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Tokamap: A Hamiltonian twist map for magnetic field lines in a toroidal geometry
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A Hamiltonian twist maptokamap is constructed as a representation of the stroboscopic plot of magnetic
field lines in a toroidal confinement device as used in fusion physics. This “tokamap” is compatible with
minimal toroidal geometry requiremen(g particular, the polar axis cannot be crossed upon iteratibn
depends on two parameters: the stochasticity parardederd the winding number on axis,. With increasing
values ofK, chaotic regions appear mostly near the edge of the torus, while the zone near the magnetic axis
remains very robust. The number and nature of the fixed points are studied in detail, as they determine the
appearance of the phase portraits near the axis. It is shown that the topology undergoes several bifurcations as
K and/orw are varied. The various phase portraits reproduce the qualitative features known in tokamak
physics. The time series exhibit a typical behavior describable by a continuous time random walk, as found in
previous works on the standard m@f1063-651X98)05607-4

PACS numbg(s): 52.55.Fa, 05.45:b, 52.25.Gj, 05.40k]

I. INTRODUCTION The magnetic field satisfying these constraints is con-
veniently represented in the well-know@ebsch forn 1-3]:
Magnetic confinement of a plasméor the purpose of
controlled thermonuclear fusipris realized in tokamaks or B=VyXVO-Vay()-V¢, 2

stellarators by a magnetic field ideally structured by a set of h h ; . is the (di ionl
nested toroidamagnetic surfacesvound around a circular where the surface quantityo(4) is the (dimensionlesspo-

magnetic axis The successive surfaces are labeled by th%};doalr:;:;e(ﬂ;?m”;ig?oe;:gsf'seIg aggat"hne gt:]aedr'ﬁm op::]zg(;rs are
values of anysurface quantityi.e., a quantity that is constant . y 9 VB '

; . . respectively.
on a magnetic surfagel’, playing the role of a radial coor-

. L L From Eg.(2), one finds the equations for the magnetic
dinate. Each magnetic field line is tangent everywhere to Field lines gxpressed in the coorgina(@se,g) by using gel-

magnetic surface. Any point on such a surface is charactefsmentary geometrical formulas. Using the toroidal angle as a
ized by two angular coordinates: the poloidal angléthe running parameter, a field line is characterized by the two

short way around the toruand th_e toroidal anglé (the long  fynctions (O and 6(¢) obeying the following differential
way around the torysfor convenience these angles are mea-gquations:
sured in radians divided by

To put the matter into quantitative form, we consider first dy dag dO  dag

anideal (unperturbed) situatiofil]. We choose here for the a7z~ 96 dZ oy )

radial coordinate¥ the toroidal flux ¢, i.e., the magnetic

flux through a surface perpendicular to the magnetic axis; for As noted by many author&.g., Refs[4-8]), the field
convenience, this quantity is made dimensionless by introline equations have &lamiltonian structure aq plays the
ducing = /Bya?, whereBy is a characteristic magnetic role of the Hamiltonian{ the role of “time,” and ¢ and ¢

field amplitude, and is the minor radius of the tokamak. In appear as a pair of canonical variab{#gs property justifies

the case of a circular torus, we have simpgly:r2, wherer the choice ofys as a radial coordinateln the unperturbed

is the dimensionless radial coordindtealed witha). The  case, when, is a surface quantity depending only @n
magnetic axis thus corresponds to the vajize0, and the EQs.(3) represent a one degree of freedom, hence integrable,
edge of the torus tgy= 1. The variablesy,6,¢) form a con- ~ dynamical system:

venient curvilinear coordinate system, that can be made or-

thogonal by a proper choice of the angles. d_lﬂzo %:W( ) @
The (stationary magnetic fieldB(x) must satisfy the two dZ 7 d¢ v,

constraints expressing its divergence-free nature, and its tan-

gency to the magnetic surfaggx) = const: where the unperturbedinding number(also called theo-

tational transform is defined as follows:

V.B=0, B-Vy=0. 1 W(w):ﬂao(w)
i

*Permanent address: National Institute for Laser, Plasma and Ra- (In the plasma physics literature, this quantity is often
diation Physics, P.O. Box MG-36, Magurele, Bucharest, Romaniadenoted by./27; its inverseq= 1/ is called thesafety fac-
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tor). Clearly, s is analogous to an action variable, a constant 1 T T T T
of the motion; the associated angle variable increases lin-
. . b o] o] [e] o e o]
early in time.
This ideal structure is, however, strongly modified when- 08 r _
ever some perturbation is present: the latter can be due to
external featuregsuch as imperfections in the coils produc- 06 F |
ing the magnetic fieldor to internal factorsi.e., instabilities
or fluctuation$. The perturbed magnetic fielés also conve- v b o
niently represented in the Clebsch fort®), in which the 041 T
unperturbed Hamiltonian is replaced by a function of all
three coordinates: .
025 ° ° ° T
CYO—>OZ:CYO( ¢)+K5a( ¢,0,§) (6)
| L ! I
The perturbation HamiltoniaK s« is a 1-periodic func- %0 02 0.4 0.6 08 1
tion of the variable®) and{. The real, positive parametét, 0

is called thestochasticity parameteit measures the strength )
of the perturbation. The corresponding equations of the field F!G- 1. Phase portrait of unperturbed systesguare represen-
lines are now tation).

Il. CONSTRUCTION OF THE TOKAMAP

dy_ 30a(,0.0)

dac EY ’ The solution of the field line equatioii®) required for the
() construction of the stroboscopic plot involves a very heavy
de a8a(,6,¢) numerical effort for achieving sufficient precision in the non-
—=W(y)+K . integrable casg-11]. It is therefore useful to construct sim-
d¢ I plified models based on discrete iteratimepsrather than on

