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Swarm approximation for weakly ionized plasmas

A. Rokhlenko*
Department of Mathematics, Rutgers University, New Brunswick, New Jersey 08903

~Received 25 September 1997; revised manuscript received 23 March 1998!

Upper bounds on errors in the moments of the electron velocity distribution function, coming from using the
conventional two term approximation scheme to solve the swarm kinetic equation, are found in terms of the
mass ratio of an electron and a neutral particle. The results significantly improve existing estimates, and show
that the conventional approximation is highly accurate for elastic collisions between electrons and neutrals. The
applicability of the collision integral in a differential form is discussed.@S1063-651X~98!11907-4#

PACS number~s!: 52.25.Fi, 05.60.1w, 52.20.Fs, 02.30.Mv
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I. INTRODUCTION

The study of the electron distribution function~EDF! in
weakly ionized plasmas subjected to external fields w
started at the beginning of this century by Pidduck@1#, after
Townsend experimentally found an electron mean ene
greatly exceeding the energy of neutral gas particles. Ass
ing a very low electron density, and considering only elas
collisions of the electron with neutral particles, this proble
is usually reduced to solving the Boltzmann equation w
the collision integral replaced by a differential operator d
to the great disparity in the masses of the colliding partic
Keeping only the two lowest order terms in the Legend
series expansion of the EDF made it possible for Druyve
eyn in 1930 to obtain the distribution@2# for velocity inde-
pendent collision cross sections at zero ambient tempera
This was generalized later@3# by Davydov. A detailed de-
scription of this technique can be found in Ref.@4#. The
simplicity and effectiveness of this method made the ‘‘tw
term’’ approximation very popular, and researchers in n
merous publications have reported about its successful a
cations with constant and time varying electric and magn
fields, and even for treating ‘‘slightly’’ inelastic collision
when an electron loses a relatively small fraction of its e
ergy in collisions with molecules having rotational and v
brational degrees of freedom.

The accuracy of this two-term calculation scheme
clearly very important. All those using it have commented
this to some degree. In our recent work@5#, we found that the
electron mobility and stationary energy given by the tw
term approximation cannot differ by more than612% and
618%, respectively, from their exact values when the ba
ground temperature can be neglected and the collision c
section is energy independent. These rather rough bound
valid for all mass ratios less than about1

10 . However, it was
shown via Monte Carlo simulation@6# for a helium plasma
that the accuracy is significantly better. Here we rigorou
prove that the error should scale like the mass ratio of
electron to a neutral particle and calculate the prefactors
plicitly.

*Electronic address: rokhlenk@math.rutgers.edu
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II. PROPERTIES OF THE REDUCED BOLTZMANN
EQUATION

Let us consider a weakly ionized plasma subjected t
spatially homogeneous electric field of intensityE. The one
species neutrals, whose number density isN and the mass of
a particle of which isM , are assumed to have a Maxwellia
velocity distribution with a temperatureT; the electron col-
lisions with neutrals are spherically symmetric and elas
with a total cross sections(v). If m is the mass of an elec
tron, a straightforward expansion@7# of the Boltzmann col-
lision integral in terms of the small parametere5m/M , ne-
glecting all terms of ordere2, yields the following kinetic
equation for the stationary EDFf (x,v)

2
eE

mN S x
] f

]v
1

12x2

v
] f

]xD
5

1

v2

d

dv Fes~v !v4S f 01
kT

mv
d f0

dv D G1vs~v !~ f 02 f !.

~1!

Herex is the cosine of the angle between the direction of
electron velocityv and the field direction, andf 0(v) is the
spherically symmetric part off (x,v). Sometimes@8# e is
treated as a velocity dependent effective parameter repre
ing the energy transfer in almost elastic collisions.

The formal expansion of the collision integral ine is du-
bious mathematically, but a kinetic equation very similar
Eq. ~1! can be obtained in different ways. The derivation
Ref. @9# is based on the two-term Legendre expansion of
EDF and the Fokker-Planck approximation. The different
operator on the right side of Eq.~1! is applied not tof 0 but to
f (x,v), though this does not make large difference beca
the higher harmonics off (x,v) are also of a higher order in
e. We shall work with Eq.~1!, and compare its solution with
the conventional one, assuming the existence of a solu
f (x,v) of Eq. ~1! which decays rapidly asv→` and closely
describes the physical EDF. The collision parameters h
are set to be velocity independent,s5const ande5const.
Our results will imply that one cannot hope to noticeab
improve the solution of Eq.~1! by replacing the conventiona
approach by any more advanced technique when the pa
eter of inelasticity~e here! is small enough.

