separate fl
carrying pore and fluid mixes completely at each node.
R1203 © 1998 The American Physical Society
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ticles, whose radii are also drawn from a distribution, a
injected singly and tracked until each is trapped or esca
the system. Upon capture, the particle is defined to block
bond completely so that there is no further fluid flow in th
bond. More realistically, particle trapping may not com
pletely block a bond, but rather, the permeability should
reduced to a nonzero value. However, this partial block
has the same asymptotic behavior as in complete block
since large-distance properties are governed by the sma
particles for which the state of the already modified po
space is relatively unimportant. After each blockage eve
the new flow field is computed to determine the trajectory
the next suspended particle.

This system exhibits three regimes of behavior. For po
typically smaller than particles~subcritical!, the particles get
trapped almost immediately and rapid clogging ensues. C
versely, for pores typically larger than particles~supercriti-
cal!, a steady state is eventually reached for a finite len
system, in which the smallest pores are blocked and the
pension flows freely through the remaining unblocka
pores. These cases can be viewed as corresponding to
filter performance. At the boundary between these regime
the critical case, where the particle and pore radius distr
tions overlap substantially. Here, particle trapping is gradu
with considerable penetration of the medium before clogg
is reached. This may be viewed as efficient filtration beca
of the large number of particles filtered before clogging a
the relatively long filter lifetime. Thus, both from practic
and theoretical perspectives, the critical case is the mos
teresting.

For simplicity and concreteness, consider a uniform d
tribution of both particle and bond radii in the range@a,b#.
More general continuous distributions can be straightf
wardly treated, but little new qualitative insight emerges. L
us first determine the spatial distribution of trapped partic
during filtration. The gradient nature of the trapping proce
implies that the number of blocked bonds in downstre
bubbles remains small, even at the percolation threshold~see
Fig. 2!. We therefore employ an ‘‘unperturbed’’ approxim
tion in which the initial bond radius distribution is use
throughout the clogging process. Within this approximat

FIG. 2. ~a! Trapping probability^Pn& vs n at the percolation
threshold for a bubble model of widthw550 for coincident and
uniform distributions of particle and bond radii. Shown are da
based on 104 configurations, for (a,b)5(0,1) ~s! and (a,b)
5(0.7,1.0)~n!, with the latter divided by 10 for visualization. Th
straight lines have slopes26/5 and22 respectively.~b! Trapping
probability, based on injecting 43106 particles into an unperturbe
50031000 square lattice whose axes are oriented at 45° with
spect to the average flow, for coincident, uniform particle and b
radius distributions on~0,1!. The straight line has slope21.27.
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and assuming Poiseuille flow, the probability that a parti
of radiusr gets trapped in a bubble is, for largew,

P,5

E
a

r

r 84dr8

E
a

b

r 84dr8

5
r 52a5

b52a5 . ~1!

~Exact calculation shows that this large-w form is asymptoti-
cally correct forw>5.) Consequently, the probability tha
this particle gets trapped in thenth bubble is Pn5(1
2P,)n21P, , which decays exponentially inn. Averaging
over the distribution of particle radii gives

^Pn&5E
a

bS 12
r 52a5

b52a5D n21 r 52a5

b52a5

dr

b2a
,

~2!

5
1

5

~b52a5!

~b2a!
E

0

1 v~12v !n21dv
@v~b52a5!1a5#4/5,

wherev5 r 52a5/b52a5.
Depending on the lower cutoffa, there are two different

asymptotic behaviors for this trapping probability. IfaÞ0,
the integral is elementary, while ifa50, the integral reduces
to the b function @11# so that ^Pn&5G(6/5)G(n)/5G(n
16/5), whereG(n) is the gamma function. In the large-n
limit, these give

^Pn&.H b52a5

5a4~b2a!
n22, aÞ0,

0.1836...n26/5 a50.

~3!