differential equations in order to describe the stroboscopic

These are the equations of motion of a tlegrees of plot of the magnetic field. With this mathematical tool, very
freedom dynamical system, which is, generically, nonintedong orbits are easily obtained even with a modest personal
grable. The nature of the orbits is conveniently studied bycomputer. It is generally not a simple matter to construct a
considering a stroboscopic plot, obtained by recording theénap that isexactly equivalent to the starting differential
values of the coordinate§y,f) at successive equal times. equationgthis would imply the solution of the latter, which
These coordinates define tpbase spacef the dynamical is precisely what we want to avgidOne may wish to con-
system. For simplicity, we assume the cross section of thstruct, instead, a modelb initio, and check its relevanca
torus to be circular. The stroboscopic plot of thgperturbed  posteriori
system consists of a set of concentric cirdlesrresponding Several authors have introduced maps representing vari-
to ergodic magnetic surfacesnterspersed with discrete ous aspects of magnetic confinement devices according to
points(corresponding to rational values of the winding num-this philosophy. The first application of a Hamiltonian map
ben. The stroboscopic plot coincides in this case with ato the problem of magnetic field line diffusion in a tokamak
Poincaresection on a plane perpendicular to the magnetidin presence of a magnetic limijesippears to be due to Mar-
axis. An alternative graphical representation, which oftertin and Taylor in 198412]. Punjabi and co-workef{d.3—15
provides a clearer picture, is obtained by making a cut startstudied theX point in a poloidal divertor geometry of a to-
ing from the centerimagnetic axiy pulling the two lips kamak by means of very simple algebraic maps. Abdullaev
apart, and expanding the point representing the magnetic ax@d Zaslavsky studied the same divertor problem by means
into a line; after a mirror reflection we obtain a square dia-of a more sophisticated “separatrix mag16,17. Abdul-
gram; the radial coordinaté is represented on the vertical laevet al. recently constructed a map representing the effect
axis (0= y=1), and the poloidal angle is given, modulo 1, of a dynamic ergodic divertdd8]. All these works are mod-
on the horizontal axis (& <1) (Fig. 1). The ergodic mag- els of the edge regiofiscrape-off layer of a tokamak. A
netic surfaces are now represented as horizontal segmengipbal model of a specific stellarat¢w VII-A) was intro-
and the periodic orbits are shown as points aligned horizonduced by Wobig in an important worl8] (see also Ref.
tally. Whenever gerturbationis present, the topology of the [19]).
magnetic field is strongly modified: there appeaafand In the present work, we construct a global model of the
chains together with undestroyetbut deformedl magnetic magnetic field in a toroidal confinement device by means of
surfaces calledolmogorov-Arnold-Moser (KAM) barriers an iterative two-dimensional,6) map Such a map con-
and in between these features there edtistotic orbitsfilling nects successive iterates of the phase-space coordinates as
two-dimensional regions of the phase space. Tihtom-  follows:
pletely chaotic structurés generic for tokamaks; its under-

standing is a prerequisite for any realistic study of transport b,1=P(¢,,0,), 6,.1=0(4,,0,), (8)
in such devices. The peculiar features connected with the
representation of the magnetic axis will be discussed in Seavhere v is any non-negative integew=0,1,2.... The

V. construction of such a map must satisfy a certain number of
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constraints. The first of these requires that Hemiltonian
structureof the differential equation§7) be reflected in the
structure of the discrete model, which should bé&lamil-
tonian (or symplecti¢ map. The clearest way of constructing
such a map starts from the fa@0] that in a Hamiltonian
evolution the values of the canonical variables,, 1,6, .1}

at time (v+ 1) are connected to their valugég, ,6,} at time

v by acanonical transformationSuch a transformation can
be defined by means of generating functiornof the new
momentum and of the old ang|8]:

F(¢V+1-'9V):¢v+1¢9v+f(¢u+1101)- (9)
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wv-*—l: ¢V+ Kh(lﬂuﬂ'op),

The first term in the right hand side corresponds to the

identity transformation. The transformation equations are

_O’)F(lzbv+1101)) _

éf(l/"v+l ’ 01/)
dfv_ &01/

v+1 &01} )

(9f( ¢V+1 ’ 61/)
ﬁd’v#—l

:aF((pV‘Fl’eV) _
v+1 0{/,1”_1 v

(mod 1).
(10

These equations define the map in a semi-implicit form
(the explicit form is obtained by solving the first equation for

¥,.1). The unperturbed mapis obtained by taking
f(&,11,0,)=Fo(#,+1). We then obtain
Hv+l= 0V+W(l1llv+l) (mOd 1)

v+17 ‘1[/1/ ’ (11)

0V+1:9V+W('T//V+l)+Kj(l//V+l70V)' (14)
From Eq.(10), we find the following definitions:
9oF(,+1,6,)
h(¢v+liay):_ (70+1 )
. doF(,+1,6,)
0,)=——"-"""" 15
i(Yos1,0)= —5— (15
It follows that
&h((v[fv-%—l!av) aj(d’v+1!0v)
’9¢v+1 (9011 ~0 (16)

Equations(14), with the functionsh andj interrelated by
Eq. (16), is the general form of alamiltonian map The
simple relation between the generating function and Hamil-
tonian is, however, no longer valid. Generically, whenever
the generating function dependsnadditivelyon bothy and
6, it is not possible to determine the Hamiltonian function
that produces a given Hamiltonian mégthough the exis-
tence of the former is ensured by the construgtion

A simple realization of constrair{fL6) is obtained by tak-
ing h=h(8,), j=j(¢,+1): this corresponds to ageneral
twist map The fact that each function depends on a single
variable greatly simplifies the analysis: the maps studied in
most textbooks are of this type. In particular, the celebrated
Chirikov-Taylor standard map [22,21,23 [h(#6)

This map represents the exact solution of the integrable___(zﬂ_)—l sin 270 and j(#)=0; W(#)=y] belongs to

Hamiltonian systent4). Indeed,is, remains constant ang,
increases byV(¢) upon each iteratioli.e., after a toroidal
turn of 27). The winding number is simply related to the
generating function

IFo(¥)
b

W(y)= (12

Comparing this equation to E¢5), we see that the gen-
erating function is here simply the Hamiltonian of tfw®n-

this class. The standard map is, howewert, a faithful model

of a tokamakfor several reasons. In the first place, the safety
factor profileq(r) is, in most tokamak experiments, a mo-
notonously growing function af, hence ofy=r?2. [In recent
experiments one produces a locallyeVersed sheat i.e., a
minimum ofg(r) near the magnetic axis. This reversed shear
configuration can easily be implemented in our work, and
will be discussed in a forthcoming papeiypically, the
safety factor on the magnetic axis g§0)=1, and, at the
edge,q(1)=4. The value on axis may, however, be smaller

tinuous timg dynamical system. The phase portrait of thisq(0)<1: this has an important effect on the properties of the

map is of the type shown in Fig. 1. For all the valuesyof
such thatW(y¢)=n/p(n,peZ), the pth iterate coincides
(modulo 1 with the starting point, i.e., we havepaperiodic
orbit represented by a chain @f discrete points. For all
irrational values ofW the orbit fills densely a horizontal
segment in Fig. 1i.e., a circle around the origin in the polar

representation The location of these features depends, oftively, n(r)=n(0)[1—r?] and T(r)=Te(0)[1—

course, on the shape of the winding number funcWény).
Whenever this is a monotonougrowing or decreasing
function, Eqg.(11) is called asimple twist map

We now introduce perturbationby considering a gener-
ating function of the form

F(‘/’lﬂrl!av): wv+lev+ F0(¢V+l)+ K5F(wv+laev)a
(13

whereK is the stochasticity parameter introduced in Egj.
Map (11) becomes

discharge. It follows that in a tokamake winding number
W(¢) is a monotonously decreasing function af This is
just opposite of the standard map.

