PHYSICAL REVIEW E VOLUME 58, NUMBER 1 JULY 1998

Swarm approximation for weakly ionized plasmas
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Upper bounds on errors in the moments of the electron velocity distribution function, coming from using the
conventional two term approximation scheme to solve the swarm kinetic equation, are found in terms of the
mass ratio of an electron and a neutral particle. The results significantly improve existing estimates, and show
that the conventional approximation is highly accurate for elastic collisions between electrons and neutrals. The
applicability of the collision integral in a differential form is discussg81063-651X98)11907-4
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I. INTRODUCTION Il. PROPERTIES OF THE REDUCED BOLTZMANN
EQUATION
The study of the electron distribution functi¢gDF) in Let us consider a weakly ionized plasma subjected to a

weakly ionized plasmas subjected to external fields waspatially homogeneous electric field of intensity The one
started at the beginning of this century by Pidd{itk after ~ Species neutrals, whose number density iand the mass of
Townsend experimentally found an electron mean energg particle of which isM, are assumed to have a Maxwellian
greatly exceeding the energy of neutral gas particles. Assunyelocity distribution with a temperaturg; the electron col-
ing a very low electron density, and considering only elastidiSions with neutrals are spherically symmetric and elastic
collisions of the electron with neutral particles, this problemWith a total cross section(v). If mis the mass of an elec-
is usually reduced to solving the Boltzmann equation with{fon, & straightforward expansidi] of the Boltzmann col-
the collision integral replaced by a differential operator dueliSion integral in terms of th2e small parameter m/M, ne-

to the great disparity in the masses of the colliding particlesglec'[".19 all terms Of. ordee”, yields the following kinetic
Keeping only the two lowest order terms in the Legendreequ"jltlon for the stationary EDRx,v)
series expansion of the EDF made it possible for Druyvest- oE o 1-x2 of

eyn in 1930 to obtain the distributidr2] for velocity inde- — —— (x — —
pendent collision cross sections at zero ambient temperature. mN 1 dv vooX
This was generalized lat¢B] by Davydov. A detailed de- 1 d
scription of this technique can be found in Ré4]. The =2 d
simplicity and effectiveness of this method made the “two-

term” approximation very popular, and researchers in nu- (1)
merous publications have reported about its successful appli- , . o

cations with constant and time varying electric and magnetiél€rex is the cosine of the angle between the direction of the
fields, and even for treating “slightly” inelastic collisions €l€ctron velocityv and the field direction, anéy(v) is the
when an electron loses a relatively small fraction of its en_spherlcally symmetric part of (X,0). Somet|mes[8] €13

ergy in collisions with molecules having rotational and vi- f[reated as a velocity dependent effect|\{e pargmeter represent-
brational degrees of freedom. ing the energy transfer in almost elastic collisions.

The accuracy of this two-term calculation scheme is The formal expansion of the collision integral énis du-

learly verv important. Al th ing it hav mmented nbious mathematically, but a kinetic equation very similar to
clearly very iImportant. 0S€ using it have commented o Eq. (1) can be obtained in different ways. The derivation in
this to some degree. In our recent w¢H, we found that the

- ) i Ref.[9] is based on the two-term Legendre expansion of the
electron mobility and stationary energy given by the tWo-gpE ang the Fokker-Planck approximation. The differential
term approximation cannot differ by more than2% and  gperator on the right side of E¢L) is applied not td, but to
+18%, respectively, from their exact values when the backf(Xw), though this does not make large difference because
ground temperature can be neglected and the collision crogge higher harmonics df(x,v) are also of a higher order in
section is energy independent. These rather rough bounds a¢ewe shall work with Eq(1), and compare its solution with
valid for all mass ratios less than abolyt However, it was the conventional one, assuming the existence of a solution
shown via Monte Carlo simulatiof6] for a helium plasma f(x,v) of Eq. (1) which decays rapidly as— o and closely
that the accuracy is significantly better. Here we rigorouslydescribes the physical EDF. The collision parameters here
prove that the error should scale like the mass ratio of amre set to be velocity independemnt=const ande= const.
electron to a neutral particle and calculate the prefactors ex@ur results will imply that one cannot hope to noticeably
plicitly. improve the solution of Eq1) by replacing the conventional
approach by any more advanced technique when the param-
eter of inelasticity(e here is small enough.
*Electronic address: rokhlenk@math.rutgers.edu From now on we use dimensionless quantities