From now on we use dimensionless quantities
976 © 1998 The American Physical Society
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y5ve1/4S mNs

eE D 1/2

, t5
kTNsAe

eE
.

Equation~1! for f (x,y) now can be written in the form

2AeS x
] f

]y
1

12x2

y

] f

]xD
5e

1

y2

d

dy Fy4S f 01
t

y

d f0

dy D G1y~ f 02 f !. ~2!

The Legendre series expansion

f ~x,y!5(
l 50

`

f l~y!Pl~x!, ~3!

where

f l~y!5
2l 11

2 E
21

1

f ~x,y!Pl~x!dx, for l 50,1,2, . . . ,

~4!

converts Eq.~2! into the set of coupled equations for th
Legendre harmonics

Ae F l

2l 21 S d fl 21

dy
2

l 21

y
f l 21D

1
l 11

2l 13 S d fl 11

dy
1

l 12

y
f l 11D G5y f l~y!,

l 51,2, . . . . ~5!

In addition ~for l 50! there is one more equation

d f1

dy
1

2

y
f 1523Ae

1

y2

d

dy Fy4S f 01
t

y

d f0

dy D G ,
whose solution representsf 1(y) exclusively in terms of
f 0(y):

f 1~y!523Aey2S f 01
t

y

d f0

dy D . ~6!

In Eq. ~6!, we used the decay off (x,v) at infinity to elimi-
nate the constant of integration.

The original Boltzmann equation has only a non-negat
solution, and if Eq.~1! is a good version of the kinetic equa
tion then f (x,y)>0 everywhere. In a weaker sense, o
might allow a ‘‘nonphysical’’ behavior off (x,y) somewhere
in its domains21<x<1, and 0<y,` if this does not no-
ticeably affect meaningful integrals off (x,y). The long his-
tory of using Eq.~1! successfully suggests that, at least
small e, this is correct. Nevertheless it is easy to show t
the time dependent analog of Eq.~1! with sÓconst does not
conserve positivity for special initial conditions. Therefor
one should be careful using Eq.~1!, especially when the
parameter of inelasticitye of the electron collision is no
very small.

Let us explore here the situation whenf (x,y)>0, as we
did in Ref. @5#. It is obvious that
e

r
t

,

u f l~y!u<~2l 11! f 0~y!, ~7!

becauseuPl(x)u<1. By virtue of Eqs.~6! and ~7!, we have

f 0~y!>Aey2U f 0~y!1
t

y

d f0

dyU. ~8!

This inequality implies that wheny.e21/4, the tail of the
EDF is a Maxwellian with the temperature of neutrals. Wh
T50 ~this is quite common in applications because the el
trons easily gain a much higher energy than the backgro
gas!, f 0(y) is a function with compact support likef (x,y)
and all harmonicsf l(y). Let us show that the boundary o
the region wheref (x,y)Ó0 is y5const. Assuming the op
posite,y5Y(x)Þconst, we chose a point (x,y) in the do-
main of f (x,y) such thatY(x),y<Max@Y(x)#. In the vi-
cinity of this point Eq.~1! is reduced to

e

y2

d

dy
~y4f 0!1y f050. ~9!

The solution of Eq.~9!, f 0(y)5Cy2421/e, is not equal to
zero at any finitey5Y(x), therefore,Y5const. This asymp-
totics of EDF, obtained as the solution of Eq.~1! might not
be practically important for purely elastic collisions whe
e<1024. However if one wants to use Eq.~1! for e;0.03,
and the plasma pressure is about 0.1 Torr, the bounday
>e21/4 means that all electrons with an energy greater tha
eV will be in the nonphysical region. In this work we do n
assumef (x,y)>0 for all x,y, or assume compact suppo
for f (x,y).

Set ~5! allows the expansion off l(y) in Taylor’s series

f l~y!5(
i 50

`

ai
ly2i ,

where the coefficientsai
l can be expressed throughai

0:

AeF l ~2i 112 l !