A useful analytic form for this profile was derived by
Misguich and Weyssow24], by assuming that the density
and electron temperature profiles in the tokamak are, respec-
r2]%; one
then obtains, in the large aspect ratio limit,

w
W)= (2= (2-2y+y?). (17

Here the positive constamt=W(0) is the value of the
winding number on the polar axis. The winding number pro-
file W(¢), given by Eq.(17), as well as the corresponding
safety factorg(¢), are shown in Fig. 2.

A very important additional constraint to be fulfilled by a
tokamak model is itsompatibility with toroidal geometnyit
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4 | ‘ S (Actually, Wobig used more general periodic functions of
‘ ‘ l 6,; this does not change our forthcoming argumpent.
3 : . Wobig’'s map satisfies conditiofll9); however, it violates
= i ‘ - condition (18) in a certain domain, and may even become
ol 1 I singular.
= 2 , " ‘, Here we propose an alternative ansatz for the generating
= i function:
2 |k | i
' i
i | . 1 Yy
0 ! i . 6F(lﬁv+110v)_ (277_)2 1+ lﬂv-%—l Cos 2701:! (22)
0 02 04 06 08 1 o _
" which yields the following map:
FIG. 2. Usual winding numbe(solid) and safety factofdotted _ K 1
profiles in a tokamak. 1= 5 1+¢,., sin 2m ), , (23
follows from its geometrical meaning that the coordindte K 1
must be a definite positive numbérmay vary in the physi- 0. . =6 +W _ cos 276
cal range G ¢<1 (it is bounded by the limiter or the wall; vra= O, W) (2m)? (1+4,41)° .
the upper limit is, however, left free in the present model (24)

An indispensable condition is thus It is readily verified that this map satisfy conditiof5),

hence it is a Hamiltonian, area-preserving map. The denomi-
If 4o>0 then ¢,>0, V. (18 nators (&+¢,.,) produce a “self-healing” effect which
) suppresses the divergences. The winding number profile con-
On the other hand, the polar axis representedyby0  gigered here will be the one defined in Eq7), which de-
plays a speciafsingula) role in the toroidakor cylindrica)  nends on the parameter It is clear, however, that the shape
geometry. As _the radial coordl_nate can admit no negative W() should be considered as being open to variation for
values, the axigy=0 represent§in the “square” represen-  gy,dying different regimefjust as in real experiments, the
tation (Fig. 1)] a barrier that can never be crossed. This CONshape of the safety factor profitgr) can be “tailored”].
dition can be satisfied when the polar axis is globally invari- |, form (23), the map is nonlinear: it possesses two solu-
ant: an orbit starting on the axis remains forever on the axisjjong ¥,., for given (4,,0,). We make the following
choice of the unique root which provides us with the final
If o=0 then ,=0, V. (19 definition of our map:

The condition of impenetrability can, however, also be _1 + 2y
realized more weakly, by requiring that a point starting on Yoi1=HP(,,0,) +[P(,.60,)°+44,}, (25
the axis may either remain on the axis or move to a positiv§yhere the functiorP (i, ) is defined as
¥ (but never to a negative), thus

K
If 4o=0, then,=0, Vv. (20) P(,0)=¢—1-5_sin2m6. (26)

‘The standard map does not satisfy any of these conditiongquationg24)—(26) define a one-valued iterative map which
It is well known that, forK>0, an orbit starting aiyo=0 il be called the tokamap.
travels through both positive and negative valueg.dflore- Itis easily checked that conditid8) is satisfied. Indeed,
over, (in the globally chaotic regime the orbits are 1- ¢>0, then P2+4y¢>P2. If P>0, trivially, P
periodic iny (as well as ind), henceyy=0 plays no special | [pZ1 4, +4¢>0. If P<0, we still have\PZ+4y>|P|, and
role: there is no unique polar axis in the standard map.  ance alway® + P2+ 4¢>0.

Wobig [8] took a first step toward solving the problem —\yo o\ discuss the properties related to the polar axis.
posed by the geometrical constraints by making the followy, o, Eq.(26), it is seen that, fory=0, the sign of the
ing ansatz for the ,ge”era“”g f“”_C“O'? in_ EqL3): function P(0,0) depends on the value of the stochasticity
OF(Y,11,0,)=—(2m) 4,1 cOS 270, ; using EGS.(14)  yaameter and on the poloidal angle.
and(19) he obtained: For (K/2m)<1, P(0,6)<0; thusP(0,6) + VP%(0,6) =0,

and Eq.(25) shows thatyy,=0 implies ¢, 1=0. The polar

K ) axis is thus globally invariant in this case, i.e., E§9) is
vi1= ¥y 5 ey SIN2m0,, satisfied.
(21) For (K/2w)>1, P(0,6) is no longer everywhere definite

negative: there exists a range af for which P(0,6)

K +P?(0,6)>0, and hence the polar axis is no longer glo-
0y 1= 0t Wty 0) = (2m)2 03 2, bally invariant in this region. Nevertheless, as shown above,
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FIG. 4. Tokamap regular and chaotic orhiks=3.7,w=1, and
N=10%.

density of points near th¥ points shows the beginning of a
thin stochastic layer.

In Fig. 4, we take a higher value #f=3.7 (w=1), and
picture five orbits. The remarkable feature here is that the
outer part of the torutear the edges now strongly chaotic
around theNV=1 and3 island chains. It is, however, remark-
able thathe inner part, near the magnetic axis, remains very
robust and undestroyed his feature may lead to a model of
a tokamap with an ergodic divertor.

An interesting case is shown in Fig. 5. It shows four or-
bits, forK=4.5 (w=1). The middle section is strongly cha-
otic at this value ofK; it forms a single “stochastic belt”
which surrounds several large island chains. This zone is
clearly bounded, both below and above, by KAM surfaces,
two of which are shown in the figure. The presence of these

FIG. 3. Tokamap island chains and KAM barrietis=2.55, the  intact KAM barriers shows that, at this value of the param-
number of iterations i =1000) eterK, the system isot yetin a globally stochastizgegime.

