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Quantumlike corrections and semiclassical description of charged-particle beam transport
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It is shown that the standard classical picture of charged-particle beam transport in paraxial approximation
may be conveniently replaced by a Wigner-like picture isemiclassical approximatiorin this effective
description, the classical phase-space equation for electronic rays is replacedrbaumanslike equation
where the transverse emittance plays the rolé .oRelevant remarks concerning the quantumlike corrections
for an arbitrary potential in comparison with the standard classical description of the beam transport are given.
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I. INTRODUCTION states [15,16, and phase-space investigations within a
Wigner-like picture[17] in which a quasiclassical distribu-
Quantum formalism for describing a number of macro-tion, fully similar to quantum Wigner transforfii8] governs
scopic systems, such as plasmas, linear and nonlinear elere paraxial em ray evolution.
tromagnetic(em) radiation beam propagatiaffior instance, More recently, a procedure similar to that Gfoge and
optical fibers, transmission lingsem traps, charged-particle Marcusehas allowed one to construct a quantumlike model
beam transport, etc., have received a great deal of attentiasf charged-particle beam transport in both real space and
during the last two decadd4]. For these nonproper quan- phase space, callatiermal wave modelTWM) [19]. This
tum systems, it is appropriate to sayantumlikedescription  model has been applied to a number of problems of charged-
instead of the proper quantum one, because the physics iparticle beam optics and dynami&0—25. It assumes that
volved, which is basically classical, can be described by forthe particle beam evolution is governed by a Sdimger-
mally replacing the Planck’s constant with a suitable fundadike equation for a complex function, the so-called beam
mental parameter of the particular system considered. Avave function(BWF) whose squared modulus is propor-
quantumlike theory of light rays was, for example, con-tional to the beam density where Planck’s constant is re-
structed by Gloge and Marcu$g] in order to recover wave placed by thebeam emittancé26]. In particular, in TWM
optics starting from a formal quantization of geometrical op-framework, a Wigner-like transform, seems to be useful and
tics based on Fermat’s principle. In particular, this procedurexppropriate to give the quantum-like phase-space description
has allowed one to recover, in paraxial approximation, thef particle beam§25].
Schralinger-like equation for the em field, the so-called |n this paper, we want to suggest an approach alternative
Fock-Leontovich equatior3], widely used in linear and to the one that is similar to th®loge and Marcuserocedure
nonlinear em radiation optick4—6]. The transition from  given by TWM. By starting from the electronic ray concept
geometrical opticgthe analogous of classical mechanits  given in electron optics, we review the standard electronic
wave optics(the analogous of wave mechaniosas per- ray approach to charged-particle beam optics and dynamics
formed by introducing some correspondence rules, fullyand introduce an effective description of the beam transport,
similar to the Bohr's ones, in which is replaced by\/27,  which takes into account the thermal spreading among the
the inverse of the wave numbek/@m=1/k). In particular,  electronic rays. In the following sections, we start from the
in this context, the paraxial approximatigime analog of the electronic ray concept and introduce the paraxial-ray ap-
nonrelativistic approximation of quantum mechahic®-  proximation. In Sec. Il, the paraxial-ray equation is solved
scribes the radiation beam transport in an arbitrary mediunfor the case of a linear lerf#lill's equation, while in Sec. IlI
and the corresponding quantumlike formaligenquantum-  the statistical description of electronic rays allows us to ob-
like uncertainty principle includedand Fock-Leontovich tain some important results such as the virial description of
equation can be fully recovered by formally replacihavith  the beam and a quantumlike uncertainty relation. A two-
N2 in the nonrelativistic quantum mechani€8]. This  dimensional(2D) phase-space description of the electronic
fruitful procedure has been provided for transferring algo-rays is performed in Sec. IV, where, in the paraxial approxi-
rithms and many solutions of quantum mechanics to radiamation, we show that aeffectivedescription can be given in
tion beam physics, especially for optical fib¢#8], coher-  terms of aquasidistributionin the phase space, which plays
ent and squeezed states theorifs-14], Schralinger cat a role analogous to the one played in quantum mechanics by
the Wigner function for pure stat¢48]. An analysis of the
guantumlike correctionghat the above effective approach
*Electronic address: FEDELE@NA.INFN.IT gives is presented in Sec. V where a comparison with the
"Permanent address: Lebedev Physical Institute, Leninsky Proslassical approach up to the 4th-order moment description of
pect, 53, 117924 Moscow, Russia. Electronic addressthe system for an arbitrary potential is performed. It is shown
MANKO@NA.INFN.IT that, for dilute and paraxial beams, the discrepancies are neg-
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ligible. Finally, in Sec. VI we summarize the conclusions In order to go deep into théaermal spreading among the
and give some remarks that are relevant for charged-particlelectronic rays in the next section we consider the single
and em beam transport as well as for quantum optics angarticle motion in a linear lens and in the section later a
very recent investigations in constructing positive definitestatistical treatment of the electronic rays will be performed.
distribution functions such as the one used in symplectic

tomography[27-29. Il. SINGLE-PARTICLE MOTION
(SINGLE ELECTRONIC RAY )