+vo(v)(fo—1f).

ea(v)v4(f +k—T%)
" mu duv
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Equation(1) for f(x,y) now can be written in the form

af  1—x2 of
—VE XW y &
e 2 @l alg 4 Lo +y(fo—F).
fyz dy YiTo y dy Y(To .
The Legendre series expansion
foy) =2 fiy)Pi(), (3)
where
214+1 (1
f|(y)=T f(x,y)P(x)dx, for 1=0,1,2...,
-1
4)

converts Eq.(2) into the set of coupled equations for the
Legendre harmonics
df,_, I-1
- fi1
dy y

df., 1+2
dy y

Ve

|
|

I+1
T

=y fi(y),

o

1=1,2,... . 5)
In addition (for 1 =0) there is one more equation
df; 2
dy 'y

t dfo)
+__
y dy
whose solution represents;(y) exclusively in terms of

fo(y):

In Eq. (6), we used the decay df(x,v) at infinity to elimi-
nate the constant of integration.

1d
f,=—3V — 4(f
1 Gyzdy Y To

t dfy ©
y dy

f1(y)=—3ey? fo+

The original Boltzmann equation has only a non-negative
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fl(y)|=(21+1)fo(y), (7)
becauséP,(x)|<1. By virtue of Eqs.(6) and(7), we have
t dfy

y dy

fo(y)=ey?|foly)+ : (8)

This inequality implies that whey> e~ the tail of the
EDF is a Maxwellian with the temperature of neutrals. When
T=0 (this is quite common in applications because the elec-
trons easily gain a much higher energy than the background
gas, fo(y) is a function with compact support likE(x,y)

and all harmonicd(y). Let us show that the boundary of
the region wherd (x,y)#0 is y=const. Assuming the op-
posite,y=Y(x) #const, we chose a poink{y) in the do-
main of f(x,y) such thatY(x)<ys=Max Y(x)]. In the vi-
cinity of this point Eq.(1) is reduced to

e d .
y2dy (y*fo) +yfo=0. 9)
The solution of Eq.(9), fo(y)=Cy * ¢ is not equal to
zero at any finitey=Y(x), therefore)Y =const. This asymp-
totics of EDF, obtained as the solution of E@) might not
be practically important for purely elastic collisions when
e<10"% However if one wants to use E¢) for e~0.03,
and the plasma pressure is about 0.1 Torr, the boungary
= ¢~ Y means that all electrons with an energy greater than 1
eV will be in the nonphysical region. In this work we do not
assumef(x,y)=0 for all x,y, or assume compact support
for f(x,y).

Set(5) allows the expansion dfi(y) in Taylor's series

©

fi(y)=2>, a

2i

y ’

where the coefficienta) can be expressed througf:

golution, and if Eq(2) is a good version of the kinetic equa- Equation(6) implies
tion then f(x,y)=0 everywhere. In a weaker sense, one

might allow a “nonphysical” behavior of (x,y) somewhere
in its domains— 1<x=<1, and Gsy< if this does not no-
ticeably affect meaningful integrals é{x,y). The long his-

2i+1-1) , , (+D)2i+2+) .,
Ve =1 a 21+3 i
=al_,, Li=12,.. (10)
and
(-1 , , (+1)2+2) .,
21-1 0 21+3 o =0 (1)
ai=0, a'=-3Jea?, i=1

and therefore one can easily see from Edl) that, for all

tory of using Eq.(1) successfully suggests that, at least for|=1,
small ¢, this is correct. Nevertheless it is easy to show that

the time dependent analog of EG) with o# const does not
conserve positivity for special initial conditions. Therefore,
one should be careful using E@l), especially when the
parameter of inelasticitye of the electron collision is not
very small.