We now recall a well-known semiempirical result of
¥, (v>0) is always positive; in particular, an orbit starting Greene[25], later developed by a renormalization group
at,=0 can only move to positive values gf(or remain on  analysis{26—28. It states that the most robust KAM barrier
the axig. Hence in this range &€, Eq. (20) is satisfiedthe N the standard mags the one corresponding to a winding
polar axis cannot be crossed number equal t@, =G, ', whereG, is the golden section

It may be noted that the valué=27=6.283 . .. corre-  defined by the equationG;=G, +1 (thus g,=G, —1
sponds to a regime of global chaos for the tokamap. As &0.618039...): this KAM surface will be called the
result the invariance of the polar axis is no longer a verygolden KAM” This result is very appealing because, in a
significant property in this case. Summing thee tokamap is
a Hamiltonian map, depending on two parameters (K and
w), under which an initially positive radial coordinate
remains always positive, and the polar axis is a barrier that
cannot be crossed

lll. PHASE PORTRAITS OF THE TOKAMAP W

In Fig. 3, we show a typical phase portrait, corresponding
to five orbits with K=2.55 (w=1). We see four island
chains around periodic orbits corresponding to winding num-
bersw=1, 3, 1, andZ, as well as two KAM barriers. In the
polar plot, the islands are represented as closed curves that
do not encircle the origin, whereas the KAM barriers are
curves enclosing the origin. The separatrix enclosingvihe
=1 island chain is also visible, thus displaying the two hy-
perbolic (X) points associated with the two ellipticO] FIG. 5. Tokamap stochastic belk=4.5, w=1, andN=1.5
points located at the center of the islands. The increasesg 10%).
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sense, the golden section may qualify as “the most irrational IV. FIXED POINTS OF THE TOKAMAP
number,” being defined as the continued fraction:

[1,1,1,1...]. Greene's result is, unfortunately, not generic. . " " .
- L periodp=2 have the “expected” structure predicted by the
The determination of the most robust KAM barrier in an PoincafeBirkhoff theorem [21,23, which tells us that,

2:2&:23[29?'3 appears to be, at present, a largely unSOIVev(\j/heneverw(¢//) is @ monotonous functiot.e., for any twist

map), a rational surface breaks under a sufficiently small
perturbation into an even numben 2f fixed points,n ellip-

tic points alternating witm hyperbolic ones. This structure
is not apparent for the period-1 fixed point appearing in
Figs. 3 and 4; no correspondingpoint is visible. A careful
hqnalysis of the proof shows that the breakdown of the theo-
rem is due to the special nature of the polar akis0: the
latter cannot be crossed upon iteration by the map. More
generally speaking, it will be shown that the phase portrait in
the neighborhood of the polar axis is determined by the num-
ber and the nature of the fixed points. The latter depend on
the relative values of the parametevsand K, and will be
W()=w, 27) analyzed below.

In order to study the problem quantitatively, we write

) . Lo down the equations determining the fixed points by using
wherew is a given value of the winding number. The real Egs.(23) and (24) with ¢, ;== and 6, ,=6,= 6:
root of Eq.(27) is vrL vHL Ty

It is seen, especially in Fig. 3, that all island chains of

Coming back to the tokamap, we may try to locate the
golden KAM in a picture like Fig. 5. For a rather large value
of K, it is impossible to ascertain the value of the winding
number of a chaotic orbit. We may argue, however, as fol
lows. Consider first thainperturbed magK=0). In this
case the KAM barriers are represented by horizontal straig
segments. The radial coordinaig corresponding to any
given value ofW is determined from the graph of Fig. 2.
Alternatively, we can find this number analytically, by solv-
ing the cubic equation

v
2 4 110 sin 2m6=0, (30
¢=Jl/3— 9\]7?_'_ 5, (28) +
KA 1
with W(lﬂ)—mzmzcos 2r6=0 (mod 1). (31)

10 , [In Eqg. (30), we used the implicit form of maf23); it should
J=37 20+ §5V3— 30w+ 8lw”. (29 be kept in mind, however, that only one branch of the ex-

pression in the right hand side is retainethe study of fixed

We thus find that the golden KAM, withw=g, points should be completed by lmear stability analysis,
~0.618 03, is located ap~0.315 93. In the same way, we Starting from the tangent mamhich we do not write down
find that the periodic orbit corresponding te=1/2 is lo- explicitly here. It has been well known, since th_g clas_sical
cated aty~0.456 31, i.e.abovethe golden KAM, and that Work of Refs.[25, 21, 23, that a very simple stability crite-
the periodic orbit withw=2 lies at~0.189 46, i.e.pelow  Fon is based on thee_3|due _dgflned as follows in terms of
the golden KAM. The golden KAM, together with these two the trace of the matri# defining the latter map:
periodic orbits, is shown in Fig. 1 for the unperturbed toka-
map. R=3(2—TrM). (32

Consider now theperturbed tokamapK>0. The KAM
barriers are no longer straight, but are deformed or broken; The fixed point(around which the map is linearized
on the other hand, islands are formed around the perioditnearly stable whenever€@R<1. The residue for the toka-
orbits. In spite of these deformations, the general topology ofmap is obtained by a standard calculation:
the phase portrait is maintained, in the sense thatelaive
position of the features associated with successive values of

the winding number is preserved. In particular, the golden g— _ X v 2 : sin 20
KAM (if it exists) must be located somewhere between the 87 [[(1+¢)* 2m(1+y)*+K sin2mo
two-island chain =3) and the four-island chaina(= 2).

Looking now at Fig. 5, we clearly recognize these two island _ E i co 276

chains; in between them there is a purely chaotic sea. Thus, m (1+¢)*

at K=4.3,the golden KAM is destroye®n the other hand, )

the chaotic belt is bounded both above and below by unde- w P(6—8y+3¢y7) cos 27T0] 33
stroyed KAM barriers. Thus, as noted above, the system is 2 1+ '

not yet in a globally chaotic state, although the golden KAM

is broken. We thus arrive at the following interesting conclu-where ¢ and 6 are the coordinates of the fixed point around
sion: In the tokamap, the golden KAM is not the most robustwhich the linearization is made. We recall that thieysical
KAM barrier. The search for the most resistant barrier isdomain of the variabless 0<¢<1, and 0<6<1 (mod J);
certainly not a trivial matter. It will not be discussed further the physical range of the stochasticity parameterO<K
here. <27.
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FIG. 7. Residue at fixed points on the axk6=1). Solid line:
FIG. 6. Angular position of the fixed points on the polar axis X1, dashed lineX2.