A. The concept of electronic rays Let us consider for simplicity the particle motion in the
and the paraxial electronic-ray approximation 2D case: for instance, thecomponent of the particle motion

It is well known thatelectron opticg30] has been devel- is neglected. Typically, the Hamiltonian for thecomponent
r{notion of a single charged-particle with rest masg is

oped by using the similarity between charged-particle motion'. in the following di onl form:
and the behavior of the light rays in geometrical optics. Fodiven in the following dimensionless form:

nonrelativistic particle motion, this analogy shows that po- p2
tential energy and particle trajectories play the role fully H=—+U(x,2), )
similar to the ones played by refractive index and light rays, 2

respectively. In particular, this similarity allows us to intro- . . .
duce the concept oélectronic rays On the basis of this Wherep=xis the canonical conjugate momentum. Note that
optical language, refraction and reflection laws for electronicEd- (2) describes a 1D motiofelongx) of a classical par-
rays can be introduced and their formulation is fully similarticle whenz plays the role of a timelike variable atdlis an
to the one that is used for light rays. The basic electron optic§ffective dimensionless potential energy, which can be ex-
concepts have been developed in connection with the firfdressed in terms of a polynomial form inof arbitrary de-
experimental investigations of charged-particle mofimms ~ greeN as
and electrons in oscilloscopes and mass spectrometers.
However, electron optics have been rapidly developed and U
applied to electron microscop$1], electro-optical transduc-
ers[32], particle accelerator33,34), etc.

When the potential is a function of the coordinates, it —sN

k k k k
(X,2)= Ol(lz)er 12(|Z)x2+ 23(|Z)x3+ i’l(lz)x4+

kn
corresponds to an inhomogenous refractive index, and the "“0(n+1)!
electron trajectory through this inhomogenous potential re- ) ) o ]
gion corresponds to a light ray through an inhomogeneou¥ Nhas been made dimensionless, dividing the effective en-
medium. In case we have several particles moving togethe?'dy potential of the system by the relativistic longitudinal

in an arbitrary potential, each particle trajectory is an elec€Nergymoyoc’=mc* (v, being the longitudinal relativistic

tronic ray. facton. In particular, for a pure quadrupolelike potentih-
In order to consider a charged particle beam as a speci&@' len$ Eq. (2) becomes

case of the above particle system, we introduce the so-called 2 4

paraxial electronic ray approximatiof33]. In this case, the H= P + 1(2) X2, @)

system has a special direction, the instantaneous propagation 2 2
direction, sayz, and the following conditions hold:

Xn+1. (3)

Let us consider the equation of motion that follows from Eg.

. dx . dy (4) (the Hill's equation[33,35)):
X=E<l, y=5<1, (1) i
x+ky(2)x=0, )

wherex andy are the transversg@vith respect taz) coordi-  Wherep=—ki(z)x. The general solution of Ed5) can be
nates. In other words, paraxial approximation corresponds tBut in the following form

a very small deviation of the electronic rays from the propa-

gation direction. Note that, in principle, the beam particles x=1\2E(2)cod $(2) — do]=2E(2)cosr b(2),  (6)
may have a relativistic motion alorgy(longitudinal motion

but, in order to be consistent with the paraxial approxima—\’vh(.are ¢bo Is an arbltrgry constant anfl(z) is a funct_lon
tion, their transverse motion must be nonrelativistic, ( defined unless an arbitrary constant factor. By imposing that

_ \/;2+—Uz< o). Eq. (6_)_ is a.solutlon of Eq(5), we easily obtain the following
X7y conditions:

Let us consider a beam so dilute that the space chargé
effects can be considered negligible. If the thermal spreading . lo
of the particle velocity is negligible, in the case of aberra- E%A ¢=const X
tionless focusing, the particle converges in one pBirgnly
(focal poiny. Of course, if the thermal spreading is taken into
account, the above circumstance will be modified. In fact,
the beam will not focus at only one point and, if the electron 12
rays are initially parallel, they will diverge and the beam E+k,E— % _o. (8)
naturally defocuses. 4E3

)
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Moreover, it is easy to prove thatandp satisfy the follow- order to estimate the above spot size we have to compute the

ing quadratic form: following rms definition:
- 2 2:|_0 2 [\ — |i 1 T2
J(X,p.2) = y(2)x*+ 2a(2)Xp+ B(2)p°=7, 9 o ’=(x*)==lim T | XAt (15)
T 0
where Sincex(z) contains a fast-period dependencezmmne can
. . replace Eq(15) with an average on the phase
@ I0+E2 @ EE 1 dE? P a1 g P
V2)=ge2t 1 a@=—F—=—5— . 1 (2=
V=L I, 2, dz 2_ 2:_f 2
o= ()= 5| ¥dag, (16)
EZ
B(z2)= 1. (10 which gives[the average is performed only on the fast time
0

scale, wheréE(z) is almost constart
are calledTwiss parameter§35]. Note thatJ7(x,p,z) is an ) ) )
invariant for the Hamiltoniar{4), namely, 03 (2)=(x*)=E*(2). 17