2l 21
ai

l 211
~ l 11!~2i 121 l !

2l 13
ai

l 11G
5ai 21

l , l ,i 51,2,... ~10!

and

l ~12 l !

2l 21
a0

l 211
~ l 11!~112!

2l 13
a0

l 1150. ~11!

Equation~6! implies

a0
150, ai

1523Aeai 21
0 , i>1

and therefore one can easily see from Eq.~11! that, for all
l>1,

a0
l 50. ~12!

All higher harmonics vanish aty50, except a0
05 f 0(0)

5 f (x,0).
In the conventional approximation scheme, one negle

all the higher harmonicsf l(y) starting from l 52. This re-
duces the set of equations~5! and ~6! to the equation
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~113y2t !
d f0

dy
13y3f 050,

whose solution for the particular case of zero backgrou
temperaturet50 is the well known Druyvesteyn’s distribu
tion

D~y!5expS 2
3

4
y4D . ~13!

We shall show here how good approximation~13! is for a
computation of the main moments of the EDF. The m
macroscopic plasma parameters are the electron drift

w5S eE

mNs D 1/2

e1/4E
0

`

y5S f 01
t

y

d f0

dy Ddy ~14!

and the mean energy

W5
eE

2NsAe
E

0

`

y4 f 0~y!dy, ~15!

where we set the normalization

E
0

`

y2 f 0~y!dy51. ~16!

All these quantities can be evaluated through the first sev
moments off 0(y).

III. MOMENTS OF THE HARMONICS

Using Eq.~6! with t50, Eq. ~5! for l 51 has the form

d f0

dy
13y3f 052

2

5 S d f2

dy
1

3

y
f 2D . ~17!

The formal solution of Eq.~17! is

f 0~y!5AD~y!2
2

5
f 2~y!1

6

5 E
c

yS s32
1

sD D~y!

D~s!
f 2~s!ds

~18!

whereA5@ f 0(c)1 2
5 f 2(c)#/D(c), and parameterc.0 is ar-

bitrary.
We want to evaluate the moments

Ml~q!5E
0

`

yqf 1~y!dy, M0~q![M ~q!, M ~2!51.

One needs@see Eqs.~14! and ~15!# only M (3), M (4) and
M (5) for the computation ofw andW. Equation~17! yields

qM~q21!23M ~q13!52
32q

5
M2~q21!, q.0.

~19!

In Ref. @5# we derived more general relations than Eq.~19!
for tÞ0, where we assumedf 0(y)>0. Manipulating them
and using the convexity of lnM(q) for the interpolations, we
obtained the two-sided bounds onM (3), M (4), andM (5),
d

n

al

and therefore forw andW, with an accuracy of about 10–
20 %. We shall obtain much better bounds here for sm
enoughe.

Setting the notation

U~q!5E
0

`

yqD~y!dy5
1

4 S 4

3D ~q11!/4

GS q11

4 D ,

we now introduce the Druyvesteyn distribution with th
same normalization~16! as f 0(y),

f D~y!5
1

U~2!
D~y!,

and its moments

MD~q!5
1

U~2!
U~q!. ~20!

Our goal is to show that forq52, 3, 4, and 5, the difference
between the momentsM (q) of the~unknown! solution f 0(y)
and their Druyvesteynian counterparts,MD(q), scale ase

uM ~q!2MD~q!u<p~q,e!e, ~21!

and calculate upper bounds for prefactorsp(q,e). Unfortu-
nately this requires quite a laborious technique which
volves not only all momentsMl(q), but also the moments o
productsf l(y) f n(y) and absolute valuesu f l(y)u.

We may evaluate the moments by the direct integration
Eq. ~18!. Taking c51 and using the estimation of incom
plete gamma functions@10#, we obtain, for21,q<7, the
inequality

uM ~q!2AU~q!u< 4
5 M̄2~q!1C~q!M̄2~3!, ~22!

where

M̄2~q!5E
0

`

yqu f 2~y!udy,

C~q!5MaxH 0, 2
q23

15 S 4

3D ~q27!/4

GS q23

4 D J .

Taking q52 in Eq. ~22!, we find bounds forA:

12 4
5 M̄2~2!<AU~2!<11 4

5 M̄2~2!. ~23!

With the help of Eq.~23!, inequality ~22! for all q can be
replaced by a stronger one:

uM ~q!2MD~q!u<
4

5
M̄2~q!1C~q!M̄2~3!

1
4U~q!