Let us explore here the situation whéfx,y)=0, as we
did in Ref.[5]. It is obvious that

ah=0. (12)
All higher harmonics vanish ay=0, except a8=f0(0)
=f(x,0).

In the conventional approximation scheme, one neglects
all the higher harmonic$,(y) starting froml=2. This re-
duces the set of equatios) and (6) to the equation
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dfy
2 3¢ _
(1+3yt) dy+3y fo=0,
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and therefore fow andW, with an accuracy of about 10—

whose solution for the particular case of zero background Setting the notation

temperatura=0 is the well known Druyvesteyn’s distribu-

tion

3
—\y4

7 y ) (13

We shall show here how good approximatitk8) is for a

D(y)=exp( -

computation of the main moments of the EDF. The main

macroscopic plasma parameters are the electron drift

eE 1/2 o
— 1/4
W (mN(T € fo y

f+tdf)d (14)
y dy y

and the mean energy

f dy, 15
ZNU[fy oy)dy (15
where we set the normalization

fo y? fo(y)dy=1. (16)

20 %. We shall obtain much better bounds here for small
enoughe.
(" OI_1 4\ @b/ Fq+1

we now introduce the Druyvesteyn distribution with the
same normalizatioil6) asfy(y),

! D
fo(y)= VD) (y),

and its moments

1
Mp(Q)= 5+ U2 u(q). (20)

Our goal is to show that fay=2, 3, 4, and 5, the differences
between the momentd (q) of the (unknown) solutionfy(y)
and their Druyvesteynian counterpatép(q), scale as
IM(q)—Mp(a)|<p(q,e)e, (21
and calculate upper bounds for prefactp(g],e). Unfortu-

nately this requires quite a laborious technique which in-
volves not only all moment®,(q), but also the moments of

All these quantities can be evaluated through the first severglroductsf,(y)f,(y) and absolute valugd,(y)|.

moments off o(y).

IIl. MOMENTS OF THE HARMONICS
Using Eq.(6) with t=0, Eq.(5) for =1 has the form

df, 3 _ Z(dfz 3f)
d—y+3y o——g d_y+§ 2. (17)
The formal solution of Eq(17) is
2 6 D
foy) =AD& fan £ ['[s1- ] B2 tyspas
(18

whereA=[fq(c)+2f,(c)]/D(c), and parameter>0 is ar-
bitrary.
We want to evaluate the moments

Mo(q)=M(a), M(2)=1.

M (q)= f:yqn(wdy,

One need$see Eqgs(14) and (15)] only M(3), M(4) and
M(5) for the computation ofv andW. Equation(17) yields

gqM(gq—1)—-3M(q+3) g>0.

(19

3—q
22? M,(q—1),

In Ref. [5] we derived more general relations than ELP)
for t#0, where we assumet}(y)=0. Manipulating them
and using the convexity of INM(q) for the interpolations, we
obtained the two-sided bounds dh(3), M(4), andM(5),

We may evaluate the moments by the direct integration of
Eqg. (18). Takingc=1 and using the estimation of incom-
plete gamma functionglQ], we obtain, for—1<q<7, the
inequality

IM(q)—AU(Q)|<£Mo(@)+C(@M4(3), (22
where
I\WZ(Q):JO yfo(y)[dy,
q—3 [4\@ 7" (q—3
Takingg=2 in Eq.(22), we find bounds foA:
1—4M,(2)<AU(2)<1+iMy(2). (23

With the help of Eq.(23), inequality (22) for all g can be
replaced by a stronger one:

4 — _
[M(a) —Mp(a)|= g Ma(a) +C(q)M5(3)
(Q)

(24)
Inequality (24) shows that estimaté1) can be obtained if
the integraldM ,(q) are of order ofe comparing withM (q),
or even generally if, is of orderefy,. The computation of
the upper bounds ol ,(q) is sketched in the Appendix.