Consequently, the instantaneous amplitude of soluomf
2 +{J,H}=0, (1)  the electronic ray equation in a linear lens corresponds to the
statistical estimate of the transverse beam spot sige
where{- - -} denotes the classical Poisson brack8g. It is Similarly, we define the rms of the electronic ray slgpe

worth noting that the invariant that is quadratic form in co- =dx/dz=2EcosA¢—(Io/2E)sinA¢, obtaining
ordinates and momentum for the parametric classical oscil-

lator is known as the Ermakov invarigi®7] and its quantum 25y =(p?) = E2+ i_ % 2+ IS (18
analog was found by Lewig38] and discussed if89]. It is op(z =(p%)= 4E2 | dz 4g.2"
easy to see that the determinant of the matrix associated with X
the quadratic form(9) is conserved: For the observablap, the statistical average gives
yB—a’=71. (12) . 1d 1do?
Txp=(Xp)=EE=35 ={(x*)=5 d; ' (19)

Thus, from Egs(10)—(12) we obtain the identity

2 2 and, finally, the mean value of the energ@y

0 . 0 .

—=| E?+ — |E?2—(EE)?, 13

4 AE? (EE) (13 . 1 ., 12 1 ., O'f, ki(2) ,

H(z)=(H)==| E?>+— |+ Sk,E?=—"+ o,

o : L 2 4g%2) 2 2 2

and the following inequality, which will be used later: (20)
. IS vz I or, equivalently,
E| Ec+—| =—. (14
4E? 2 2
1(doy\? 1§ 1 5
H(z)= 5| == | +—=+ sku(2)of. (21
2\ dz 8g2 2
Il. STATISTICAL DESCRIPTION X

OF ELECTRONIC RAYS Consequently, the Hamiltoniakl defined by Eq.(21) has

The results of the previous section can be used now t#ow the meaning of the averaged total energy associated
describe statistically the spreading among the electronic rayith the transverse motion of the beam particles. It is very

in a linear lens. easy to prove the following very important relationships:
First of all, we observe that solutiai) is typically con-

sidered in particle accelerators for the case of a very smooth dz(fi 2

k,1(z) compared to the variation of thEhase advanca ¢(z) 2 +4ky(z)ox=4H (22)

[33,40. Also the amplitudeE(z) is typically a very slow

function compared ta ¢(z) [33,40. It is easy to see that in and

these circumstances the paraxial approximation is naturally

satisfied. In fact, for an arbitrary initial transverse-space par- dH [oU\ 1.

ticle distribution, most of the particle trajectories remain con- dz <E> - Eklgx ) (23

fined in a limited region(if suitable stability conditions

hold). Consequently, in the statistical description it can beRemarkably, Eqs(22) and (23) describe statisticallyvirial
assumed that this region represents a someén spreador  description the behavior of the paraxial electronic rays in a
the generic particle position or, equivalentlyn@an spofor  linear lens of strengttk,(z). But some additional informa-

a generic electronic ray corresponding to the most probablton can be obtained from Eq&l7)—(19). In fact, the quan-
phase-space accessible region. This way, we can introdudities (x?), (p?), and(xp) are the elements of thaiffusion
also the average of an arbitrary observable. In particular, imatrix whose determinant essentially defines the square of



PRE 58

thediffusion coefficientLet us introduce the following quan-
tity proportional to this coefficient and calleths emittance
[41,42:

€

> =[0HP) = (xp)?] ™ (24
Note that result$17)—(19) show us that both in the linear
lens and in vacue@ is an invariant and coincides with:

13
7 = (3P = (xp)*. (29
For an arbitrary potentiak is not necessarily preserved. Re
markably, from Eq(24) in particular we have

€

5 (26)

OxOp=

We would like to stress that Eq14) represents a tautology,
while the statistical form(26) actually represents a sort of
uncertainty relationeven if the particle beam is elassical
system Furthermore, it is clear that Eq26) defines the
transverse beam emittance as th@imum reachable uncer-
tanty. By using Egs.(17)—(293), it is easy to see that this
minimum is reached at the equilibrium conditiod«,/dz
=0). At the equilibrium, the phase-space distribution for a
sufficiently dilute beam is Gaussian in both configuration

and momentum spaces. Let us take these two equilibriurf’

distributions for the dimensionless Hamiltonié$), namely,
given by

2

p
n;°><p>=n;%>exr{— o~ 27)

where o50=KgT/(mc?)=(p®),_o (kg and T being the
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diffusion whose effect is to spread them out while the beam
is propagating. This effect producegmspersionamong the
electron rays in competition with tendency, due to the poten-
tial U(x,2), to force them to berdered To see this diffu-
sion effect more evidently, let us consider the special case of
U(x,z)=0 (i.e., the beam is traveling in vacudn this case,
Egs.(21) and(23) imply that# is a positive constant given
by