From the denominator in the second line of Eq.~2!, the
crossover between then26/5 andn22 behaviors occurs when
v(b52a5),a5, or equivalently,n.n* 5(b/a)5. While the
exponents 6/5 and 2 are specific to the uniform radius dis
bution and the flow-induced bond entrance probability,
existence of the power law is generic and requires only
overlap of the bond and particle radius distributions. For
ample, for the Hertz distribution of particle and bond rad
p(r )52re2r 2

, ^Pn&}n24/3.
Qualitatively similar behavior for̂ Pn& occurs in lattice

networks. In the spirit of our unperturbed approximation,
focus on the spatial distribution of the initially injected pa
ticle. Later particles exhibit nearly the same spatial distrib
tion of trapping location, but much more time is needed
computing this distribution, since the network permeabil
must be recalculated after each trapping event. Forn*10, a
best fit power law to the data iŝPn&;n2m, with m'1.27
@Fig. 2~b!#, fortuitously close to the bubble model expone

In the supercritical regime~bonds larger than particles!,
^Pn& exhibits near-critical behavior, except that some p
ticles can escape from the system. Conversely, in the s
critical regime~bonds smaller than particles!, Eq. ~2! gives
^Pn&}exp@2n(a52A5)/(B52A5)#, where (a,b) and (A,B)
are, respectively, the ranges of the particle and bond ra
distributions. Asa2A→0, the decay length (B52A5)/(a5

2A5) diverges and power-law behavior of^Pn& is recov-
ered. It is in this sense that coincident bond and part
radius distributions correspond to a critical phenomenon.
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Let us now determine the number of particles that nee
be injected to reach the clogging~percolation! threshold; see
Fig. 3. For the bubble model, this means that all bonds i
single bubble are blocked. SincêPn& monotonically de-
creases inn, the probability that allw bonds are blocked in
thenth bubble is nonzero only for smalln. ~Numerically, for
w5100, for example, the probability of blocking in bubblen
is approximately 78.2%, 15.8%, 4.44%, and 1.21% forn
51, 2, 3, and 4, respectively.! In the following, we therefore
use the approximation that it is only the first bubble th
clogs, and that both the particle and bond radius distributi
are uniform on@0,1#.

We first compute the number of particles that need to
injected into a bond of radius 0,r ,1 before it is blocked
@12#. For N particles, the probability that all have their rad
in the range@0,r # is r N. This can be reinterpreted as th
probability that the maximum radius amongN particles lies
between 0 andr . Thus, r N5*0

r PN(r 8)dr8, with PN(r )
5NrN21 the probability density that the maximum radiu
equalsr . Thus, the average radius of this largest particle
^r &N5*0

1rPN(r )dr5N/(N11). Inverting this relation
shows that of the order of (12r )21 particles need to be
injected before a particle of sufficiently large radius enters
block a bond of radiusr .

For a single bubble ofw@1 bonds, the number of par
ticles needed to block bonds whose radii are in the ra
@r ,r 1dr# is w(dr/12r ). Consequently, the total number o
particles needed to block the bubble is

Nc'E
1/w

121/w

w
dr

12r
, ~4!

where the above extreme value considerations give, for
largest and smallest bond radii in the bubble,r max'121/w
andr min'1/w, respectively. The integral is dominated by t
upper limit and gives

Nc}w ln w. ~5!

Notice that a naive determination of the threshold fro
Nc^P1&5w givesNc56w. The logarithmic factor in Eq.~5!
arises from the widest bonds for which many particles n
to be injected before blocking occurs.

Simulations on the bubble model indicate that this log
rithmic w dependence forNc is independent of the precis
form of the entrance probability for a particular bond a
similar details. Thus, if the system size increases isotro

FIG. 3. Number of particles injected at percolation~normalized
by w) vs lnw. The number of configurations is 105 for w,102, 104

for 102<w<103, and 103 for w.103.
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cally, the percolation thresholdpc512Nc /Lw approaches
1, whereLw is the total number of bonds in the system. T
obtain a threshold value less than unity requires exponen
anisotropy in whichL; ln w. This result is qualitatively ro-
bust with respect to different particle and bond radius dis
butions. For example, for the Hertz distribution, followin
analogous computations to those just outlined givesNc
}w(ln w)2. For the square lattice, on the other hand, simu
tions indicate thatNc is linearly proportional to the system
width. This corresponds to a percolation threshold that sc
as 121/L. Thus, eitherL should be constant, or an altern
tive relation between the bond and particle radius distri
tions may be appropriate to define criticality for a finit
dimensional network.

