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Corner wetting transition in the two-dimensional Ising model
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We study the interfacial behavior of the two-dimensional Ising model at the corner of weakened bonds.
Monte Carlo simulations results show that the interface is pinned to the corner at a lower temperature than a
certain temperaturé,,, at which it undergoes a corner wetting transition. The temperdiyyés substantially
lower than the temperature of the ordinary wetting transition with a line of weakened bonds. A solid-on-solid-
like model is proposed, which provides a supplementary description of the corner wetting transition.
[S1063-651%98)50507-1
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The two-dimensional Ising model is certainly one of the wetting transition is considerably modified in the presence of
most important models in statistical mechanics. Exact calcua cornerlike boundary. To introduce such a geometry, we
lation of its free energy as done by Onsaigrled to studies assume that the liquid is attracted to both the horizontal and
of other quantities of this model, such as magnetizafgln ~ Vertical substrategsee Fig. 1b)]. It turns out that such a
and correlation functiong3]. Important applications of this geometry induces wetting at a much lower temperature than
model, which are rather far from the original one, i.e., thein Abraham’s model. Although we do not consider any par-
description of magnetic transitions, are studies of interfaciaficular realization, in our opinion, such geometry might also
phenomena. The earliest step in this direction was madge relevant from the experimental point of view. Our results
again by Onsager, who calculated the surface tension, whici® obtained by Monte Carlo simulations of the 2D lIsing
is the excess free energy due to the interface-inducin@Odel_and analytical consldgratlons of a 3|mp_le 'S|I|con-on-
boundary condition§l]. More recently, it turned out that the sapphire(SOS model, which is supposed to mimic the be-
two-dimensional2D) Ising model can be used to study yet havior of the interface.
another interfacial phenomenon, namely wetting. It has been
shown by Abrahanj4] that in the 2D Ising model, on the
square lattice with a row of weakened boridee Fig. 18)],
the interface is localized at this row but only at sufficiently
low temperature. Moreover, there exists the temperakyjre
which is lower than the critical temperature of this model
and, therefore, folf >T,, the interface is delocalized. The
results, obtained by Abraham and subsequently generalized
[5], provide an important theoretical basis for studying wet-
ting phenomen#6,7]. In order to study wetting, we should
adopt the lattice-gas interpretation of the Ising model where,
e.g., minus(plus) spins describe liquidvapon atoms, re- @ ®) _
spectively, and the delocalization of an interface is regarded FIG. 1. (a) Geometry of Abraham’s modfi]. Top and bottom spins are

. . Lo Ixed and there are periodic boundary conditions in the horizontal direction.
as a formation of a macroscopic layer of liquid that wets the\Neakened bonds are shown as solid thin lines attached to the bottom spins.
substrate. (b) Geometry of the corner wetting. All boundary spins are fixed at values

In the present Rapid Communication, we show that thendicated and weakened bonds are denoted as in(@art
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- . g T Thick lines (both of lengthk) denote regions where the interface, which
g e separates plus and minus regions, is detached from the attracting substrate.
o J;=0.5] are shown in Fig. 2. In the following]) and the
iv T Boltzmann constaritg are put to unity. In our opinion, these
! ' . r results confirm the existence of two temperature regimes
05 10 L5 20 with the transition temperatur€,,~ 1.5. In particular, for
log, (L) T=1.5, r seems to scale ds? with ¢~2. Moreover, forT

FIG. 2. Size dependence of averaged tim@ the logylog,, scale. < 1.5, ONe can see a systematic increase of the slope, which
White circles correspond = 1.0, black circles tf = 1.2, white squares to  Suggests that increases faster than any powerlof
T=1.3, black squares 6= 1.4, white triangles td = 1.5, black triangles to Let us recall that for this model the bulk critical tempera-
T=1.6, and white diamonds f6=1.7. For each sizk, ris calculated using  ture T equals 2.2692- [1]. Moreover, the ordinary wetting
data from 18 independent runs. The dotted line has a slope correspondingrgnsition temperatur&,, equa|s 1.9585-, as can be found
exactly to¢=2. from the solution of the following equatid]:

Let us consider the Ising model defined on thex(L) e?Pu[cosh2B,,) —cosh(2j,8,)]1=sinn(2B,), (2)

lattice: . .
square fatiice wherej;=J,/J=0.5 andB,,= 1/T,,. Thus, our rough esti-

H=— 2 Ji;SS;, (1) mation of T, shows; that the corner wetting transition ta_kes
place at a substantially lower temperature than the ordinary
whereS ==*1 andJ;;>0. As direct calculations of equilib- wetting transition.
rium properties of mode{l), with boundaries and interac- It is generally believed that, although highly simplified,
tions as shown in Fig. (b), would be rather difficult, we SOS models provide a quite satisfactory description of many
used Monte Carlo simulations. The general behavior of thénterfacial phenomen&7]. In particular, the SOS model of
interface strongly attached to the substrates at low temperavetting with the pinning potential=—2(1—j;)=—1 and
tures and delocalized at sufficiently high temperatures ishe elasticity of the interface equal to(@e putJ=1), cor-
strongly affected by a large relaxation time needed for theesponding to our choice of interactions, has the wetting
interface to delocalize in the macroscopic sefige, over the  transition[7] at TVSVOS= arcsinh 1(0.5)=2.078%-, which is
distance of the order of the system size That is the reason quite close to Abraham’s resul®) for the Ising model. In
that we resorted to the calculation of some dynamical propthe remaining part of our Rapid Communication we intro-
erties of our model. The lattice we consider has all boundaryjuce a certain corner SOS mod€iSOS, which provides an
spins fixed as-1. All interactions that link these spins with gpproximate description of the corner wetting transition in
interior spins have strength , while other interactions have qyr Ising model.
strengthJ>J, . The initial configuration has all interior spins The choice of configurations of the CSOS model is sug-
set to+1. We adopted standard Metropolis dynamics in ourgested by snapshots of configurations from Monte Carlo
model [8]. Having all boundary spins fixed te-1, the  simulations of the Ising model, which show that at tempera-
ground state of the model has all spins set-tb. The main  ture T<T, the down spins are located almost exclusively at
quantity we measured was the averaged timeeded for the the corners of the lattice. Thus, we assume that the most
system to reach the state of certain threslipebative mag-  relevant CSOS configurations of, e.g., the bottom right cor-
netization(arbitrarily set to—0.9). If the corner wetting tran- ner (see Fig. 3 are specified as followsi) the number of
sition indeed takes place, the size dependence siiould  columns with nonzero heights ks wherek is the height of
have two regimes. At a low temperature the interface shoulghe first column(counting from the right in Fig. B (ii) the
be strongly attached to theall four) substrates, and as a height of the {+1)th column is not greater than the height
result, 7 should very rapidly increase with the system dize  of the ith column. The first condition is based on the sym-
presumably faster than the power law. Above the corner wetmetry of the edges of the corner and is chosen for computa-
ting transition, which takes place at a certain temperaturgional simplicity. One can argue that contributions from
T.w, the interface is no longer attached to the substrates ansirongly anisotropic configuration§.e., when intervals of
the process of reversing the interior spins should be muclketachment of the interface from the substrate differ consid-
faster. The dynamics in this regime should resemble, in ouerably in siz¢ are negligible and relaxing, conditioi)
opinion, the ordinary coarsening dynamics in the 2D Isingshould basically lead to the same results. The height of the
model. In particular;r should scale the same way as an av-first columnk is a variable ranging from zero to infinity. The
eraged time needed for the elimination of a domain of kize averaged value df will be determined later using standard
It is well known that such time scales b3 [9]. prescriptions of statistical mechanics. Since the temperature
Our Monte Carlo simulations results forup to 50 and  of the corner wetting transition is very low, we expect that
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such a model does provide an accurate description of this:g/(dT)T2d/(dT)In Zcgos~ € 1. In the ordinary wetting the
transition. specific heat is finite at the transition temperatufe