H 1(0"” e t 31
== — — =const,
2\ dz 802
and, consequently, E§22) becomes
o ari=const (32)
=4H=const,
dz?

which, for the intial conditiono,(z=0)=0, and o,(z=0)
=0, gives

2

€
0i(2)= 05+ 2HZ? = 0§+ — 7. (33
0o
This means that, while the beam is traveling fram — |?|,

the electronic rays will not focus in a one point only. Starting

from an initial spreadr= o, (—|z|) = o o[ 1+ (€%/2073) 22]*?,

the case of focusing the electron rays will reach the mini-
mum spotoy and then the beam will diverge, giving greater
values of the spot. We want to point out that, since the par-
ticles are moving in vacuo, their trajectories must be straight.
Even if the electron rays are straight, their mixing is due to
the thermal spreading@liffusion) in such a way as to produce
the beam envelope described by E83) (in 2 transverse
space dimensions, it would be a hyperboloid of rotation
around thez axis). The entity of this ray mixing is the order

Boltzmann constant and the transverse temperature of thg 2l 40i~v2/c2.

system, respectivelyand

2

nO(x)= nﬁ(%’ex;{

|

where 03=(x?),_o. Note that(xp)=(xp),—o=0. Conse-
quently, at equilibrium, Eq(25) gives

1/2
z=

1/2

<X2> o p2>z=O:§’ (29)

For particle beams in the accelerators, typically/c is
much less than 1. In fact, transverse particle motion is clas-
sical while the longitudinal one is relativistic. So, the condi-
tion vy, /c<1 is thus equivalent to consider in vacuo the
envelope functiorE(z) slowly varying with respect to the
oscillating term cod¢. This is, in fact, consistent with the
above paraxial approximation.

IV. PHASE-SPACE DESCRIPTION

The statistical description presented above allows us to

which proves that the minimum product of the uncertaintiesunderstand that, for particle beams with finite emittance
is given at the equilibrium states and numerically coincidedtemperaturg the determination of an electronic ray at the
with half of the beam emittance, and now it is easy to provearbitraryx position of the transverse plane given at each

that[33]

1/2

kT
(x%)

el
which shows explicitly the thermal nature of the beam emit-

tance;v = (kg T/m)? represents the transversermal ve-
locity of the system. Consequently, scales asyT. The

1/2

z=0"" C

(30

g0,

€
2

affected by an intrinsic uncertainty that cannot be reduced to
zero. Only when the transverse temperature is exactly zero,
the electronic ray mixingdiffusion) disappears and finding
an electronic ray at a given transverse position is a determin-
istic operation based on simple geometrical arguments.
However, for finite-beam emittance, the intrinsic uncer-

tainty on the transverse position at eaclbannot allow for
resolving among two or more rays in the sense that they are

above results clearly show that, if the temperature of thendistinguishable within this uncertainty which must be the
system is not negligible, the electron rays are affected by arder of o,(z). In particular, at the focal point, it would be
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oo. Consequently, for a finite emittance, we need to assign &q. (40) can be conveniently replaced by the following sym-
probability (in principle, positive and finiteof finding an  metrized Schwarz-like finite difference ratio:
electronic ray at the transverse locatignn the plane for

given z. This probability distribution, sapP,(x,z;€), would U UX+ 9/2)—U(X— 7/2)
be both depending on tHigansversgemittancee (i.e., trans- > .
verse temperatuyeand normalized in the& space, namely,

(41)
7

This way, Eq.(40) may be replaced by the following equa-

f Px(X,Z;€)dx=1, (39 tion for an effective distribution, sag,(X,p.z; 7):
with the following physical meaning. Multiplyin®,(x, z; ) I Ipw U+ 7/2) = U(X= 5/2) Gpu _ 0. 42
by the total number of the beam particles, one obtains the Jz X 7 ap '
transverse particle beam density., the electronic ray den-
sity with respect to the transverse direcfion The transition from Egs. (40) to (42), based on physical

In order to give the transverse beam dynamics descriptiogrguments, is partially a change of partial differential equa-
in terms of this probability distribution, let us start from the tion [i.e., Eq.(40)] to differential-difference equatiofi.e.,
ordinary 2D phase-space equation for the electronic rays. Tgq. (42)], which may be considered as ansatz afedorma-
this end, we introduce the phase-space density distributiofion of the 2D phase-space equation for the electronic rays.
p(X,p,2) in such a way to have for a generic observable Gijven the smallness af, multiplying both numerator and
f(x,p) the following average: denominator of the last term of the left-hand side by the

imaginary uniti, we have

(fx)= [ fpppadxdn (@9 o
UX+ 5/2)—U(X—75l/2)  dpy,
. i —
provided that the following normalization condition holds /] p
UX+ (i p2)alap)— U (X— (i 5/ 2) 1 ap)_
By definition p is constant of motion, and, consequently, (43)