PRE 58

IV. BOUNDS FOR THE MOMENTS

We can now solve the problem of bounding the moments
of the EDF around the momentd corresponding the nor-

malized Druyvesteynian. This requires relati@#), where
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eE
2No/e

Using Egs(21), (30), and(25), we can write these quantities

1/2
—) M(5), W= M(4).

— 4
=€
(mNO'

the left side terms can be bounded from above, while for thén terms of their Druyvesteyn’s approximations

Dryuvesteyn distribution we have, in virtue of EQO)

Mp(3)~0.8769, Mp(4)~0.8541, Mp(5)~0.8974.
(25

Using Eq.(Al) with p=1, Egs.(A11)-(A13) and(A32), we
easily find

1/2
2

33 [M2A3)+Myy(6)]

Mz(z)s(

27T 1/2
g(ﬁ[M22(3)+M%/24(3)Mg/24(7)])

- 2_77 1/4 3/4 )1/2
\6(3{3 Moo(3)[B(3)+B*%(3)B>4(7)]

10.&
1-20e’

=

(26)

and, in the same way,

_ 1/2
M2(4)$€(Wﬂ-’ﬂ/7) Moo(3)[B(3)+31/4(7)53/4(11)])

_ 162

T 1-20e’ 27)
— T 1/2
|v|2(5)se(W MOO(S)[B(3)+81’2(11)81’2(13)])

_ 243

T 1-20e” (28
Substituting Eq(A32) into Eq. (A31) gives

With the help of inequalitie$A32), (26)—(29), and (24) we
obtain finally the prefactors in Eq21),

32.3
1-20€’
(30

PEe)= 120 P49~ 155

p(5.€)=

uniformly for e<0.02.

V. DISCUSSION

We compare the bound21) and(30) with the results of

3

1< 30e
<1=

6e W
1< .
20’ |Wp 1—20e

w
’ (31

Wp
Bounds(31) are valid whene<0.02 and alsa =0, i.e., the

strong field regimekT<e Y?eE/No. For the same condi-
tions the results of Ref5] give

w
—(0.063+0.5¢)< — —1=<0.114,
Wp

W
—(0.172+ e)$VTD—1s0.171. (32

For small e, which is valid for purely elastic processes,
the present bounds not only show convergence of the
Druyvesteyn approximation scheme, but also become very
precise. The errors according to E§1) do not exceed 3.7%
for €=0.001, or 0.9% fore corresponding to a helium
plasma and only a small fraction of one percent in heavier
gases; however, our results can be applied for the real gases
only qualitatively. In a more general setting, treatings a
parameter of energy loss in slightly inelastic collisions we
can also consider a situation wher 0.003—-0.1. In this case
one can use Eq32), where the estimates match those of Eq.
(31) at the low end of the range. Boun¢32) have an ad-
vantage of being almost independentepfind they are even
better than Eq(31) whene>0.003. However, one should be
very cautious in using the kinetic equation in its differential
form for such values ot.

Our rigorous results are obtained for the spatially homo-
geneous stationary plasma at a zeteery low, kT
<eE/Na/e) temperature of the background gas, and a con-
stant cross section of the electron-neutral particle collisions.
We use the method of moments, whose generalization to
velocity dependent collisions is straightforward when the
cross section can be described by a power law

v

(T(v)=0'0( ), r=-1, (33

Vo
or even a linear combination of functiof®3), which gives a
freedom in modelingr(v). The chain of equations for the
harmonics of an EDF similar to E@5) was derived in Ref.

