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Systematic drift experienced by a point vortex in two-dimensional turbulence
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Using a linear response theory, we show that a point vortex in two-dimensional turbulence experiences a
systematic drift superposed to its mean-field velocity. Taking this result into account, we derive a Fokker-
Planck equation for the evolution of its distribution function and make the link with a maximum entropy
production principle[R. Robert and J. Sommeria, Phys. Rev. Lé8, 2776 (1992]. We also discuss an
analogy with stellar systenj®. H. Chavanis, J. Sommeria, and R. Robert, Astrophy$71.385(1996]; in
particular, thesystematic drifof the vortex is the counterpart of tliynamical frictionexperienced by a star
due to close encountefS. Chandrasekhar, Rev. Mod. Ph26.(3) (1949; H. E. Kandrup, Astrophys. Space
Sci. 97, 435(1983]. [S1063-651X98)51507-3

PACS numbg(s): 47.32.Cc, 05.40kj, 47.10+g, 98.10+z

It is often useful in two-dimensional turbulence to ap- particle distribution function®¢%, each of which at equilib-
proximate a continuous field of vorticity by a cloud of point rjum [3] with the same inverse temperatysg,:
vorticesw(r,t)=2;y,8(r —r,(t)) wherey; is the circulation
of vortexi. The main interest is that such a system is de- N N
scribed by a Hamiltoniafl] H=ZX;_;y;y;W(r;,r;) (where Med{r}) = 11 Pedr) = [T A Beartedro. (1)
Wis the Green function of the domai®) and can be studied k=1 k=1

by rather ordinary statistical mechanics. This was first con—I the Bolt factor. the st funct determined
sidered by Onsagd®], who showed qualitatively the exis- ./ ‘"€ Bollzmannfac or, the stream functigg,, determine
the self-consistent-field approximation, plays the role of

tence of equilibrium states with negative temperatures an ¢ . . )
which the vortices cluster. He could therefore explain thed" |r]teract|on potential. Therefore, the system behaves like
occurrence of large scale vortices “supervortices’) often anh |de<":1I k:/ortex plasma yvh%rre 'the;nalog of the Debye
observed in Nature. His work was pursued by Joyce angPhere is the supervortex |ts¢_ size| .|)'
Montgomery[3] in a mean-field approximation. They de- The introduction O_f an ad_d|t|onal point vprtéveferred fo
rived in particular a Maxwell-Boltzmann statistics for the g_s qbtgst vfortex) th)" modify this equilibrium state. The
distribution of point vortices at equilibrium. Istribution function becomes

We are rather interested here in the relaxation towards ,
equilibrium. To that purpose, we wish to derive a stochastic #{rid D)= ped{rid) + u' (i 1), (2)

Langevin equation describing the motion of a test vortex ., .
traveling in a “sea” of field vortices. To a first approxima- where the perturbatiop’ ({r},t) reflects the influence of

tion, the test vortex is driven by the smooth mean-field ve-the test vortex on its neighboigust like in a polarization

locity induced by the rest of the system. It is also subjected®™©c€S$ The Hamiltonian of the system can be split in two

to rapid fluctuations arising from the departure to the mearl€™MS:

field. Furthermore, we show that it must experience a sys- N

tematic drift. Indeed, as it travels among the sea of vortices, _ _

it alters their distribution; in response, the system exerts a H_HqurHim_i; YW ’rj)+2’1 71 7oW(TiTo)

back reaction that modifies its initial trajectory. This is the 3

physical reason for its drift. At equilibrium, the drift balances

the scattering and maintains nontrivial density distributions.and the N-particle distribution functionu({r},t) satisfies
There is a strong analogy between two-dimensi¢@&)  the Liouville equation:

vortices and stellar systenmid]. In this analogy, the system-

atic drift of a point vortex is the counterpart of the dynamical o

friction experienced by a star. This dynamic friction has been 3 +

calculated by Kandrufb] in a mean-field approach, using a

linear response theory. We adapt his procedure here to the

case of point vortices. where
Consider a collection ofN point vortices interacting

through the potentialW. We shall focus on the situation V(j—i)=—2x IW(rj,ri)

when the number of point vortices is very larje—~ but ar;

the total energy remains finitghis implies y~1/N—0). In

this (mean-field limit, the existence of an equilibrium state is the velocity created by a point vortéaf unit circulation

is well established6]. The N-particle distribution function located inrj on a point vortex located im;. In an infinite