must obey to the following phase-space equali43l:
y gp P quales Thus, going back to the old variablesand z, Eq. (42) as-

ap sumes formally the look of a von Neumann equafi®8,44]
EJF{P,H}:O, (37 (let us say von Neumann-like equation

whereH is the Hamiltonian for an arbitrary potential given i+ i+'_ Ul x+i €9 —Ul x—i €9 =0

by Eqg. (2). By using the Hamilton’s equations, E@7) can gz Pox" e 2 9p 29p Pw="s

be explicitly written in the following form: (44)
a_p+p&_p_(ﬂ)&_p:0 (38) where p,=p.(200X,p,200Z;2007) =pu(X,p,Z;€). Equa-
Jz X axjop ' tion (44) shows that, in the framework of this effective de-

. ) _ _ scription, the phase-space evolution equation for electronic
which describes a phase-space evolution of electronic raysrays is a quantumlike phase-space equation wheaad the

By introducing the dimensionless variables time t are replaced by the emittaneeand the propagation
coordinatez, respectively.
= z Y= X (39) However, some considerations are in ordér.Approxi-
20¢’ oo’ mation (41) is due both to the smallness ef and the fact

that evaluation ofJ variation around the locatiox does not

Eq. (38) assumes the form make sense within an interval of size This, in fact, corre-

i g5 90\ o sponds to the intrinsic uncertainty produced among the rays
_L_ p_p_(_ _pzo, (40) by the finite-temperature spreading. In other words, thermal
9z " gx |\ dgx)Ip mixing of electronic rays affects the evaluation Wfvaria-

. __ tion with respect tax. Thus, Eq.(42) represents a possible
where  p=p(X/20¢,p,2/20)=p(X,p,2) and U way to take into account the ray mixing in this evaluation.
=U(x/20y,2/200)=U(X,2). iy Since U+ (i 7/2)aldp)—UX— (i 7/2)dl Ip)

However, we want to give a more interesting, but ap-:(ag/lﬁjin(a/ap)+0(,73(93/ap3), approximation(43) is
proximateeffectiveelectronic-ray description, taking explic- equivalent to assume that ter@g %%/ 9p3) are small cor-
itly into account their thermal spreading. According to therections compared to the lower-order ones, according to the
results of the previous section, since for finite emittance thgaraxial approximation. Consequently, from the quantumlike
indistinguishability among two or more rays due to the ther-point of view, approximatior(43) plays a role analogous to
mal spreading is the order ef=e/20,=v/c<1,dUl/dxin  the one played by theemiclassical approximatiof5].
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(iii) While the distributionp(x,p,z) involved in Eq.(38) Remarkably, from the above results it follows that it may
is introduced in a classical framework and it is positive defi-exist a complex function, sa¥ (x,z), such that
nite, the functiorp,,(x,p,z; €) is introduced in a quantumlike
framework, which plays the role of agffectivedescription P,.(x,z;e)=V¥(x,2)¥*(X,2), (50
taking into account the thermal spreading among the elec-
tronic rays. In addition, in this context,(x,p,z;€) cannot used also for a description of pure quantum states, and the
be used to give information within the phase-space cells wittiollowing quantumlike density matrix
size smaller tham, due to the intrinsic uncertainty exhibited
by the system for finite temperatures, i.e., due to the indis- G(x,x",2)=¥(x,2)¥*(x',2), (51)
tinguishability among the electronic rays. Consequently, we
would expect thatp,, violates the positivity definiteness used also for description of mixed quantum states, connected
within some phase-space regions. On the other hand, evewith p,, by means of the following Wigner-like transforma-
with the limitations given by pointsi) and (i), it is clear tion:
from the von Neumann-like equati¢fd) thatp,, is a sort of

Wigner-likefunction. Thus, it is not positive definite, due to _ 1 ([~ y y py
the quantumlike uncertainty principle given in Sec. lll. This Pw(X.P.Zi€)=5— ﬂcG X+ 5.X=5.z|expi——|dy,
means that, in analogy with quantum mechanics, (52)

pw(X,p,Z;€) can be defined aquasidistributioneven itsx

projection andp projection are actually configuration-space or, for pure states,

distribution and momentum-space distribution, respectively.