[5], as well as expressions fary and Wy . We do not see
any serious obstacles to expanding our method in this case,
and our preliminary study shows that the errors in using the
two-term approximation for Eq.(33), |w/wp—1| and
|W/Wp—1], scale as here too. While we do not know how

to treat a more generak(v), the present result and the
promising perspective for modéB3) give us confidence in
the conventional scheme of computation for snaall

Ref.[5] for the case corresponding to our present calculation. The caselT#0 ando in form (33) can be studied by the
By virtue of Egs.(14) and(15), the drift velocity and mean method of momentg§see Ref[5]). It seems that one can
energy of electrons whet=0 (negligible background tem- obtain similar estimates straightforwardly, though the calcu-
peratureT) are, respectively, lation of prefactors might be more difficult. Regarding non-
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stationary and spatially inhomogeneous problems, we note © 1 2¢
that if the chet_ragtferistic time and length intervals of inhomo- > 11 M”(3)<m [BMg(7)—Mgo(4)].
geneity are significantly larger than 1=2 (Ad)
671/2 m 1/2
, and € ¥ ——| |, o , .
No eENo Keeping in mind the evaluation dfl1,5(q), we shall find

upper bounds for the set of series with non-negative terms,
respectively, then the swarm behaves locally as it were sta-

tionary and homogeneous, so the present results can be ap- 5~ 1
plied locally. When these requirements are not satisfied, the P(Q)=Mofq) + = >, = M;(q),
electron distribution function will have a more complicated 2= 21+1

structure, and should be studied by different methods.
starting fromg=3 and adding 4 to each previogssucces-
ACKNOWLEDGMENTS sively. The initial term withq=3 can be obtained from Eq.
(A4):
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Lebowitz. This work was supported by the Air Force Office

of Scientific Research Grant No. AFOSR-95-0159. P(3)<2P(3)~My(3)< — /5 [3Mgy(7)— Moy 3)].
APPENDIX (A5)

= B_inary moments Using, in Eq.(A3), Cauchy’s inequality in the form
We cannot estimat®,(q) in Eq. (24) directly; instead,

using the Helder inequality \/;(| +1)

_ YT a2
j iy Gi+nai+a) Y N
yalfity)|dy
3 fyq_4f|2+1yqf|2+1 =2 >0
1/2 = = , 1=2, 1>0,
<( ypdy+ yzq—p(1+yp+2)f|2(y)dy) 235\ 2l+1 ' r 21+3
1+yP*2 ’

and takingr =3(q—3)/./35, we obtain forq=5 the recur-

we express the upper bound dh,(q), sive inequality

V= T2 ag-py e Mu2a+ 2]

<|= - , —3)2

 Isital(pr2) T ” P(Q)=26[3Mad 0+ 4)~Mod )]+~ o= P(q4)
p>-—1, (A1) (AB)

through the binary moments ) )
By analogy with Eq.(19) one has an exact relation

Mi(a)= fo yaf(y) fi(y)dy. (A2) q+1
3Moo(q+4) — - Moo(Q)
Together withM(g), we will use strictly positive moments
M (q), which are computed with the absolute values of :2E M o )_
f(y) andf,(y) in Eq. (A2). 5 Vo

Let us multiply each equatiof®b) by a corresponding term
fi(y)y9 Y(21+1), integrate ovely, and find the infinite
sums froml =2 to «. The result,

q—5
MoAq+4)+2—— 55 M,Aq),

(A7)

which can be obtained by simple manipulations with Eq.
(17). Equation(A7) together with inequalitie§A5) and (A6)

1 — 1 o
= (1—25 Sq)J yqudy+2 51 J y9f2dy will be used systematically for finding bounds on moments
=3 0 M, in terms of M, in the form
2 ["(ay*-1 af of ,dy+ Ve(3—
=5, (Y Dy ifofadyte(3=a) M2 (@) <B(q)€Mog(3), B=0. (A8)
g I+1 f ~2¢ 5 (A3) In bounds(A8) we need obviously only a rough estimate for
< (21+1)(21+3) T+29Ys Moo(Q), but it must be expressed in terms of a known func-

tion, D(y) in our case.
is valid for g=—2. In particular, whermq=3, Eq. (A3) re- We multiply Eq.(18) (with c=1) by f,(y), and integrate
duces to with the factory® (q>—1):
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® 2
Moo(q)=AfO yID(y)fo(y)dy— £ MoaA@)
6 (= y 1

+g JO fo(y)yqdyfl(SS— ;)

In the last term of Eq(A9), by splitting the interval of the

D(y)

m fZ(S)dS.