(K=1). Solid line: #1; dotted line:62.

that these points do not appear as distinct in the polar repre-

(i) Equation(30) has a first obvious solutions=0. Sub-  sentationsuch as Fig. ®); this feature will be further dis-
stituting this value into Eq(31), and recalling thatw(0) cussed in Sec. Y.
=w, we find The residue at these fixed points is calculated from Eq.

(33), and is plotted in Fig. {for K=1). Both residues are

negative over the whole range of allowed valueswofand
cos 2r—n=0, (39 also for all physical values oK), meaning that both fixed
points on the axis aranstable X points

Equation(34) possesses additional solutions obtained by
choosingn=0, —1, —2,... orn=2,3,... One carasily
convince oneself that the latter solutions exist only for values
of K andw which are well beyond the physically relevant
range; these solutions will no longer be discussed here.

(i) Equation(30) also possesses solutions wift¥ 0, for
which sin 2r6=0. This equation is satisfied f&#=0 and
#=13. Substituting these values into E1) we find the
following equations fony:

K
G(6,K,w,n)=w (2m)?
wheren is any integer, positive, zero, or negative. It will be
shown below that the physically relevant value ns1,
which we use here. F&K lying in the physical range and
kept fixed, it is easily seen that E(B4) has a real solution
only for w restricted to a finite range. Indeed, there is no
such solution(with |cos 2r6|<1) asw increases from zero
up to a certain minimum value,,, for which there suddenly
appears a solution: cosr®d=—1, i.e., #=3. This bifurca-
tion point is determined by setting(1/2K,w,,1)=0, from
which we find, using Eq(34):

n=0,
37

N| =

K

W= 1 (2m) 2K, 39 0==: FLl(¢,K,w,n)=W(y)+ 2m2(1+ 9)2
As w is further increased, this fixed point splits into two

new fixed points moving apart, one to the left and one to the K
right, until they reach, respectively, the valués 0 and 6 0=0: F2(¢4,K,w,n)=W(¢)— m—n=0.
=1, which are physically equivalent &0 mod 1). This (39)
merging occurs fow=w,,, which defines another bifurca-
tion point, determined by the equatic@(0,K,wy,1)=0,

\ : We analyze the solutions of these equations by a graphi-
which yields

cal and numerical method. We fix a valuekosomewhere in

the physical range, and plot the graphs of the two functions
Wy = 1+(27) %K. (36) F1 andF2 for different values of the integer.

(a) The graph of the functionE1(,K,n) for the typical
Whenw is further increased, these fixed points on the polafixed valueK=2.3 is shown in Fig. 8 in the range 1<y
axis disappear. <1. The obvious property of this function, visible in Eq.
In conclusion, for w,<w=w,,, there are two fixed (37), is the existence of a singularity #t=—1 for allK and

points on the polar axisX1=(0,01), X2=(0,2); their ~ w. For all values oh, the curves are monotonously decreas-
location is shown in Fig. 6 (for K 1). The extreme values of ing from + to —co; hence they cross the axjis=0 exactly
w are bifurcation points: for w=w,, the fixed points merge once. It follows that there exists an infinite number of roots
at =1, and for w=w,, they merge a¥=0. For w below inthe range-1<y<, one for each value af. Our task is

w,,, or above v, , these fixed points disappear to identify the roots located in the physical domairs @
For the correct understanding of this result, it should bes 1. . . .
kept in mind that the polar axig=0 is globally invariant, For small values ofw, there is no root in the physical

but its individual points arenot fixed points, except when domain, as can be seen in FigaB As w is increased, the
K=0. WhenK>0, andw lies in the range defined above, curves representing the functiéil are lifted upward. As a
there remain exactly two fixed points on the axis. Note alsaesult, for a certain critical valuev=w{)=0.941 (for K
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FIG. 9. Residue at the fixed poiivtl (K=2.3).

Thus, for this value ofw, the two merged fixed points on
axis (X1,X2) and the fixed pointyl at #=3 coincide at
(¥=0,0=1/2). The stability of this fixed point is marginal
[residueR(Y1)=0].

In Fig. 9, we plot the residue atl (for K=2.3) as a
function of w. We see that below the thresholg,=0.942,
when #1<0, the fixed pointYl is hyperbolic, whereas
above the threshold, whepl>0 (i.e., in the physical do-
main), Y1 is elliptic.

A second threshold which is also physically relevant is
the value ofw=w/2) above which the root determined by
n=2 enters the physical domain. By the same reasoning as
above, we find that this second threshold is

FIG. 8. The functionF1(y,K,w,n) for K=2.3 and two values
of w. (@) w=0.2; (b) w=1.2. The three curves correspond no
=0 (dotted ling, 1 (solid line), and 2(dashed ling The physical
range ofy is emphasized.

=2.3), the curve fom=1 produces a roaf1=0, and hence
a fixed pointYl=(y13) in the physical domain. Asv is
further increased, the ro@tl moves to the righfFig. 8b)].
Then, suddenly, whew reaches a new critical value(2)
=1.941, an additional rooty1(®) appears in the physical
domain: it is produced by the curve=2. A new critical
value appears at5)=2.941, with a third rooty1® entering
the physical domainr(=3). For still higher values ofv,
this pattern no longer changes; whes 4 produces a physi-

(2)
Wei=

Wyt 1.

(42)

Thus, for wy,=w<w,+1, there is exactly one elliptic
fixed point YL within the physical domainThe location of
the fixed elliptic pointY1 within the physical domain, for a
given K, asw is varied in the interval defined above, is
shown in Fig. 10, folK=2.3. For reasons shown below, it
appears that the situations corresponding to higher values of
w, for which the functiorF1 produces two or three solutions
in the physical range, are physically irrelevant, and will not
be further discussed here.
(b) The graphs of the functioR2(,K,w,n) are shown
in Fig. 11 in the range-1<¢<1 for K=2.3 and for two
values ofw. From Eq.(38), we see that this function also has

cal root, the rootyl (n=1) leaves the physical domain. @ singularity aty=—1, but here it takes theegativevalue
Thus, for all values ofv>w(), there are three roots in the F2(—1K,w,n)=—o. As aresult, the shape of the curves is

relevant range.