In particular, within the framework of the above effective 1 (=
description of the electronic ray evolution, we assume that pw(X,p,Z; €)= Z_J P
the probabilityP,(x,z; €) introduced above is TS —er

y
X+ E,Z)

y . Py
Py(X,Z;€)= f puw(X,p,Z;€)dp, (45) xWx- E’Z)e""('?>dy' &3
provided that alsg,, is normalized over the phase space. Consequently, ¥(x,z) must obey to the following
Note that, for arbitraryJ: Schralinger-like equation:
lim py,(x,p,Z;€) =P (x,2) 8(p— V'V (x,2))=po(X,p,2), ov 2 52
o ° e =S WUV, (54)
(46) (92 2 &X

which describes thdtransversg phase-space motion of a This equation has been the starting point to construct the
cold beam. Multiplying the total number of particles quantumlike approach of charged-particle beams, which is
by P(®(x,z) we obtain the transverse space density of theknown in the literature as the thermal wave modavM). It
electronic rays at eack for a cold beam. Furthermore, has been applied to a number of problems in particle accel-
V(O)(x,z) is the (transversg current velocity, which in this erators and plasma physifs9—-25. TWM assumes that the

case obeys, withP(®)(x,z), the following equations: transverse(longitudina) dynamics of a charged particle
beam, interacting with the surroundings, is governed by a
aPO 9 (O /0) Schralinger-like equation for a complex function in which
97 +&(P ViT)=0 (47 Planck’s constant is replaced by the transvelsegitudina)
beam emittance. This complex function, called beam wave
(continuity equatioh function (BWF) has the following meaning: its squared
modulus is proportional to the transvel$engitudina) beam
d ©) d ©)_ oU density. This way the beam as a whole is thought of as a
5+V X Vii=— X (48) single quantumlike particle whogdiffractionlike spreading

due to the emittance accounts for tfermal spreading
(fluid motion equation Note that in the above limit the local

slope of the electronic rays=dx/dz is determined only by V. QUANTUMLIKE CORRECTIONS
the gradient ofU. In particular, in vacuo y=0) a cold ] ) ] ]
uniform beam has phase-space density of the f&a(p In this section, we analyze the quantumlike corrections

—V,), with P, andV, constants. With the language of par- [46] that the effectiveelectronic ray description presented
ticle accelerator physics, this kind of beam is caltedno- above gives with respect to tipyr_e classical treatment. In
chromatic beamlt is easy to see that all the electron rays of Other words, we make a comparison between the quantum-

a monochromatic beam have the same slope. like description given py Eq44) and the one given by_ Eq.
The above results allow us to write that, for an arbitrary(38)- To this end, we first observe that, if the beam is in a
potential, we have guadrupole(linear lens, Eq. (44) collapses in Eq(38) and
no quantumlike corrections are present. One can calculate
lim P,(x,z; €)= P©(x,2). (49  the set of moment equations associated with Eg8) and

€0 (44), respectively. Defining the followingiouville operator



998 R. FEDELE AND V. I. MAN'’KO PRE 58

. 3 . d [aU\ @ - MW (x,2)
=2 P 9 o= 112 )
. . . . =— > (-1
where U is an arbitrary potential that can be expanded in k=1 2k+1
Taylor series with respect tq it is easy to see that Eq&8) ok okt 1
and (44) become, respectively, e\ e o
X\5| —ma7| P pwdp
2 2k+1 | w
N X
Lpw=0, (56)
Pw 0 V »=3. (66)

and
Consequently, for an arbitrary potential and up to the energy

equations, the two descriptiorithe classical and the quan-
(57)  tumlike) coincide. The discrepancy appears at the order
equal to or higher than the third one in the moment equa-
tions. In principle, Eqs(56) and (57) are equivalent to an
(eachk being a non-negative integemMote that the right- infinite set of their moment equatior(§9) and (65)—(66),
hand side of Eq.(57) contains an extraterm that is not respectively. The characteristic of these moment equations is
present in the classical for(®6). By introducing thev-order  that the one ofv order is an evolution for the-order mo-
(v being a non-negative integemoment ofl as ment of p,,, but contains a %+ 1)-order moment of this
function. Provided that alosure equationis introduced,
w which relates a ¥+ 1)-order moment with the lower-order
M(”)(X’Z)Ef_wpvﬁpwd P, (58)  ones, the truncated set of equations, consisting of moment
equations up to the order plus the closure equation, is fully
equivalent to Eqs(56) or (57), respectively.
Usually, the lowest order of truncation is introduced for

©

. (_ 1)k € 2k aZkJrlU aZkJrl
Lpy=2, I/_ 2K 2kpw'
S (2k+ 1)1 2]  gy2kel g2kt

the classical equatio(b6) leads to

) _ = v=1, by introducing, for the transverse dynamics, the fol-
M7 (x2)=0, V=0, (59 lowing ideal gas state equati¢a6] (isothermal approxima-
which, in turn, gives the continuity equation tion):
kgT
Py 0 B pxi =1I. (67)
- + &(PXV)—O (60 m

In fact, even if the beam propagates alangith relativistic
motion, the transverse particle motion arount classical.
Consequently, the beam behaves transversally like a nonrel-

for »=0, the motion equation

(i+vi)V= _ ﬂ_ i E (61) ativistic ideal gas. Moreover, note that, denoting witlthe
Jdz - oX X Py dx’ total number of beam particles, the quantit=NP, is the
transverse number density of the beam. At this level, we are
for v=1, the energy equation describing our beam in terms of the fluid theory
MP(x,2)=0, (62 P, 9
0 + a_x(PXV)_O’ (68
for v=2, and so on, where
a U vh 1 9P
1 (= V|V - D T X (69)
V(x,z)=P— ppwdp (63 dz X X  ¢2 Py dx
X — 00

