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Determination of dynamical critical exponents from hysteresis scaling
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A method is proposed to determine the dynamical critical exponent. The method is based on the scaling for
dynamical hysteresis resulted from a linearly swept field. We prove that in nfodighamical hysteresis
scaling at critical temperature is universal. The nearest-neighbor Ising models are used to demonstrate such
concepts and the dynamical critical exponents can be determined accurately. We also propose a universal
relation between static and dynamical critical exponents in Ising class in single-spin-flip dynamics.
[S1063-651%98)51608-X

PACS numbes): 64.60.Ht, 75.60.Ej, 75.40.Gb

In the past two decades, dynamical critical phenomena ilmand, the quantities constructed in this method need quite
classical spin systems were extensively stufligdDetermi- many statistical samples for nonequilibrium averaging.
nation of dynamical critical exponert play an important We propose here a method to determinezle&ponent by
part of these studies. Though static critical exponents can b@eans of hysteresis scaling. Since Tome and de OliVish
determined accurately by renormalization-group thd@ly ~ used mean-field type kinetic Ising model to study the dy-
the renormalization-group method in dynamical version hagl@mic phase transition under cosine external field, the con-
some difficulties in calculating the dynamical critical expo- Cept of hysteresis scaling and its universality in Ising models
nentz, even in evaluating of a two-dimensional Ising model [14] under periodic field had been proposed and extended to
[4]. In brief, the methods that had been used to estimate th@ther phenomenological mode]5]. Unfortunately, a uni-
value ofz might include the following: high-temperature ex- versal relation for the scaling exponents is still absent. In this
pansion[3], dynamical renormalization-group methofd, Rapid Communication, dynamic hysteresis response caused
Monte Carlo simulation§5], and nonequilibrium relaxation by @ linearly swept field is studied. We show that at critical
analysis[6]. For nearest-neighbor Ising system with ferro- temperature, the area of hysteresis |dogan be scaled with
magnetic interaction in two-dimensional iattice, the valueg'@Spect to the sweeping retteof the field:A=g(T¢)h®, and
obtained from the methods mentioned above cover the rande depends on the static and dynamical critical exponents.
from 1.73 to 2.34[3—6]. Moreover, for such Ising systems Finite-size scaling forA is used to determine accurately,
on fractal structures with infinite ramificatiofir], z can  using standard MC simulations. This method may lead to the
hardly be calculated because of the uncertainty of the dyfollowing advantages. First, the system will begin with all
namical recursive relatiof8]. Therefore, the value of dy- SPins up and evolve toward the configuration of all spins
namical critical exponent of Ising system is still an opendown under a large-amplitude unfavorable field. The scaling
question. relation and exponent will be independent of the initial con-
Some reasons may be accounted for the Systematic erroggion. Second, Iong-time tail and critical slowing down can
appeared in the above-mentioned estimates, e.g., long-tinfoth be dramatically refrained due to the applying field.
tail in finite system and the critical slowing dowW8]. Such Third, the simulation result may be able to be compared with
difficulties can hardly be overcome by simulational methods€xperiments of dynamical hysteresis measurements. Depen-
Recently, two simulational studies have been given to evaludence of the areas of hysteresis loop on the rates of a sweep-
ate the dynamical critical exponent, in two-dimensional Isinging field had been reported, in hysteresis measurements of
model. Both methods depended on the dynamical scaling§romagnet and ferroelectric samples].
for some thermodynamic quantities in short-time region. One Now we analyze the field-theoretic model with scalar or-
of them[10] was based on the scaling of initial growing of der parameter fieldj(x), Landau-Ginzburg Hamiltonian is
magnetizatior11]. The z exponent determined in RfL0]  given by[17]
by means of Monte Carl@MC) simulation isz=2.132. Un-
fortunately, during the heat-bath MC simulation, the initial r g H
magnetization, which is inversely proportional to the charac- H=f ddx< > d%(X)+ il ¢4(X)_ﬁ d(X)
teristic time of the growing region of the evolving process, ’ B
must be zero and the initial configuration should be well 1
prepared, otherwise the early time scaling relation collapses. +3 [Vp(x)]?
But in such cases the short-time region overlaps with the
long-time region. The other methdd?2] was free from the
effect of initial condition and was based on the scaling ofwhere r,g>0 are coefficients. Herge =K—K. with K
particular quantities that are independent of system gize. «1/kgT, T is the temperature arid; the Boltzman constant.
=2.16 was given by this approach. However, the scaled’he system described by E@.) has a first-order phase tran-
guantities, pertained to internal ones, and could not matchkition (FOPT) driven by the external fieltH. To study the
with bulk variables of the systengs.g., magnetizationThis  kinetics of FOPT at =0, we start from the Langevin equa-
may prevent it from confirming by experiments. On the othertion
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T ‘ ‘ In the coarse-grain procedure in the momentum space, we
can eliminate the evolving modes which are governed by
AIL<Kk<A(L>1, Ais the cutoff parametein Eqgs.(4) by
calculating the integral in Eq4b). Subsequently, no new
correlations appear in E¢p) after this procedure, except the
adjustment of the coefficiem in Eq. (5).