5U~2!
M̄2~2!. ~24!

Inequality ~24! shows that estimate~21! can be obtained if
the integralsM̄2(q) are of order ofe comparing withM (q),
or even generally iff 2 is of ordere f 0 . The computation of
the upper bounds onM̄2(q) is sketched in the Appendix.
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IV. BOUNDS FOR THE MOMENTS

We can now solve the problem of bounding the mome
of the EDF around the momentsMD corresponding the nor
malized Druyvesteynian. This requires relation~24!, where
the left side terms can be bounded from above, while for
Dryuvesteyn distribution we have, in virtue of Eq.~20!

MD~3!'0.8769, MD~4!'0.8541, MD~5!'0.8974.
~25!

Using Eq.~A1! with p51, Eqs.~A11!–~A13! and~A32!, we
easily find

M̄2~2!<S 2p

3)
@M22~3!1M22~6!# D 1/2

<S 2p

3)
@M22~3!1M22

1/4~3!M22
3/4~7!# D 1/2

<eS 2p

3)
M00~3!@B~3!1B1/4~3!B3/4~7!# D 1/2

<
10.8e

1220e
, ~26!

and, in the same way,

M̄2~4!<eS p

7 sin~p/7!
M00~3!@B~3!1B1/4~7!B3/4~11!# D 1/2

<
16.2e

1220e
, ~27!

M̄2~5!<eS p/9

sin~p/9!
M00~3!@B~3!1B1/2~11!B1/2~13!# D 1/2

<
24.3e

1220e
. ~28!

Substituting Eq.~A32! into Eq. ~A31! gives

M̄2~3!<
12.5e

1220e
. ~29!

With the help of inequalities~A32!, ~26!–~29!, and~24! we
obtain finally the prefactors in Eq.~21!,

p~3,e!5
17.6

1220e
, p~4,e!5

25.3

1220e
, p~5,e!5

32.3

1220e
,

~30!

uniformly for e<0.02.

V. DISCUSSION

We compare the bounds~21! and~30! with the results of
Ref. @5# for the case corresponding to our present calculat
By virtue of Eqs.~14! and ~15!, the drift velocity and mean
energy of electrons whent50 ~negligible background tem
peratureT) are, respectively,
s

e

n.

w5e1/4S eE

mNs D 1/2

M ~5!, W5
eE

2NsAe
M ~4!.

Using Eqs.~21!, ~30!, and~25!, we can write these quantitie
in terms of their Druyvesteyn’s approximations

U w

wD
21U< 36e

1220e
, U W

WD
21U< 30e

1220e
. ~31!

Bounds~31! are valid whene,0.02 and alsoT50, i.e., the
strong field regimekT!e21/2eE/Ns. For the same condi-
tions the results of Ref.@5# give

2~0.06310.5e!<
w

wD
21<0.114,

2~0.1721e!<
W

WD
21<0.171. ~32!

For small e, which is valid for purely elastic processe
the present bounds not only show convergence of
Druyvesteyn approximation scheme, but also become v
precise. The errors according to Eq.~31! do not exceed 3.7%
for e50.001, or 0.9% fore corresponding to a helium
plasma and only a small fraction of one percent in heav
gases; however, our results can be applied for the real g
only qualitatively. In a more general setting, treatinge as a
parameter of energy loss in slightly inelastic collisions w
can also consider a situation whene;0.003– 0.1. In this case
one can use Eq.~32!, where the estimates match those of E
~31! at the low end of the range. Bounds~32! have an ad-
vantage of being almost independent ofe, and they are even
better than Eq.~31! whene.0.003. However, one should b
very cautious in using the kinetic equation in its different
form for such values ofe.

Our rigorous results are obtained for the spatially hom
geneous stationary plasma at a zero~very low, kT
!eE/NsAe) temperature of the background gas, and a c
stant cross section of the electron-neutral particle collisio
We use the method of moments, whose generalization
velocity dependent collisions is straightforward when t
cross section can be described by a power law

s~v !5s0S v
v0

D r

, r>21, ~33!

or even a linear combination of functions~33!, which gives a
freedom in modelings(v). The chain of equations for the
harmonics of an EDF similar to Eq.~5! was derived in Ref.
@5#, as well as expressions forwD andWD . We do not see
any serious obstacles to expanding our method in this c
and our preliminary study shows that the errors in using
two-term approximation for Eq.~33!, uw/wD21u and
uW/WD21u, scale ase here too. While we do not know how
to treat a more generals(v), the present result and th
promising perspective for model~33! give us confidence in
the conventional scheme of computation for smalle.