(A9)

first integration iny=1, changing the order of integration,
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Moo(d), Mgo(g+4), andM yi(g+8). The crucial point here
is to reach the closure and evaludi,(q+4) through
Moo(d). The procedure will require several steps of recur-
sion, and require using the positivity of dll;;(q) in in-
equalities(A5) and (A7). For g=3 this is not difficult: by
substituting

3MoA7) =M o(3) = 5[2M(3) = 3Mo 7)1 = 5M 25(3)>0
(A13)

and applying Helder’s inequalities, the upper bound for thento Eq. (A5), one obtains

integral can be estimated as

(Moo(3)
2q9—2

12 g .
) fo(l—s“)sq*ze“’4|f2(s)|ds

Z g\ 12 o
Jr(Moo(zq 3)) f

5 (s®—sh|fy(s)|ds.

1

Noticing that (1—s*)exp(3%4)=<1, we obtain

2
Mog(q)<AVV(q)Mg(q) + 5 [Mox(a)]

6 M 3) 12 ~q
+§[( ol ) fsq*2|f2(s)|ds

2q9—2 0
Moo(2q—3) |2 (=

+<O°(Tq)) fs?’|f2(s)|ds.,
1

(A10)

where
S 1 (2\@+*vn (q+1
= q N -
V(q) nyD(y)dy 4(3) F( 2

and we used the convexity of[ﬁ”((q)], implying the rela-
tions

M (@) < VM (P)M (1),

3

p+r=2q, p,r=0,
(A11)

M2*P(q)<MP(q—a)Mi(q+b), =0, a,b=0.
(A12)

We apply inequalitiegA11) and (A12) for the interpolation
because the estimations of momektg(q) will be done for
several discrete values qf

Let us outline the following steps: in Appemxdh 2 quite
a tricky manipulation with relation§A5)—(A7) allows us to
find the upper bounds oM ,,(q) for =3, 7, 11, and 13 in
terms of M ¢(3). Using these bounds and E@10) in Ap-
pendix A 3, we evaluate the upper bound kbp(3) through
the Druyvesteyn momeniR0), i.e., in dimensionless num-
bers.

2. Estimates for M ,(q)

Here we calculat@&(q) for Eq. (A8), and afterwards ex-
pressMo(3) throughU andV with the help of Eq.(A10).
Inequalities (A5) and (A6) together with Egs.(Al11) and
(A12) allow us to find bounds orM,xq) in terms of

P(3)

2
Moo(7) <3 Mod3) ~ 75 (A14)

For g=7, combining Egqs(A5) and(A6), we can write

4

144e
+ 55 P(3). (A15)

Using Cauchy’s inequality

8efof,< (4ef )2+ (1—4el5)f3

1
1—4€/5

for the estimation oM x(7):
2

8EM02(7)$—1_46/5

Moo(7)+

4e
1- 5 My 7),
from Eq. (A15) we derive
Moo(1D) =< 4 M oo(7 48 P(3 Al6
ool )\m oo 7)+ 775 P(3).  (A16)
Now, using Eq.(A11) in Eqg. (A5), we have

P(3)<

1-4€/5

X \[9M (1) —6Mo( 7) + Mo 3) IP(3).
(A17)

The solution of two inequalitie§A16) and (A17) with the

help of Eqg.(A14) yields the upper bounds

3
M,x(3)<P(3)=<20 1+ eeMoy(3), (A18)
4 32
M00(11)<— M00(7)+ s €(1+96)M00(3),
3 45
or
8Mo(3)
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where here and everywhere further we assurs®.02 for a 1184 1+ 22¢ 1+ 70e
simplification of the estimates. Relatiofs15), (A17), and B(1)=—4—7—xo2, B(13=249—7—
) o \ 9 1-89% 1-121e
(A18), in addition to Eq(A14), allow us to obtain the lower (A26)
bound onM y((7),
2 Moo(7 ) uniformly for all e<0.02.
3 [1-2€e(143.4e)]< 7 0(3) (A20)