Before we calculate the partition function of this model,  For our choice of interactiong,=0.5 andTS9%=1/In2
let us note that for each configuration of the CSOS model the_q 4422..  In our opinion, the Monte Carlo results in Fig. 2

mterfa(ljce his tEe sadme_ le_?%me _""IS% Cogggge pa(;t fhﬁt 'S are in agreement with this estimation®{,,. Let us note that
pinned to the boundariesThus, in the model there i the corner wetting transition the system is critical so the

are no excitations that would increase the length of the mterkinetics of ordering might change, and &g, the divergence
face. Thek energy tha fe”a;]” ﬁorgigura“o” depeﬂdsﬁ thW()f 7 might be described by the exponept-2. This might

ever, onk, i.e., on the length of the section in which the lain wh fo= 1 : he effec-
interface is detached from the attracting substrate. With the explain why our data fo -5 are described by the effec

. i ) e exponenip as slightly greater than 2. Most likely, how-
observations, the partition function of our CSOS model can,or SFL)JCh atgeviatiogn Qgg only the finite-size effe)ét and
be written as follows: ! ,

for T>T., and a larger system size the usual kinetics with
pe ¢=2 will settle down.
Zcsos™ I(ZO e 7%g(k), 3 It might be interesting to note that the corner wetting de-
scribed above might be regarded as a lower-dimensional ana-
logue of a corner roundingdl2] in the same way that wetting
is an analogue of roughenirid3]. In this context one can
mention that the corner-rounding transition has been corre-
. lated with the glassy transition in a certain three-dimensional
2k—1-2 (3D) Ising model[14]. It turns out that in this 3D Ising
g(k)=|§1 ( k—1 ) (4) model for temperatures lower than the corner-rounding tran-
ition, the coarsening dynamics does not bring the quenched

©

whereg(k) is the number of configurations with a givén
ande,=4(1-j,)k is the energy of such configurations. The
coefficientg(k), which is calculated using elementary com-
binatorics, has the form

distinguishable distribqtions ok—1 non-negative integer glassy phase. Certain arguments can be provided to show
numbers such that their sum equiiis| [10] (non-negative  ihat the mechanism that operates in this 3D model is not
numbers are actually differences of heights of consecutiV@gfective in lower-dimensional versions of this moftbs]. A
columns. In Eq.(4) | represents the height of théh column  yery rapid increase of time, which is presumably exponen-
(i.e., th.e. left-most one in Fig.)3which by definition has to 51 with the system size foT<T,, (see Fig. 2 suggests
be positive. . o that extended, cornerlike defects might trap the coarsening
Although we cannot evaluate the partition functi@) in dynamics even in two dimensions, which would mean the
the closed form, we can easily find the behavior of our modekyistence of a glassy phase in such models.
ip the vicinity of the transition, i.e, when dominant contribu-  another important extension of the present study might be
tions to Eq.(3) come from largek [11]. In such a case, @ ap examination of the influence of the gravitational field on
simple analysis shows kthat the coefficieik) have the  ihe wetting layer. Such a field breaks the symmetry of edges
asymptotic formg(k)~4" and the partition function can be 49 suppresses the infinite vertical growth of the wetting

approximately written as layer. One would hope that, in a model that takes into ac-
- 1 count gravity and an interaction with a vertical substrate, one
Zcsos™ go =TT (5 should be able to calculate, e.g., the contact angle in capil-

_ o o laries, a quantity that is usually described only by phenom-
wherew = el ~##(1710* "4 Moreover, in this approximation  enological theorie§6]. Studies of more realistic models, in-
we have(k)=3ko"/3 w*=w/(1-w), which diverges for cluding 3D extensions, will be done in the future.
w=1, ie., at T=T3.°=2(1—j,)/In2. One can easily  This research is supported by KBN Grant No. 8 T11F 015
see that close to the critical pointk)~e !, where 09. | acknowledge allocation of computer time from the
e=(TSO-T)/TS9S, Moreover, the specific heatC ~ Pozra Supercomputing and Networking Center.
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