It is obvious from Eqgs(59)—(66) thatthe classical and the
quantumlike descriptions coincide at the level of the fluid
theory for noncold beamsNote that, in particular, in the
. limit e—0, Egs.(68) and (69) recover Eqs(47) and (48),
T(x,2)= f (P—V)2pudp (64)  respectively. _ _
— Going on tov=2, for the truncation a closure equation
involving the moments of third order and the lower ones
is the kinetic pressurédivided by the total number of the have to be introduced. By virtue of Eq$0)—(62) and(65),
particleg or the second-order moment pf, . the descriptions coincide also at this level if a suitable clo-
On the other hand, the quantumlike equat{bi) gives sure equation is chosen for both
For ordersv=3, according to Eq(66), the truncation
MW(x,z2)=0, »=0,1,2 (65) cannot allow for having the equivalence between the classi-
cal and the quantumlike descriptions. In particular, the third-
and order moment equatiorwE 3) of Eq. (57) is

is the current velocity, which is experimentally the first-order
moment ofp,,, and
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5 | € 2[ 93U in the semiclassical approximation. Consequently défor-
@)= 7] | x| Pxo (70 mation methodpresented in this paper allows us to recover

the quantumlike picture, and in particular the Wigner-like
picture, only in the semiclassical approximation. Further-
more, the analysis of the quantumlike corrections shows also
that the above fluid description charged-particle beam trans-
P,V. (71) port can be thought of in terms of a semiclassical approxi-
mation of the moment hierarchy description. In fact, at the

The above analysis allows us to conclude taathe third-  fluid level, the truncation is made at ordef/ % €.
order moment description the discrepancy between the clag- Nevertheless, we want to remark that this approach could
sical and the quantumlike descriptions appears as a delicat®€ rélévant also for a wide spectrum of topics in em radiation
effect In fact, for arbitrary potentials and for given emit- OPlicS, general quantum mechanics, and quantum optics for
tances, the discrepancy increases as the density of the beatfi¢ considerations that are in order.
Thus, to make it evident, very intense beams are necessary. (1) Equation(44) collapses in Eq(38) in the case of a

In addition, ifU is a symmetric potential with respect to duadrupole (harmonic oscillator However, due to the
the propagation direction, i.e., U(—x,2) =U(x,2), the dis- Wigner-like picture, Eq(44) describes some states that are

crepancy corresponding to the third and the fourth-order mohot described by its classical counterpart. In other words, the

ments are still negligible for beams that are mainly concenSimilarity betweerp andp,, in the harmonic oscillator is not

trated aroundz (x very close to zero, i.e., paraxial beam possible for all the states. This makes evidexquantumlike
because in this casBU/ax3xx~0. ’ ’ effectthatp,, contains and thgi does not contain. Equations

(40) and (42) become the same equation in the case of a
quadrupole, where does not appear explicitly. However, a
possible normalized solution of this phase-space equation for

and the one for the fourth-order momem=4) is

€\?/ °U
MH—=g| = _
MH=4 2) (axa

VI. CONCLUSIONS, REMARKS, AND FUTURE

PERSPECTIVES harmonic oscillator i§25]
In this paper, the charged-particle beam transport has
been investigated with a quantum-like approach. By starting iex _ z[y(Z)XZ—I—Za(Z)Xp-i-,B(Z)pZ] (72)
from the electronic-ray concept in paraxial approximation, me € '