Then we carry the scale transformatidn=k' = £~ k,x

< —x'=L"x with £ the rescale factor. We assume the quasi-
equilibrium growth of magnetic domain under a slow vary-
o1f 2D ing external field fE—0), the renormalization transforma-
+ 3D tion of the order parameter may become
_-.-- 4MI7: ¢/:£B/v¢, ¢'i:£d/2+ﬁlv¢k.
0ot — Fits o .
S _ - s - We also assume that the system has been initialized with
10 10 10 10 10 M=1 att=0 and is allowed to develop in a time-dependent
h external fieldH (t) = — ht. If we rescale time as
FIG. 1. Scaling of the areas of hysteresis loops with respect to t—t'=L"7,

the sweeping rates at critical temperature. The inset shows the hys-
teresis loops for 2D {=0.0001), 3D (h=0.001), and 4D I
=0.01) Ising models. MF approximatiom € 0.0005) is plotted as
a dashed line.

the renormalization transformation of the bulk variables will
obey the following relations:

M'(r',h",t" L") =LF"M(r ht,L),

J OH(¢) (78)
a1 POOD= N =5 = XD, )] , s .
Cu(t)=L£97AlvC (1), C'(t")=L?P"C(t)
where ¢ is Gaussian white noise with the following correla-

If the Hamiltonian (1) and equation of motior{6) remain

tions: unchanged, we can get the following recursive relations:

(EGDEX 1)) =2kgTASX=X)S(t-),  (3) R ()= C3R(D),

with \ the dynamic constant. Following the field theoretical

treatment for stochastic process by means of path integral r'=ctr, T=L00T,
description[17], we can use the perturbational expansions
near the critical fixed poinT. (the Curie point, and safely g' =L (#+2hg,
arrive at the following equations up to one-loop or{l&8]:
. h'= E(Zz+3/vfllv)h. (7b)
— — _ 3
dt M(t) A[r+gC()/2IM(t) — (AG/BIM>(1) + AH/KgT, Therefore we get the renormalization transformationhfor
(4a)
h—h' :LZZ-F,Blv—l/Vh_ (8)
1
C(t)= 2m) f Cy(t,t)d%, The area of hysteresis loop due to a swept cycle bfs the

following finite-size scaling:
Cu(t,t)=—exd —2\(r +k?)t]/(r +k?). (4b)
_ _ A= ff; MdH
Here C\(t,t) are correlatorsM(t) =(¢(t)) is magnetiza-
tion, ¢, (t) are the Fourier components @f(x,t).
We now apply the general technique of renormalization =2L‘5/”hxf M (rL ") L22HBlv=1vy | ~2t)dt

group to the hysteresis scaling. First, we may introduce a
new variable, — LZ BV A(rL Yy, L 22 Vv 1), (93

g 9 whereA a universal function. At the critical temperature
R(t)=r+ = C(t)+ = MA(t). 5 : P
®) 2 ® 6 ®) ©) =0, we should have the relationship between the hysteresis

in two systems with sizé andL’,
Therefore, Eq(4a) becomes the following equation if we set

A=1: A:Ezfﬁlthr(EZZJrﬁlvfl/vh). (gb)
d Given a fixed sweeping rate the rescale factor can be cho-
gt MO="ROMO+H/kgT. ©®  sen asc=h- Y@z A1 Equation(9b) will yield
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TABLE I. Numerical results of the hysteresis scaling exponents i
b. The Ising systems with increasing sizes are denoted as ascending ~ Fits e
order. From 1 to 4L =50, 100, 200, 400d=2), L=10,20,40,60 §°D ; i°": 'I'_"e
(d=3), andL=10,20,30,40 §=4), respectively. ) or : Dashline
X o
d=2 d=3 d=4 MF =
< s L
Exponentb x
v oL
1 0.41+0.01 0.50:0.01 0.6610.005 o o Leg
2 0.41+0.01 0.496-0.005 0.6630.005 0.667 '
3 0410:0.008  0.4950.005  0.6650.004 oo T e 100
4 0.408-0.008 0.4950.005  0.666-0.004 ht
z 2137+0.008  2.026:0.005  2.008:0.005 2