3. Evaluation of M 4¢(3)

This completes the cagg=3. In order to have an upper Equations (A26) together with inequalities24), (A1),
bound(A8) for M2,(7), andupper bound oM((15), we  (A11), and(A12), open the possibility to estimate the devia-

need to go tqg=11 in Egs.(A6) and (A7): tions of momentsM(3), M(4), and M(5) from their
576¢ Druyvesteyn approximations in terms e yy(3). We can-
P(11)<2¢[3M (15— M 2(11)]+ p(7) not expresM (3) throughA andV(3) directly from Eqg.

(A10) because fog=3 the termM,(1) emerges in Eq.
(A10) whose estimation with the help of EGAl) requires
M,o(2). Instead, using EqQSA10) and (A20), we estimate
the momentMyy(5),

Mo(15) —2Mgo(11)

2 4
Mox(11)— 5 MoA(15)+ 25 Moy(11).

A technique similar to previous one yields first Moo(5) <AVV(5)Mo(5) + = |Moz(5)|
Mof(15)<2 1+~ Mo 1D+ 2 p(7 3 —
o 19<2 1+ 757 1575 | Mod 1D+ 775 P(7), +—— M,(3)\Moy(3), (A27)
(A21) 5v2
and after returning tg=7, the bound orP(7), and find the upper bound ol 4(3) in terms ofMyy(5).
One needs inequalitig®\12), (A19), and(A20) for this:
136 1+7€
P(7)<—5- € =202 Mod3). (A22)

Moo 7)<MZZ(5)M§5(11),

The same method far= 15 in Eqs.(A6) and(A7), returning
to P(11), leads, after quite trivial but intricate computations,
to inequalities

and therefore

_ 1/2
8 1-2¢/5 432 = - 4e) 132 .
Mod19)< = > Mod(15)+ 1o P(11) (A23) M°°(5)>( ) 726134 Mod )
3 1-4e 175 (A29)
and _
Now we expresM gy(5), M»(3), andA in Eqg. (A27) in
1184 | 1+22¢ terms ofMyy(3) andMyy(5). By virtue of Egs.(23), (Al)
PAY<—g~ € T-goz Mod3)- (A0 (yith p=1), and(A11),
We need moments frorM(2) to M(5), andtherefore, 1 de | 27
according to Eqs24) and(Al), upper bounds oM ,,(q) up A< U 1+ T 24 Moo(3)[B(3)
to q=12. This permits us to make a shorter step toward (2) 3v3

P(13), again applying the same technique: begin by jumping

1/2
in Eq. (A6) from P(13) to P(17), and use Eq(A7) and +BY43)B%4(7)] _ (A29)
Cauchy’s inequality to calculate the bound
84 - -
o . Using Eqg. (Al) with p=2g—3, Egs. (A8), (All), and
My(2)<|3+ ——F— 17)+ P(13); /
0ol 21) 3(5—24¢) o 17)+ 55 P(19) (A12), we obtain

then return togq=13 in Eq.(A6) and there use Eq$All)

and(A12) to obtain, eventually vl ™
P(13)< 2492 1+ 70e (A25) 12
1-121€2" +[B3/4(7)B“4(11)]) ,
The main results of this section are
136 1+7e [Mox(5)|=< €VMqo(5)Moo( 3)[B(3)B(7)]"“.
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The functionsB increase withe, therefore, in Eq(A26) we

may takee=0.02 in order to have uniform estimates for

smallere:

B(3)~20.6, B(7)~52.5, B(11)~196.4, B(13)~628,
(A31)

and we are equipped for bounding(3). Inequalities
(A27)—(A31) yield, finally,
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Evaluation of the momenitl 4o(3) in Eq. (A32) is not very
accuratefthe bound here is 35%, larger th&{3)/U?(2)]
because we exploited the interpolatioh28) for “large”

momentsM . But this only slightly affects boundS0).
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