we have given the statistical description of the electronic ray
evolution, which has allowed us to obtain a quantumlike pic-which explictly depends om. Consequently, in principle, to
ture of a charged-particle beam transport, where a sort ofecover classical solutions we do not need necessarily to take
quantumlike uncertainty principle holds for the spread ofthe limit e—0. In this limit, we can recover the special fam-
particle position distribution and the spread of particle mo-ily of classical solutions that describe the cold-beam trans-
mentum. This way we first introduced a sort\&igner-like  port only, as pointed out in Sec. IV. This means that B8)
picture behind the electronic ray evolution and then recovcontains something more than the classical limit. In fact,
ered the already known quantumlike description for chargedsolution (72), in which € is a finite quantity, leads easily to
particle beam dynamics called thermal wave mgdél-25.  the quantumlike uncertainty relatiq@6).
Within the framework of the Wigner-like picture, the quan-  (2) From Eq.(57) it is clear that for finite emittance but in
tumlike corrections have been introduced and compared witthe case in which «/2)?d%p,,/Ip?> (€l 2)%3°p,/Ip® for
the standard classical picture for arbitrary potentials, shows=3, Egs.(44) and (38) formally coincide for an arbitrary
ing that the above quantumlike approach could be a usefulanharmonit potential. However, also in this case, con-
tool for particle accelerator physics investigation. It is worthtains, in principle, the quantumlike effects thatdoes not
mentioning that this comparison is in agreement with a re<ontain. Of course, according to the investigation about the
cent numerical phase-space analysis that compares the quatiscrepancy given in Sec. \this quantumlike effect is deli-
tumlike Wigner function of a charged-particle beam in acate for dilute beams but not, in principle, negligible
guadrupole with small sextupole and octupole aberrations Thus, we can conclude that, for finite temperatygg:in
with the results of a standard particle tracking code simulavacuo as well as for harmonic potentials, the deformed equa-
tion [25]. tion appears formally indistinguishable from its classical
However, the following question naturally arisesthat  counterpart(also beyond the semiclassical approximakion
would be the precise relation between the new Wigner-likdout the former admits a wider class of solutions, which can
formalism and the previous thermal wave modé&Wzll, be also negativep) in the case of anharmonic potentials, the
TMW provides for a quantumlike description of charged- deformed equation representseffective versiomnf its clas-
particle beam transport. This way, using the formal apparatusical counterparton phase-space scale greater teprHow-
of quantum mechanics, it is possible to introduce the Wigneever, it coincides with the von Neumann equation in semi-
transform that connects the description in configuratiorclassical approximation only. Consequently, also for these
space(in terms of BWH with the one in the phase spa@a  potentials it admits a solution that can be negative.
terms of a Wigner function In the early formulation of At this point, another natural question arisB& the new
TWM [19-25, the above quantumlikéin particular, the nonclassical states predicted by the Wigner picture contain
above Wigner-likg picture was assumed valid beyond the physically relevant informatich In the quantumlike frame-
semiclassical approximation. On the other hand, in thewvork, these solutions describe excited states of the beam
present paper, thgansition from the classical phase-space transport that are not considered in the classical picture. In
equation to theleformedphase-space equation is vabdly  reality, it seems that they could be the quantumlike version
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of the beam states corresponding to energies greater than thdly consistent with the quantumlike uncertainty relation
one associated with the lowest energyndamental staje  (26), our description does not contradict classical mechanics.
which corresponds to a positive distribution with all the clas-In fact, while# is a fundamental, universal constaatdoes
sical probability features. However, the above excited statefot have such properties. Since the latter depends on the
can be negative due to the quantum”ke Uncertainty r6|ati0|fherma| noise, we Carin princip|el arrange a series of ex-
introduced by the indistinguishability among the electronicperimental devices in which the temperature is progressively
rays, but it seems clear that they are intrinsically CIaSSicafeduced. This way, we enhance the accuracy in finding the
states that cannot give suitable information within phasegectronic ray location by reducing the thermal uncertainty
space cells with size of order And this is only produced in o6 and more. Consequently, the quantumlike uncertainty

order to take into account the above loss of mformatlonm principle collapses into theclassical independence be-

within these .cells, by the deformation of the classical pha:se,[-Ween measuring of spot size and momentum spread. In this
space equation.

A third question could be formulated as folloviBoes the sense, oueffectivedescription is formallyguantumlikebut

; . . .. intrinsically classical Of r ral limitation in re-
above quantumlike formalism provide any new physical in- trinsically classical Of course, anatura tatio ©

sight into the beam dynamics or it is just a different butducing the thermal noise is established by gieper quan-

nevertheless more complicated way of expressing “familialt_um uncertalnty relat|0n,_wh|ch states that quantum fluctua-
physics™? Since we are not allowed, for a given finite tem. tions areunavoidableandintrinsic. In fact, the nature of the

perature, to locate exactly an electronic ray within phasePhysical systems is basicalguantumand notclassical but
space cells of orde, the quantumlike description naturally this is true for all the systems in nature and not only for
replaces the classical one. Consequently, the above statedarged-particle beams

associated with negative phase-space distribution can be con- We observe that in quantum mechanics and in quantum
sidered as nonclassicéh the sense of quantumlikstates. Optics measuring of the states described by Wigner functions
Of course, by reducing the temperature more and more, awas recently reduced by means of tomographic procedures to
the classsical features are more and more recovered in suchhgeasure a positive marginal distribution related to the
way that thenonclassicalitydisappears. This aspect surely Wigner function by an integral transforithe Radon trans-
represents a new insight with respect to the ordinary classicébrm of optical tomography methdd 7,48 or Fourier trans-
description of charged-particle beam transport, but keepingorm of symplectic tomography27,28). Thus, we could

in mind that the above quantumlike approach is capable oftate that, analogously, in the above quantumlike approach
describing a wealth of phenomena, taking into account thehere is a possibility to transit from the classical phase-space
thermal noise involved in the particle beam transport in aequation to an equation for a positive marginal distribution
way (even effective that the pure classical approach cannotof two types[28], which has standard classical features. This

give. Consequently, it is clear that the above quantumlik&ery important problem is considered in a forthcoming pa-
approach is not a more complicated way of expressing familper.

iar physics. In fact, the quantumlike formalism allows us to
solve problems of particle beam transport by using all the
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