The caseTÞ0 ands in form ~33! can be studied by the
method of moments~see Ref.@5#!. It seems that one can
obtain similar estimates straightforwardly, though the cal
lation of prefactors might be more difficult. Regarding no
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stationary and spatially inhomogeneous problems, we n
that if the characteristic time and length intervals of inhom
geneity are significantly larger than

e21/2

Ns
, and e23/4S m

eENs D 1/2

,

respectively, then the swarm behaves locally as it were
tionary and homogeneous, so the present results can b
plied locally. When these requirements are not satisfied,
electron distribution function will have a more complicat
structure, and should be studied by different methods.
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APPENDIX

1. Binary moments

We cannot estimateM̄2(q) in Eq. ~24! directly; instead,
using the Helder inequality

E yqu f l~y!udy

<S E ypdy

11yp12 E y2q2p~11yp12! f l
2~y!dyD 1/2

,

we express the upper bound onM̄2(q),

M̄ l~q!<S p/~p12!

sin@p/~p12!#
@Mll ~2q2p!1Mll ~2q12!# D 1/2

,

p.21, ~A1!

through the binary moments

Mkl~q!5E
0

`

yqf k~y! f l~y!dy. ~A2!

Together withMkl(q), we will use strictly positive moments
M̄ kl(q), which are computed with the absolute values
f k(y) and f l(y) in Eq. ~A2!.

Let us multiply each equation~5! by a corresponding term
f l(y)yq21/(2l 11), integrate overy, and find the infinite
sums froml 52 to `. The result,

1

5 S 122e
52q

5 D E
0

`

yqf 2
2dy1(

l 53

`
1

2l 11 E
0

`

yqf l
2dy

5
2e

5 E
0

`

~3y421!yqf 0f 2dy1Ae~32q!

3(
l 52

`
l 11

~2l 11!~2l 13!
E

0

`

yq22f l f l 11dy, ~A3!

is valid for q>22. In particular, whenq53, Eq. ~A3! re-
duces to
te
-

a-
ap-
e

.

f

(
l 52

`
1

2l 11
Mll ~3!,

2e

524e
@3M02~7!2M02~4!#.

~A4!

Keeping in mind the evaluation ofM22(q), we shall find
upper bounds for the set of series with non-negative term

P~q![M22~q!1
5

2 (
l 53

`
1

2l 11
Mll ~q!,

starting fromq53 and adding 4 to each previousq succes-
sively. The initial term withq53 can be obtained from Eq
~A4!:

P~3!<2P~3!2M22~3!<
2e

124e/5
@3M02~7!2M02~3!#.

~A5!

Using, in Eq.~A3!, Cauchy’s inequality in the form

Ae~ l 11!

~2l 11!~2l 13!
yq22f l f l 11

<
3

2A35
S r

eyq24f l
2

2l 11
1

1

r

yqf l 11
2

2l 13 D , l>2, r .0,

and takingr 53(q23)/A35, we obtain forq>5 the recur-
sive inequality

P~q!<2e@3M02~q14!2M02~q!#1
9e~q23!2

35
P~q24!.

~A6!

By analogy with Eq.~19! one has an exact relation

3M00~q14!2
q11

2
M00~q!

52
q22

5
M02~q!2

6

5
M02~q14!12

q25

25
M22~q!,

~A7!

which can be obtained by simple manipulations with E
~17!. Equation~A7! together with inequalities~A5! and~A6!
will be used systematically for finding bounds on mome
M22 in terms ofM00 in the form

M22~q!,B~q!e2M00~3!, B>0. ~A8!

In bounds~A8! we need obviously only a rough estimate f
M00(q), but it must be expressed in terms of a known fun
tion, D(y) in our case.

