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Tokamap: A Hamiltonian twist map for magnetic field lines in a toroidal geometry

R. Balescu, M. Vlad,* and F. Spineanu*
Association Euratom–Etat Belge, Code Postal 231, Universite´ Libre de Bruxelles, Campus Plaine, Boulevard du Triomphe,

1050 Bruxelles, Belgium
~Received 27 January 1998; revised manuscript received 25 March 1998!

A Hamiltonian twist map~tokamap! is constructed as a representation of the stroboscopic plot of magnetic
field lines in a toroidal confinement device as used in fusion physics. This ‘‘tokamap’’ is compatible with
minimal toroidal geometry requirements~in particular, the polar axis cannot be crossed upon iteration!. It
depends on two parameters: the stochasticity parameterK and the winding number on axis,w. With increasing
values ofK, chaotic regions appear mostly near the edge of the torus, while the zone near the magnetic axis
remains very robust. The number and nature of the fixed points are studied in detail, as they determine the
appearance of the phase portraits near the axis. It is shown that the topology undergoes several bifurcations as
K and/or w are varied. The various phase portraits reproduce the qualitative features known in tokamak
physics. The time series exhibit a typical behavior describable by a continuous time random walk, as found in
previous works on the standard map.@S1063-651X~98!05607-4#

PACS number~s!: 52.55.Fa, 05.45.1b, 52.25.Gj, 05.40.1j
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I. INTRODUCTION

Magnetic confinement of a plasma~for the purpose of
controlled thermonuclear fusion! is realized in tokamaks o
stellarators by a magnetic field ideally structured by a se
nested toroidalmagnetic surfaceswound around a circula
magnetic axis. The successive surfaces are labeled by
values of anysurface quantity~i.e., a quantity that is constan
on a magnetic surface! C, playing the role of a radial coor
dinate. Each magnetic field line is tangent everywhere t
magnetic surface. Any point on such a surface is charac
ized by two angular coordinates: the poloidal angleu ~the
short way around the torus! and the toroidal anglez ~the long
way around the torus!: for convenience these angles are me
sured in radians divided by 2p.

To put the matter into quantitative form, we consider fi
an ideal (unperturbed) situation@1#. We choose here for the
radial coordinateC the toroidal flux c̃, i.e., the magnetic
flux through a surface perpendicular to the magnetic axis;
convenience, this quantity is made dimensionless by in
ducing c5c̃/B0a2, where B0 is a characteristic magneti
field amplitude, anda is the minor radius of the tokamak. I
the case of a circular torus, we have simplyc5r 2, wherer
is the dimensionless radial coordinate~scaled witha!. The
magnetic axis thus corresponds to the valuec50, and the
edge of the torus toc51. The variables~c,u,z! form a con-
venient curvilinear coordinate system, that can be made
thogonal by a proper choice of the angles.

The ~stationary! magnetic fieldB„x… must satisfy the two
constraints expressing its divergence-free nature, and its
gency to the magnetic surfacec(x)5const:

“•B50, B•“c50. ~1!

*Permanent address: National Institute for Laser, Plasma and
diation Physics, P.O. Box MG-36, Magurele, Bucharest, Roma
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The magnetic field satisfying these constraints is c
veniently represented in the well-knownClebsch form@1–3#:

B5“c3“u2“a0~c!–“z, ~2!

where the surface quantitya0(c) is the ~dimensionless! po-
loidal flux ~the magnetic field and the gradient operators
also made dimensionless by scaling them withB0 and a,
respectively!.

From Eq. ~2!, one finds the equations for the magne
field lines expressed in the coordinates~c,u,z! by using el-
ementary geometrical formulas. Using the toroidal angle a
running parameter, a field line is characterized by the t
functions c~z! and u~z! obeying the following differential
equations:

dc

dz
52

]a0

]u
,

du

dz
5

]a0

]c
. ~3!

As noted by many authors~e.g., Refs.@4–8#!, the field
line equations have aHamiltonian structure: a0 plays the
role of the Hamiltonian,z the role of ‘‘time,’’ and c andu
appear as a pair of canonical variables~this property justifies
the choice ofc as a radial coordinate!. In the unperturbed
case, whena0 is a surface quantity depending only onc,
Eqs.~3! represent a one degree of freedom, hence integra
dynamical system:

dc

dz
50,

du

dz
5W~c!, ~4!

where the unperturbedwinding number~also called thero-
tational transform! is defined as follows:

W~c!5
]a0~c!

]c
. ~5!

~In the plasma physics literature, this quantity is oft
denoted byi/2p; its inverseq51/W is called thesafety fac-
a-
.

951 © 1998 The American Physical Society



an
li

n
e
c-

al

h
e

te
b
th
s.

th

e
m

a
ti

te
ar

a
ia
l

1,

en
o
e

r-
o
th
e

vy
n-
-

pic
ry
nal
t a
l

ari-
g to
p
k

-

-
ev
ans

ect

he
of

es as

r of

-

952 PRE 58R. BALESCU, M. VLAD, AND F. SPINEANU
tor!. Clearly,c is analogous to an action variable, a const
of the motion; the associated angle variable increases
early in time.