The critical values ofw depend, of course, oK. The
fundamental thresholdy=w, , above which the first physi-
cal root appears, is obtained by expressing that the function
F1, for n=1, possesses a ro@tl=0, corresponding to a
fixed pointY1. From Eq.(37), we find

Fl(o,K,WCl,l)EWCl+ —-1=0. (39)

K
(2m)?
Comparing this equation with E¢34), we see that it is

identical to the equatio®(1/2K,w,,,1)=0 determining the
lower bifurcation point for the fixed points on the axis; hence

Wep=Wp=1—(27) %K. (40)

=2.3).

0.4 /
03 7
——
S o2
<
0.1 /
0
09 11 13 15 17
w
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10. Radial coordinatey1(w) of the fixed pointYl (K
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FIG. 11. The functiorF2 (y,K,w,n) for K=2.3 and two values
of w: () w=0.8; (b) w=1.3. The three curves correspondrto
=0 (dotted ling, 1 (solid ling), and 2(dashed ling The physical
range ofy is emphasized.

quite different fromF1 (Fig. 8): all curves have nowa maxi-
mum As a result, there are three possibilities, varying with
n, K, andw: (1) the curve crosses the axis=0 at two
points;(2) the curve is tangent to the axjs=0; and(3) the
curve does not cross the axjs=0.

For small values oiv, there is again no root in the physi-
cal domain G=¢<1. Asw increases, the curves move up-
ward, and wherw reaches a critical value/c,, the branch
n=1 produces a root afy2=0 [hence a fixed pointr2
=(¢2,0)]. Just as in the previous case, one readily finds th

this threshold value coincides with the upper bifurcation

pointwy, , Eq.(36):

Weo=Wy=1+(27) K. (42
02 ——
I
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FIG. 12. Residue at the fixed poiN2 (K=2.3).
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FIG. 13. Radial coordinate/2(w) of the fixed pointY2 (K
=2.3).

The residue atr2 shows that as soon as this fixed point
enters the physical domaing®>0); i.e., at w=w,,
(=1.058 forK=2.3), its character changes from elliptic to
hyperbolic(Fig. 12.

The equalityw,=w), shows that the threshold value for
Y2 coincides with the upper bifurcation point fdd. andX2.

At this value ofw the two fixedX pointsX1 andX2 and the
former O point Y2 merge at the origifgy=0, §=0). For
w>w,,, there are no longer any fixed points on the polar
axis, and there remains a singfepoint in the physical do-
main, at(¢2>0, #=0). The location ofy2 as a function of
w for K=2.3 is shown in Fig. 13.

The second thresholl3), above which a second root,
for n=2, enters the physical domain &=0 is: w3
=wy,+1. Thus,for wy<w<wy+1 there is exactly one
hyperbolic fixed point ¥ at 6=0 within the physical do-
main We do not further discuss situations in which addi-
tional fixed points appear in the physical domain.

Before summing up this discussion, it is interesting to
consider the limitKk —0, which is singular. Indeed, as seen
from Egs.(37) and(38), whenK is strictly 0, the pole of the
functionsF1 andF2 no longer exists; moreover, the two
functions coincideF1(,K,w,n)=F2(y,K,w,n) (Fig. 14.
The two rootsy/l and ¢2 tend continuously to the common

alue ¢1(0)= 2(0)=0. (This does not mean that the two
ixed points merge: they have different values @f All
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FIG. 14. The functionF1(y,K,w,n)=F2(4,K,w,n) for K
=0, w=1, n=0 (dotted ling, 1 (solid line), and 2(dashed ling
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FIG. 15. Tokamap phase portrait: casé&l=0.5, w=0.8, and FIG. 16. Tokamap phase portrait: case(l=0.5, w=1.005,
N=10°). andN=10°).

curves cross the axig=0 once; they produce positive roots points: one ellipticY2, at (¢2=—0.163, #2=0) and one
outside the physical domain for<O0, a zero root fon=1, hyperbolic atYl (1= —0.139,61=0.5); but these features
and negative roots fan=2. are mathematical “ghosts” that are physically inaccessible.
We know indeed that any orbit starting initially with a posi-
tive ¢ remains forever in the positivg-domain.

Case Il. Figure 16 v=1.005) corresponds tav,<w

We now illustrate the modifications of the phase portraits<w,,. As w increases from the value of case I, all the fixed
in the neighborhood of the polar axis @sis progressively points move upwards. The poiitl, which is closest to the
increased, keepinlf fixed. We take for illustration a rather polar axis, reaches the latter befof@. At this stage, which
small valueK=0.5, in order to have well-defined island arises whenw=w,,, a first bifurcation occurs. Whenw
chains and KAM surface§.e., very narrow chaotic layers =w,+ e (with e>0), the formerly hyperbolic poin¥Y1 pen-
nearX points. For clarity, we represent in the forthcoming etrates into the physical regiqg1>0, §1=0.5), and at the
figures only a rather narrow strip €00<1,0<¢<Ay) near same time changes its nature from hyperbolic to elliptic. Si-
the polar axis; in the square representation, we sometimanultaneously it gives rise to two additional hyperbolic points
also plot an extended phase portrait, including a strip in the1 andX2, located on the polar axis. This “trebling” of the
negativeys domain. For the chosen vallle=0.5, we find by  fixed pointY1 at the bifurcation is actually required by the
Egs.(35) and (36): w,=0.9873,w,,=1.0127. PoincareBirkhoff theorem. The bifurcation can be described

Case |. Our first illustration (Fig. 19, w=0.8, corre- in the following picturesque way. As the parameter
sponds tov<w,,. In this casehere is no fixed point in the crosses the threshold,,, the hyperbolic poin¥1 “decays”
physical domainAs a result, there are no period-1 islandsinto an elliptic point and two hyperbolic ones. This process
near the axis: all surfaces visible in the physical strip areobeys a law of ‘tonservation of stability ind&x the differ-
represented in the square form as slightly deformed horizornence between the number of elliptic points and the number of
tal curvesy~ const>0. In the polar representation, the phasehyperbolic points remains constantasvaries. It is impor-
portrait in this region appears as a set of concentric circletant to note, however, that this simple conservation rule re-
centered on the origin. Such a picture provides a model of guires that all fixed points, both physical and unphysical, be
tokamak in the (rather idealized) high aspect ratio limit taken into account.
(R/a>1), sometimes called the standard tokamak model Figure 16 shows the appearance of the phase portrait
[1]. The physical magnetic axisaround which the magnetic above the first bifurcation. Here again, we must emphasize
surfaces are woundeeincides in this case with the math- that all the features appearing in thle<O half-space are
ematical polar axis The fixed points are located in the “ghosts,” that are inaccessible. The polar graph correspond-
negativeds region, where we find a “regular” pair of fixed ing to this case is also shown in Fig. 16: it is clearly struc-