We multiply Eq.~18! ~with c51) by f 2(y), and integrate
with the factoryq (q.21):
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M00~q!5AE
0

`

yqD~y! f 0~y!dy2
2

5
M02~q!

1
6

5 E
0

`

f 0~y!yqdyE
1

yS s32
1

sD D~y!

D~s!
f 2~s!ds.

~A9!

In the last term of Eq.~A9!, by splitting the interval of the
first integration iny51, changing the order of integration
and applying Helder’s inequalities, the upper bound for
integral can be estimated as

S M00~3!

2q22 D 1/2E
0

1

~12s4!sq22e3s4/4u f 2~s!uds

1S M00~2q23!

6 D 1/2E
1

`

~s32s21!u f 2~s!uds.

Noticing that (12s4)exp(3s4/4)<1, we obtain

M00~q!<AAV~q!M00~q!1
2

5
uM02~q!u

1
6

5 F S M00~3!

2q22 D 1/2E
0

1

sq22u f 2~s!uds

1S M00~2q23!

6 D 1/2E
1

`

s3u f 2~s!uds.G ,
~A10!

where

V~q!5E
0

`

yqD2~y!dy5
1

4 S 2

3D ~q11!/4

GS q11

4 D ,

and we used the convexity of ln@M̄lk(q)#, implying the rela-
tions

M̄ lk~q!<AMll ~p!Mkk~r !, p1r 52q, p,r>0,
~A11!

Mll
a1b~q!<Mll

b ~q2a!Mll
a ~q1b!, q>0, a,b>0.

~A12!

We apply inequalities~A11! and ~A12! for the interpolation
because the estimations of momentsMlk(q) will be done for
several discrete values ofq.

Let us outline the following steps: in Appendix A 2 quite
a tricky manipulation with relations~A5!–~A7! allows us to
find the upper bounds onM22(q) for q53, 7, 11, and 13 in
terms ofM00(3). Using these bounds and Eq.~A10! in Ap-
pendix A 3, we evaluate the upper bound forM00(3) through
the Druyvesteyn moments~20!, i.e., in dimensionless num
bers.

2. Estimates forM 22„q…

Here we calculateB(q) for Eq. ~A8!, and afterwards ex-
pressM00(3) throughU andV with the help of Eq.~A10!.
Inequalities ~A5! and ~A6! together with Eqs.~A11! and
~A12! allow us to find bounds onM22(q) in terms of
e

M00(q), M00(q14), andM00(q18). The crucial point here
is to reach the closure and evaluateM00(q14) through
M00(q). The procedure will require several steps of rec
sion, and require using the positivity of allMll (q) in in-
equalities~A5! and ~A7!. For q53 this is not difficult: by
substituting

3M02~7!2M02~3!5 5
2 @2M00~3!23M00~7!#2 2

5 M22~3!.0
~A13!

into Eq. ~A5!, one obtains

M00~7!,
2

3
M00~3!2

P~3!

15e
. ~A14!

For q57, combining Eqs.~A5! and ~A6!, we can write

P~7!<8eM02~7!1
4e

5
M22~7!15e@4M00~7!23M00~11!#

1
144e

35
P~3!. ~A15!

Using Cauchy’s inequality

8e f 0f 2<
1

124e/5
~4e f 0!21~124e/5! f 2

2

for the estimation ofM02(7):

8eM02~7!<
16e2

124e/5
M00~7!1S 12

4e

5 D M22~7!,

from Eq. ~A15! we derive

M00~11!<
4

3~124e/5!
M00~7!1

48

175
P~3!. ~A16!

Now, using Eq.~A11! in Eq. ~A5!, we have

P~3!<
2e

124e/5

3A@9M00~11!26M00~7!1M00~3!#P~3!.

~A17!

The solution of two inequalities~A16! and ~A17! with the
help of Eq.~A14! yields the upper bounds

M22~3!<P~3!<20S 11
3

2
e D e2M00~3!, ~A18!

M00~11!,
4

3
M00~7!1

32

45
e~119e!M00~3!,

or

M00~11!,
8M00~3!

9~124e/5!
, ~A19!
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where here and everywhere further we assumee<0.02 for a
simplification of the estimates. Relations~A15!, ~A17!, and
~A18!, in addition to Eq.~A14!, allow us to obtain the lower
bound onM00(7),

2

3
@122e~113.4e!#<

M00~7!

M00~3!
<

2

3
. ~A20!