Finally, consider the behavior of the permeability durin
filtration, for which the bubble model again provides a use
description. From the series geometry of the bubble mo
the inverse permeabilityk can be written as k21

5(n51
L (kn)21, wherekn denotes the permeability of thenth

bubble. When a single particle is injected, the permeabi
of the nth bubble decreases bydkn , where the radius-
average change in this permeability can be written as

dkn5E
0

1

drr 4S r 4

E
0

1

r 4drD F E
r

1

~12u5!n21duG . ~6!

The last factor is the probability that a particle of radi
greater thanr reaches thenth bubble, the second factor is th
probability that this particle enters a bond of radiusr in
bubblen, and the first factor gives the change inkn when a
bond of radiusr is blocked. From scaling, this integral varie
asn22, a result that holds for any entrance probability ru
which is proportional to the bond permeability. Simulatio
on the square lattice also clearly show ann22 dependence
for kn .

Thus,kn}w2A/n2, whereA is proportional to the total
number of particles injected. HereA→w corresponds to
clogging ~up to logarithmic factors! so that we identifyA
2w with p2pc . The inverse permeability now become
k21;*1

Ldn(w2A/n2)21. This integral is approximately
constant and givesk21;L/w, except close to clogging. To
estimate the integral in this limit, note that forn close to 1,
the integrand is dominated by the divergence in the deno
nator, while forn.(A/w)1/2 the second term in the denom
nator can be neglected. Splitting the integral according
this prescription gives

k215E
1

n* dn

w2A/n2 1E
n*

L dn

w
, ~7!

with n* 5(A/w)1/2. The first integral is estimated by defin
ing v5wn2/A and treating the resulting slowly varying fac
tor of v1/2 in the numerator as constant compared to
divergent factor 1/(v21). We thereby obtain

k21;
L

w F12S A

wD 1/21

L
lnS w

A
21D G , ~8!
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where the correction term ink21 is manifestly positive nea
the clogging threshold (A→w from below!. This crude esti-
mate shows that the permeability of an isotropic systemL
}w) is essentially unaffected by individual bond blockin
events until one bubble is nearly completely blocked, a
which k discontinuously drops to zero. If, however,L
; ln w, then k decreases logarithmically inA2w, or p
2pc .

In summary, depth filtration is a gradient-controlled pr
cess for which the bubble model provides a simple geome
cal description. For coincident bond and particle radius d
tributions, the number of particles trapped a distancen
downstream varies asn2m, wherem is distribution depen-
dent, but invariably between 1 and 2. From extreme va
considerations, the length must scale logarithmically in
system width to have a percolation threshold strictly le
than unity. For this geometry, the permeability varies log
rithmically in (p2pc). This may explain previous simula
.
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tion results of a threshold valuepc close to unity and a per
meability rapidly varying in concentration nearpc @4#.

The gradient nature of filtration has ramifications for e
ficient filter design. A relatively wide systemw@L allows a
finite fraction of the medium to actually trap particles, i.e
pc,1. On the other hand, the radius-average probability t
a particle escapes a system of lengthL vanishes asL12m for
^Pn&;n2m. Thus, a small escape rate andpc strictly less
than unity, both desired properties of a depth filter, can
simultaneously be satisfied in a spatially homogeneous
dium. A more appropriate design would be a filter with
longitudinally varying local permeability, which effectivel
cancels the gradient in particle trapping.
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cussions and a critical reading of the manuscript. We a
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