V. TOPOLOGY OF TOKAMAP PHASE PORTRAITS
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tured around the fixed pointl. The islands of the square 0.1 1 T T T
graph appear in the polar graph as closed curves ar¥ind
that do not include the origin; the KAM surfaces appear as
closed curves, also centered arout], but also enclosing
the origin. The latter does not appear to play any major role
in the organization of the structure. This shows the ambiva- by
lence of the polar axis in this problemlthough the polar
axis is globally invariant, its individual points are not fixed
points As a resultthe origin in the polar representation is
not a fixed pointThe only(physica) fixed point is the ellip-
tic point Y1 (¢1=0.0116,01=0.5): the closed surfaces of
the island as well as the KAM surfaces are centered on it.
Hence, we must interpréf1l as themagnetic axis of the
tokamak The argument in favor of this interpretation is
strengthened by recalling that the main effect ofnas 1
perturbation in a tokamak is the displacement of its magnetic
axis away from the geometric polar aXisee e.g., Ref.30],
Sec. 6.4. The only remaining question is the role of the two
X points X1 andX2 on the polar axis. They do not seem to
play any direct role in the polar representation: they are,
indeed, “squeezed” into the single origin. They do, how-
ever, show up in a certain “delicate” way, as will be seen
below.

Case lll. As w is further increased, it reaches the new
thresholdw,, , at which a secondifurcationtakes place: its
nature is, in a sense, inverse to the previous one. Thextwo
points X1 andX2 and theO point Y2 now meet and merge
at the origin(¢y=0, 6=0). Above the threshold, av=w,, FIG. 17. Tokamap phase portrait: case (K=0.5, w=1.05,
+ ¢, there remains a singlé point, Y2, in the physical do- andN=10%).
main, (¢2>0, §2=0). One may thus speak about a “recom-
bination” of two X points and oné point, to yield a single that it arises during the well-knowsawtooth instabilityin a
X point. The rule of “conservation of the stability index” real tokamak(see, e.g., Refl30] and Ref.[31], Sec. 7.6,
(hence the PoincarBertrand theoremis again satisfied. Let and is the basis of Kadomtsev's theory of the sawteeth phe-
us stress the fact that ndwoth fixed points are located in the nomenon. In tokamak language, it is produced bynanal
physical domain instability. It appears whenever there is a region vgjth 1

The topology of the phase portrait is drastically modified.(i.e., W>1 in our language, which requireg>1): this fits
Figure 17 shows the neighborhood of the polar axis abovgrecisely the conditions of our case lll. In the temporal se-
the second bifurcation, for=1.05. We now have one fixed quence, this situation will be followed by a reconnection,
O pointY1 (¢1=0.179,01=0.5 and one fixedX pointY2  which expels the inner bubble and restores a topology of the
($2=0.167,02=0). Around the first one there appears antype of case Il. Thus the tokamap is consistent with tokamak
island, within which the orbits are closed circles enclosing physics.
the fixed point. At the second point start the two branches of Case IV.As w continues increasing, the topology of case
a separatrix, separating the island from the “outer world.” lll is maintained, with the magnetic axis being pushed fur-
Above and below the separatrix there are “passing orbits,ther and further away from the geometric polar axis. A new
i.e., KAM surfaces. The picture in the polar representation isifurcation occurs when the roay1® produced by the
quite interesting. The fixe® point Y1 is radially displaced branchn=2 of the functionF1 enters the physical domain.
away from the origin in the 2601 = 7 direction. The island The scenario described above for the rootsl is then re-
orbits have the characteristic “banana” shape centered opeated: a nevD point appears first close to thle=0 axis at
Y2: this shape is quite common in tokamak physics. The#=0.5, followed by the appearance of a secofighoint at
separatrix appears as an “extreme banana” whose tipg=0. Inthe polar representation, this implies the appearance
merge at the fixedX point Y2, displaced in the opposite of a second “magnetic axis” located “outside” the inner
direction (92=0) away from the origin. The KAM surfaces separatrix, and hence encircled by the latter; around this sec-
lying above the separatrix in the square representation aend axis a number of concentric KAM barriers are formed.
mapped into circles enclosing the separathignce also the This type of picture does not seem to be produced by any
origin). The KAM barriers which are exterior to the separa- physical process in a tokamak: case IV should therefore be
trix, but lie below it in the square, are mapped into circlesconsidered irrelevant.
encircling the origin, but enclosed by the inner branch of the As a result of this discussiome shall henceforth restrict
separatrix. This peculiar topology shows that the concepts dhe variation of w to the rangé<w<w,(K) + 1, this being
“inside” and “outside” are somewhat ambiguous in toroi- the range relevant to tokamak physidhe bifurcation val-
dal geometry. uesw,,, andwy, depend on the stochasticity parameferin

The remarkable point about this type of phase portrait ipractice, the most interesting situations are contained be-
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FIG. 18. Stochastic layer around tlepoint in the presence of FIG. 19. Stochastic layer around tRepoint in the presence of
X-points on the axigK =4.47,w=1, andN=6x 10%). (The radial  a singleX point off axis(K=3.9,w=1.05, andN=6.1¢%). (The
coordinate in the polar plot is limited t¢=0.03) radial coordinate in the polar plot is limited #=0.07)

tweenw,(K)—A andw,(K)+A, whereA is some small destruction of the island chain. This stochastic layer always
quantitynzzompared to 1mthus in ’the neighborhoodvef 1. starts in the neighbourhood of thepoints of the separatrix

o ; encircling the islands: they are the most “fragile” points of
In order to complete this discussion, we make some rethe chain[32]. With these facts in mind, we consider the

marksT?]?outXith? precﬁgzg:]?éed c;‘stges?nol?er aé:zt'?nt?ﬁetoz?' hase portrait of the tokamap in the neighborhood of the
ap. S axis s rep gie p POI&lo1ar axis fork =4.47 andw=1 (Fig. 18. (Note that we