Med{r}) can be approximated by a product dbF one- domain,W(r; ,r;)=—(1/2m)In|r;—r|, so that

N
L L\ du

2 NV( =)+ yV(0=i) | 2==0, (@
=1\ j#i r

©)
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VS(i i) = 1 % rj_ri
(J—H)_ 2’7TZ |I’j—ri|

diverges like 17 at small distances.
Substituting Eq(2) into Eq. (4), we obtain the evolution
equation of the perturbation’:

&a_l:,““'zﬁeq% Viy 22 (i), ©
<1 ar
where
LEiZNl \% (9% @)

is a Liouville operator andV‘=Ej¢iyl-V(j—>i)+ YoV (0
—1i) denotes the total velocity of vortéxThis equation can
be solved formally with the Greenian

t
G(t,t’)EeXW’ —f [,(T)dT].
tl

8

PIERRE-HENRI CHAVANIS

PRE 58

N N
t
(VO it = Beg f kljl dzrkg1 Y V(i—0}) fodr
N

X2

i=1

> YV (j—it—1)

j#i

+ ¥V, (0—i,t— 7'))

e
X % (ri(t—m)pedr(t—71}), (12

wherer;(t— 7) is the position at timé— 7 of the point vortex
i located ar;(t)=r; at timet. This is obtained by solving the
Kirchhoff-Hamilton equations of motion

iy 13
Vi (13
betweent andt— 7.
The exactexpression of the driff12) is completely inex-
tricable in the general case. In order to clarify its physical

If t=0 is the time at which the test vortex is introduced in content, we have to make some approximations_ We shall

the system, we havg’(t=0)=0. One then finds that

e
e () e ().

9

t N .
,U«,(t):BeqjodTG(tat_ T)zl V'

consider, in the calculation of the integrals, that the point
vortices are purely advected by the mean-field velocity
(V)eq- This is reasonable because, when- <, the typical
velocity fluctuationsV, of ordery/d~ (y/L)NY? (whered is
the average distance between two point vortices laride
supervortex size are much smaller than the mean-field ve-

The average velocity of the test vortex is expressed ifocity (V) of orderNy/L. Of course, this approximation

terms of the distribution functiop of the field vortices by
N
<V0>:J' kl:[l d?r Vou({rdb), (10

whereV°=EiN:1yiV(i—>0). Substituting the formal result
(9) into Eq. (10), one obtains

N
(V)= f 11 drivCuedird)
N
+,8qu kljl d?r v

t
X f drG(t,t—17)
0

‘9¢eq

N
le Vi e (ri) med{rich)s (11

with summation over repeated greek indices. The two term%

breaks up at scales smaller thar-L/N when the velocity
fluctuations become comparable to the average velocity. In
that case, we cannot ignore the details of the discrete vortex
interactions anymore and a specific treatment is necessary.
This is, however, beyond the scope of this article. For sim-
plicity, we shall remain in the mean-field approximation
(with the aforementioned limitation in minénd replace the
exact GreeniaG by a smoother Greenia) 4 constructed
with  the averaged Liouville  operator (L)q
EE{\‘:l(V')eq(a/ari). In this approximation the correlations
involving two different vortex pairs vanish, so that

N t N
<V2>driﬁ:Beqf kHl dzrkfodrizl %V, (i—01)

. g S
X YoV, (0—i,t=7)y o (ri(t_T))kE[l PRAro)
(14

PeAr(t—7))=P°Yry(t)), since Pey=f(1ey is constant
ver a streamling For identical vortices with circulatiory,

arising in this expression have a clear physical meaning. ThSne obtains

first term is the mean-field veIocitW())eq: —ZXVife{ro)
created by the unperturbed distribution functigg{{r}).
The second term, arising from the perturbatieh, corre-

sponds to the response of the system to the polarization in-
duced by the presence of the test vortex. Because of this back
reaction, the test vortex will experience a systematic drift

(VO arin=(V°)—(V%,¢q. Explicating the action of the
Greenian(8), we obtain

t
(V9 ain=—N7°Beq f d2r, fodrvzueo,t)

a‘/’eq

X Ve -
V(1—-0t—1) ar,

(ro(t=7))P*qro).
(15
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Since the integral is dominated by the divergence of theyy introducing a cutoff at that scal¥;,,~ &. The divergence

productV,V, whenr;—rq, we have replaced the velocity at largeY is solved by the finite extent of the system; in