This completes the caseq53. In order to have an uppe
bound ~A8! for M22(7), andupper bound onM00(15), we
need to go toq511 in Eqs.~A6! and ~A7!:

P~11!<2e@3M02~15!2M02~11!#1
576e

35
P~7!,

M00~15!22M00~11!

5
6

5
M02~11!2

2

5
M02~15!1

4

25
M22~11!.

A technique similar to previous one yields first

M00~15!,2F11
32e

15~1212e/5!GM00~11!1
192

175
P~7!,

~A21!

and after returning toq57, the bound onP(7),

P~7!<
136

3
e2

117e

1240e2 M00~3!. ~A22!

The same method forq515 in Eqs.~A6! and~A7!, returning
to P(11), leads, after quite trivial but intricate computation
to inequalities

M00~19!<
8

3

122e/5

124e
M00~15!1

432

175
P~11! ~A23!

and

P~11!<
1184

9
e2

1122e

1289e2 M00~3!. ~A24!

We need moments fromM (2) to M (5), andtherefore,
according to Eqs.~24! and~A1!, upper bounds onM22(q) up
to q512. This permits us to make a shorter step tow
P(13), again applying the same technique: begin by jump
in Eq. ~A6! from P(13) to P(17), and use Eq.~A7! and
Cauchy’s inequality to calculate the bound

M00~21!<F31
196e

3~5224e!GM00~17!1
84

25
P~13!;

then return toq513 in Eq. ~A6! and there use Eqs.~A11!
and ~A12! to obtain, eventually

P~13!,249e2
1170e

12121e2 . ~A25!

The main results of this section are

B~3!520~111.5e!, B~7!5
136

3

117e

1240e2 ,
,

d
g

B~11!5
1184

9

1122e

1289e2 , B~13!5249
1170e

12121e2

~A26!

uniformly for all e<0.02.

3. Evaluation of M 00„3…

Equations ~A26! together with inequalities~24!, ~A1!,
~A11!, and~A12!, open the possibility to estimate the devi
tions of momentsM (3), M (4), and M (5) from their
Druyvesteyn approximations in terms ofeM00(3). We can-
not expressM00(3) throughA and V(3) directly from Eq.
~A10! because forq53 the termM̄2(1) emerges in Eq.
~A10! whose estimation with the help of Eq.~A1! requires
M22(2). Instead, using Eqs.~A10! and ~A20!, we estimate
the momentM00(5),

M00~5!<AAV~5!M00~5!1
2

5
uM02~5!u

1
3

5&
M̄2~3!AM00~3!, ~A27!

and find the upper bound onM00(3) in terms ofM00(5).
One needs inequalities~A12!, ~A19!, and~A20! for this:

M00~7!<M00
2/3~5!M00

1/3~11!,

and therefore

M00~5!>S 124e/5

3 D 1/2

@122e~113.4e!#3/2M00~3!.

~A28!

Now we expressM02(5), M̄2(3), andA in Eq. ~A27! in
terms ofM00(3) andM00(5). By virtue of Eqs.~23!, ~A1!
~with p51!, and~A11!,

A<
1

U~2! H 11
4e

5 S 2p

3)
M00~3!@B~3!

1B1/4~3!B3/4~7!# D 1/2J . ~A29!

Using Eq. ~A1! with p52q23, Eqs. ~A8!, ~A11!, and
~A12!, we obtain

M̄2~3!<eS p

5 sin(p/5)
M00(3)[B(3)

1[B3/4(7)B1/4(11)]D 1/2

,

uM02~5!u<eAM00~5!M00~3!@B~3!B~7!#1/4.
(A30)
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The functionsB increase withe, therefore, in Eq.~A26! we
may takee50.02 in order to have uniform estimates f
smallere:

B~3!'20.6, B~7!'52.5, B~11!'196.4, B~13!'628,
~A31!

and we are equipped for boundingM00(3). Inequalities
~A27!–~A31! yield, finally,
M00~3!,
1.56

~1220e!2 for e<0.02. ~A32!

Evaluation of the momentM00(3) in Eq. ~A32! is not very
accurate@the bound here is 35%, larger thanV(3)/U2(2)#
because we exploited the interpolation~A28! for ‘‘large’’
momentsM00. But this only slightly affects bounds~30!.
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