representation, but shows up as a segment of length 1 in t ave to take a rather large value Kfin order to see any-
“squa.re” representation. The axis 9OUIq thus be, thought o hing; we know, indeed, that the region near the axis is very
as being materialized by a very thin piece of wire perpenyqp st 1o perturbations.In this case the stochastic layer
dicular to the plane of section, of infinitesimally small radius, iarts near the point¥1 andX2, as appears clearly in the
around which the various poloidal orientations are distin-sqyare representation. In the polar representation, we see that
guishable. As was stressed repeatedly, the global invariangge corresponding orbit is thickest in the angular sectors
of the polar axis doesot imply that each of its points is @ 279~ /2, 37/2. The X points thus determine the starting
fixed point: this is only true fok=0. For finiteK, setting  direction of the stochastic layer.
,=¢,.1=0 in Eq. (24) leaves us with a nontrivial one-  Consider next the cagé= 3.9 andw=1.05: this is a case
dimensional magwhich could be called &ximag') show- Il situation, where there are n§ points on the polar axis;
ing that, in general, any point of the axis moves at eachhere is only oneéX point off-axis(Fig. 19. Here the chaotic
iteration to a new poloidal positiofin the polar language, layer starts near th¥ point: in the polar diagram the layer is
this means that the point moves around the axis by a certaithickest in the#=0 direction, contrary to the previous case.
angle We may note, upon looking at Figs. 18 and 19 tvabas
another important effect on the dynamigslarger w implies
KA a lower stochasticity threshaldndeed, the chaotic layer in
0, 1=6,+tw— 22 cos2rf, (mod 1). (43) the nearby regions of the phase space is more strongly de-
veloped atk =3.9 for w=1.05 than at the larger value of
This map has fixed pointifor which it reduces to Eq. K=4:45, forw=1. Thus, increasingv [i.e., decreasing
(34)]: for w,,<w<w,,, there are two fixed point&1 and q(O)] has a Qe_stablllglng effect on the.magnenc field con-
X2, which we know from our previous analysis. These poimsﬂgurqtmn. This is again in agreement with standard tokamak
do not seem to play any special role in the polar representd2NYSics.
tion of Fig. 16; they are squeezed into the origin. VI. TOKAMAP AND CONTINUOUS TIME
There is, however, one way of making their presence ' RANDOM WALK
manifest, even in the polar representation. We recall that for
sufficiently highK, a chaotic layer develops around each A quite different type of information about the tokamap
island chain; it grows thicker a$ increases, up to the final dynamics is obtained by a considerationtwhe series in
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FIG. 21. Time series for the stochastic orbit of Fig. 20.
FIG. 20. Stochastic orbit around a three-island ch#irs-3.7,

w=1, andN=3x10"). particle in basirm at time ¢, n,(¢) can be found exactly.

We do not describe here in detail the development of
these ideas: the methodology is exactly the same as in Refs.
[33-39, and the conclusion is identical. The magnetic field
éine “diffusion” is a typical example of ‘strange trans-
port.” the effective running diffusion coefficient decays as-
ymptotically to zero as an inverse power law. This behavior
is characteristic of the dynamics in amcompletely chaotic
regime in which the motion is bounded by upper and lower
cesses, we take a rather different point of view in the ap—KA'vI barriers. We che_cked ’?‘" these properties successfully
proach of this problem: we try to establish a “coarse O the tokamgp, our simulations are, hpwever, noF ygt sulffi-
grained” picture which eventually leads to “macroscopic” ciently extensive in order to provide reliable quantitative re-

equations of evolution. This methodology was developed i

a previous study of the standard m{&3]. It started from the

observation that a graph of the successive iterations of the

radial coordinate presents rather regular oscillations in a cer- VIl. CONCLUSIONS

tain “basin,” followed by a sudden jump to another mode of

oscillation in a different basin, which goes on for a certain We have shown that a simple Hamiltonian map can be

time till another jump happens, etc. We show here that thigonstructed, fulfilling the minimum requirements for a rep-

type of behavior is generic. resentation of a magnetic field in toroidal geometry. In the
We consider, folkK =3.7 andw=1, a chaotic orbit start- Present paper we considered only the situations in which

ing at /o= 0.20 andf,=0.80: this orbit remains confined in there exists a monotonous profile of winding numbar of

a region blocked by two KAM barriers below and above asafety faCtO)'. This tOkamap describes a structure that is very

three-island chaitaroundW= 2), as seen in the phase por- robust in the central region, the global stochasticity starting
trait of Fig. 20. (for increasingK) in the edge region: the map could there-

In Fig. 21, we see a typical section of the time sefigs fore prove useful as a model of a tokamak with an ergodic

vs v) of this orbit, for 1706<»<2300. The behavior de- divertor. The central region has some quite interesting topo-
scribed above is manifest: three basins can be identified frod@gical features, which can change dramaticallycluding
three regimes of oscillatiormean position, amplitude, and bifurcationg as the value of the safety factor on axis is var-
frequency. They correspond to motion encircling the island i€d. Typical configurations known from tokamak physics are
chain (basinO, 1700< »<1910, motion below the islands qualitatively reproduced by the map. _ o
(basinL, 1910< »<2110 and motion above the islandsa- Many more properties of the tokamap will be studied in
sin H, 2200< v<2400. forthcoming works. These include questions such as the in-
This behavior is exactly analogous to the one seen in théuence of the shape of the winding number profile, the de-
standard mag33,34. It can be described by eontinuous p_en_der_wce on the _parameters_ of various physical proper_tles,
time random walkThe orbit is then globally described by a Similarity and scaling properties. Last but not least, we in-
particle sojourning in a basin for a certain time, making atend to put charged partl_cles in th_|s magnetic field and study
transition to another basin, sojourning there, making anothef@ transport properties in a partially chaotic tokamak con-
jump, etc. The process is completely defined by prescribing fguration. This problem, which is very poorly understood, is
waiting time probability distributiorin basinm: p,,(¢), and  ©f crucial importance for fusion physics.
a transition probability from basim to basinn: f,,. (We
recall_that the role of tim_e_ is played here by _the toroidal ACKNOWLEDGMENTS
coordinate ¢). Both quantities can be determined by an
analysis of long time series. Using then standard techniques Useful discussions with J. H. Misguich, Y. Elskens, and
of random walk theory, the probability density of finding the R. B. White are gratefully acknowledged.

particular graphs ofy, vs v. It is in this representation that a
very important aspect of the evolution of incompletely cha-
otic systems is manifesstickinessA chaotic orbit spends a
long time near the boundaries of island chains, KAM barrier
and cantori. This property is due to the “braking” action of
the complex fractal structure of these boundafistands,
around islands, around islands, gtRather than going into a
detailed description of these extremely complicated pro

r§ults. This specific problem will be addressed in forthcoming
ork.
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