(5) by its singular parV® (neglecting the boundary tejrand  plasma physics, we would stop the integration\at (the

made the “local approximation’s,y(r,(t—7))=d,¥(ro(t ~ Debye length but in our case the interaction is unshielded

— 7)) andP*(r;)=P*{(ro). (except in the geophysical case, where the Rossby radius
The general expression of the drift5) can be explicated plays the same role as the Debye lengthis therefore natu-

for particular equilibrium flows. If the equilibrium flow is ral to cut the integral a¥,,~L, the vortex size. We shall

unidirectional, such thatV)eq=(V)edY)X, the trajectory of  take accordingly In\=In(L/8)~In N. Since the divergence is

a point vortex advected by this flow is simply(t—7)  weak (logarithmig, the result does not depend too much on

=y(t), X(t—7)=x(t)—(V)edy)7. Since dyeq/dr[ro(t  the precise value of the cutoffs.

—7) = dtheq/ 3y (Yo)Y, the drift can be written as A similar calculation gives
(VO)arin=— Beqv(DV thaq+ Da(VO) (16) Ny? 22
drift eq eq’ Pa ed) = % In| 1+ T) In APedYo). (22)
whereD=D,,=D,, andD,=D,,= — D, are the isotropic ™

and anisotropic parts of the diffusion tendy,, given by a

Kubo formula Formulas (16), (21), and (22) remain valid in the case

of an axisymmetric equilibrium flow, now withY

t =r(d/dr)({Vy)/r). They also remain valid in the general
D,,= Nyzf drj d2r1V2(1—>0,t)V§(1—>0,t— 7)PedT0)- case, if| V¢od does not vary too much along a streamlile

0 is then replaced b¥2), the average shear over a streamline
A7 The drift (16) has two components: the component

These coefficients can be calculated explicitly. For example]” Beq¥PV ¥eq assomatec(i) with the isotropic diffusion and the
component — BeqyD,(V")eq due to anisotropic effects.

Nvy? [t X1—Xo These anisotropic effects are somewhat secondary since they
Dyy=7-2 fodff dx,dy; X% (Y1=yo)? (t) introduce a componenarallel to the mean flow. We shall
therefore keep only the componeperpendicularto the
X1—Xo mean-field velocity, as it is responsible for a real deviation of

X t—7)P . 18 :
X1 %X0) 2+ (Y1—Ya)? (t=7)PedYo) (18)  the vortex:
0 — 0
Since the integral is dominated by close interactions, we can (V) arine= ~Beq¥DV theq (23

make the approximation L . - . .
This drift has the same physical origin as the dynamical fric-

(Ved Y1) —(V)ed Yo) = —2(Yo) (Y1~ Yo) (19)  tion (Fj)=—DBemv experienced by a star, due to close
encounters[5]. The expression of the drift coefficier
where3 = —d(V)eq/dy is the local sheatequal here to the =g, yD is an amusing generalization of Einstein’s formula
vorticity). Introducing the variableX=x;—X,, Y=Y;—Yo to the case of point vortice& corresponds to the ordinary

we obtain friction coefficient of colloidal particles or stafg]). The
) direction of the drift has important physical implications.
D :N_7 p )fthf dx dy X Consider a point vortex moving at the periphery of the sys-
W42 ed Yo 0 X%+ Y? tem. Its motion is anticlockwise if we assume positive circu-

lation. For negative temperatures, the drift is directed to its
% X+2Yr7 (20 left: the vortex isattractedto the center of the domain. On
(X+3Y7)2+Y? the contrary, for positive temperatures, the drift is directed to
its right: the vortex isrejectedtoward the boundary. This