FIG. 2. Finite-size scaling for loop areas, in 2D and 3D lIsing
models. The fits are negative power-law functions.

z—Blv
2z+Blv—1lv’ (10 Figure 1 is the relations betweeh and h. Though we
) ) ) simulated not very large Ising systems, we have found the
Here we get a simple power-law scaling relation betwden good power-law relation between the areas of hysteresis
and h at T=T., with another dynamical exponeft=1  |oops and the sweeping rates. The scaling exporiegteen
—(z—BIv)I(2z+ plv—1lv). Therefore, we have the uni- py Fig. 1 areb=0.408+0.008, 0.4953:0.005, and 0.666
versal relation for the static and dynamical critical expo--+0.004 for 2D, 3D, and 4D Ising models respectively. Table

A~h? b=1

nents: gv+2B—1)/(2zv+B—1)=b. Now the scaling ex- | Jists the dynamical exponents obtained from hysteresis
ponentb is an intrinsic parameter reflecting the critical scaling ford-dimensional Ising models with different sizes.
dynamics. The kinetic Ising model is also studied using mean-field

According to Eq.(10), the dynamical exponertcan be  (MF) approximation. The equation of motion for magnetiza-
determined by a scaling of macroscopic response of ordefon is given by[2]

parameter to a linearly driven field. To demonstrate the va-

lidity of such method, we study the spig-Ising models on

two-dimensional (2D), three-dimensional3D), and four-

dimensional(4D) supercubic lattices. M(t)/dt=—M(t)+ tanRK[M(t)+H()]}. (12
Now we consider a system & Ising spins with ferro-

magnetic interaction. The Hamiltonian of this system is . ,
given by At MF critical temperatureK.=J/kgT.=1, the hysteresis

loop is obtained by solving the differential equation numeri-
cally. The scaling exponent at MF approximatiom#s$. For
_ PRt 4D Ising model and in MF approximatio,are consistent
Hising= K%:) SS-H (t)z S (12) with exact results with high accuracy.

Figure 2 shows the finite-size scaling frin small Ising
where the spin variables are represented {8} with  systems. The scaling functioh atr=0 in Egs.(9a) is uni-
S==*1; (i,j) is the sum extending over all nearest-yersal: A(x)~x""1. The dynamical critical exponents can
neighbor spinsH'(t) =H(t)/kgT is a linearly swept mag- a|so be determined, the results are consistent mvsted in
netic field, T is the temperature of the spin systeld, Taple I.
=J/kgT>0 is the reduced coupling,K;=0.44 069, In conclusion, scaling for hysteresis with respect to the
0.221166, and 0.14 966 for 2D, 3D, and 4D Ising modelssweeping rate of a linear driving field is studied by
respectively{19,20. The dynamics of Eq(11) is simulated  renormalization-group theory. The exponent in a power-law
by the Metropolis single-spin-flip MC algorithm, which has scaling relation is found to connect with the static and dy-
been found to be consistent with Langevin dynamics denamical exponents of a scalar model. The universality of this
scribed by Eq(2) [2]. To produce a hysteresis loop, the field scaling is demonstrated by MC simulation in nearest-
H(t)=H,—ht is applied to the system with all spins up and neighbor Ising models. Using the scaling relation, we obtain
thenH(t) = —Ho+ht is applied to the same system with all 3 method to evaluate the critical dynamical exponenits
spins downHy is the amplitude of magnetic field. Contrary 2D, 3D, and 4D Ising models. Compared with other meth-
to hysteresis studies on the same systems under a small agtis, the method we propose is effective and can be testified
plitude cosine field by Acharyya and Chakrabdft#], we  experimentally. Moreover, such methods can be extended to
use linear field with large amplitudel], and find thatH,  determinez of other complex systems, for example, spins on
does not affect hysteresis. Detail results have been publishelerpinski Carpet[7,8], and the N-vector model in the
elsewherg21]. The observation time¢ is measured in MC  |argeN limit [15]. We hope this method may be confirmed
step per sit§MCS), corresponding to all spins update. The by experiments. To avoid avalanche jump and Barkhausen

o 1N _ . effect during hysteresis, high quality samples, for example, a
magnetizationM (t) =N 1zi:1 S(1). A=$MdH is aver- ferromagnet, which has a single domain and is free from
aged over variousl. defects, is needed.
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