The integrations oveX and 7 can be performed easily, lead- reflects the general structure of the equilibrium sf@feand
ing to gives a physical mechanism for the organization of point
N2 5| vortices at negative temperatures.
Ny =1 We can try now to derive an evolution equation for the
D= 27|23 arctar( 5 U/ APedYo), (21) probability P(rq,t) of finding the test vortex im, at timet.
Having evidenced the existence of a systematic drift, we can
where InA=[g”dY/Y. This integral diverges logarithmically write down a stochastic Langevin equation for the motion of
for both small and larg&. There is a similar divergence in the vortex:
plasma physics and for stellar systems due to the long range
nature(and the singularity for —0) of a potential inr ~* or, Ar0=<V°)qut— &V apquH B(At). (29
here, Inr. As mentioned previously, the divergence at small
Y accounts for the failure of the mean-field approximation onThe first term corresponds to the mean-field velocity, the
scaled. This is the main limitation of our theory. This prob- second to the drift, and the third to fluctuations arising from
lem could be resolved in principle by a more precise modelthe difference between the exact distribution of the vortices
ing of the discrete vortex interactiorig the spirit of a ki-  {r;} and their “smoothed out” distributiofP(r;). We can
netic model. This would amount to a regularization of the now apply the standard techniques of Brownian thgafly
1/Y integrant at scale- 5. We shall circumvent this difficulty  (the diffusion approximation is well justified since the fluc-
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tuationsV<(V),q produce darge number ofweakdisplace- equilibrium thermodynamigs In this framework, the diffu-
ment3. Assuming that the motion of the point vortex is Mar- sion term results from the variations of the entropy while the
kovian and that the fluctuatio&(At) can be described by a drift term is necessary to conserve ene(tf)e Einstein rela-

Gaussian stochastic process, we obtain the Fokker-Plandien is automatically satisfied by this variational principle
equation However, the MEPP does not give the value of the diffusion
coefficient that appears as an ill-defined Lagrange multiplier.
P By contrast, our model provides an explicit expression,
(V)W Po=V(DVPo+EPVYS). (25 P plictt exp
e
The right-hand side is a sum of two terms: the first term is a D= 8 In A(w), (28)
diffusion due to the erratic motion of the test vortex caused
by the fluctuations; the second term corresponds to the driftvhere 7~2m/(X), according to Eq(21). This shows that
Since¢=D yfBeq, We find that the test vortex will ultimately the time of correlation is not short, but of ordep
relax towards the equilibrium distributioR., of the field =(w) !, the dynamical time. Therefore, anisotropic effects
vortices. (due to memory termsmay be important. In that case, the
If we are not too far from equilibrium, we can try to apply diffusion current in Eq(26) is replaced byDW —DzxW
this equation to the evolution of the flow itself. We are ledwhere W=V (w)+ B(t) ¥(w)V . However, the physical
therefore to introduce the average vortic{ly) =NyP(r,t) relevance of the diffusion currertD ,zX W is questionable,
and replace the equilibrium fielgle, by the fieldy produced ~ since it acts along the streamlines and does not change the

by (w). We therefore obtain the coupled system entropyS= — [ dr{w)In(w).
It must be kept in mind that the point vortex model is a
N w) B crude approximation of real flow&avith continuous vortic-
ot H(V)V(0)=VID(V(w)+B(t) Y (0) V)], ity). The statistical mechanics of continuous vorticity fields

(26)  has been considered by several authsese references in
[4]). The averaging procedure refers to a “coarse-graining”
(w0)y=—A4¢. (27 of the vorticity field and the equilibrium state belongs to the
) ) ) ) Fermi-Dirac statistics. A relaxation equation can be obtained
The inverse temperature is now a function of time deter,om the MEPP[8,9] and is similar to Eq(26) with, how-
mined by thg conservation of energy:B(t)  ever, two important differencesi) the drift is nonlinear in
=—JDV(0)VydTr/[D(w)y(V)dr. Equation(26) is & (i) the diffusion coefficient is much larger, accounting
consistent with a maximum entropy production principlefor 3 more “violent” relaxation[in the case of point vorti-
(MEPP originally introduced in the case of continuous vor- ces, the relaxation time,,~ (N/In N)tp, estimated from Eq.
ticity fields[8] (its applicgtign to thg case of poir_lt vortices is (28), can be very lonfj Except for these twdimportany
straightforward. This principle (which can be viewed as a gjfferences, the relaxation equations are morphologically

variational version of linear thermodynamiasapitalizes on  gjmilar. This may increase interest in the point vortex model.
one’s ignorance and assumes that “during its evolution, a

system tends to maximize its rate of entropy production | am grateful to U. Frisch and R. Robert for useful dis-
while satisfying all the constraints imposed by the dynam-cussions. Special thanks are due to J. Sommeria, whose ju-
ics” (this is a clear extension of the well known principle of dicious advice helped to improve the final version.
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