This ideal structure is, however, strongly modified whe
ever some perturbation is present: the latter can be du
external features~such as imperfections in the coils produ
ing the magnetic field! or to internal factors~i.e., instabilities
or fluctuations!. Theperturbed magnetic fieldis also conve-
niently represented in the Clebsch form~2!, in which the
unperturbed Hamiltonian is replaced by a function of
three coordinates:

a0→a5a0~c!1Kda~c,u,z!. ~6!

The perturbation HamiltonianKda is a 1-periodic func-
tion of the variablesu andz. The real, positive parameterK,
is called thestochasticity parameter: it measures the strengt
of the perturbation. The corresponding equations of the fi
lines are now

dc

dz
52K

]da~c,u,z!

]u
,

~7!

du

dz
5W~c!1K

]da~c,u,z!

]c
.

These are the equations of motion of a 11
2 degrees of

freedom dynamical system, which is, generically, nonin
grable. The nature of the orbits is conveniently studied
considering a stroboscopic plot, obtained by recording
values of the coordinates~c,u! at successive equal time
These coordinates define thephase spaceof the dynamical
system. For simplicity, we assume the cross section of
torus to be circular. The stroboscopic plot of theunperturbed
system consists of a set of concentric circles~corresponding
to ergodic magnetic surfaces! interspersed with discret
points~corresponding to rational values of the winding nu
ber!. The stroboscopic plot coincides in this case with
Poincare´ section on a plane perpendicular to the magne
axis. An alternative graphical representation, which of
provides a clearer picture, is obtained by making a cut st
ing from the center~magnetic axis!, pulling the two lips
apart, and expanding the point representing the magnetic
into a line; after a mirror reflection we obtain a square d
gram; the radial coordinatec is represented on the vertica
axis (0<c<1), and the poloidal angle is given, modulo
on the horizontal axis (0<u<1) ~Fig. 1!. The ergodic mag-
netic surfaces are now represented as horizontal segm
and the periodic orbits are shown as points aligned horiz
tally. Whenever aperturbationis present, the topology of th
magnetic field is strongly modified: there appearisland
chains, together with undestroyed~but deformed! magnetic
surfaces calledKolmogorov-Arnold-Moser (KAM) barriers
and in between these features there existchaotic orbitsfilling
two-dimensional regions of the phase space. Thisincom-
pletely chaotic structureis generic for tokamaks; its unde
standing is a prerequisite for any realistic study of transp
in such devices. The peculiar features connected with
representation of the magnetic axis will be discussed in S
V.
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II. CONSTRUCTION OF THE TOKAMAP

The solution of the field line equations~7! required for the
construction of the stroboscopic plot involves a very hea
numerical effort for achieving sufficient precision in the no
integrable case@9–11#. It is therefore useful to construct sim
plified models based on discrete iterativemapsrather than on
differential equations in order to describe the strobosco
plot of the magnetic field. With this mathematical tool, ve
long orbits are easily obtained even with a modest perso
computer. It is generally not a simple matter to construc
map that isexactly equivalent to the starting differentia
equations~this would imply the solution of the latter, which
is precisely what we want to avoid!. One may wish to con-
struct, instead, a modelab initio, and check its relevancea
posteriori.

Several authors have introduced maps representing v
ous aspects of magnetic confinement devices accordin
this philosophy. The first application of a Hamiltonian ma
to the problem of magnetic field line diffusion in a tokama
~in presence of a magnetic limiter! appears to be due to Mar
tin and Taylor in 1984@12#. Punjabi and co-workers@13–15#
studied theX point in a poloidal divertor geometry of a to
kamak by means of very simple algebraic maps. Abdulla
and Zaslavsky studied the same divertor problem by me
of a more sophisticated ‘‘separatrix map’’@16,17#. Abdul-
laevet al. recently constructed a map representing the eff
of a dynamic ergodic divertor@18#. All these works are mod-
els of the edge region~scrape-off layer! of a tokamak. A
global model of a specific stellarator~W VII-A ! was intro-
duced by Wobig in an important work@8# ~see also Ref.
@19#!.

In the present work, we construct a global model of t
magnetic field in a toroidal confinement device by means
an iterative two-dimensional (c,u) map. Such a map con-
nects successive iterates of the phase-space coordinat
follows:

cn115P~cn ,un!, un115Q~cn ,un!, ~8!

where n is any non-negative integer:n50,1,2, . . . . The
construction of such a map must satisfy a certain numbe

FIG. 1. Phase portrait of unperturbed system~square represen
tation!.
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constraints. The first of these requires that theHamiltonian
structureof the differential equations~7! be reflected in the
structure of the discrete model, which should be aHamil-
tonian ~or symplectic! map. The clearest way of constructin
such a map starts from the fact@20# that in a Hamiltonian
evolution the values of the canonical variables$cn11 ,un11%
at time (n11) are connected to their values$cn ,un% at time
n by a canonical transformation. Such a transformation ca
be defined by means of agenerating functionof the new
momentum and of the old angle@8#:

F~cn11 ,un!5cn11un1 f ~cn11 ,un!. ~9!

The first term in the right hand side corresponds to
identity transformation. The transformation equations are

cn5
]F~cn11 ,un!

]un
5cn111

] f ~cn11 ,un!

]un
,

un115
]F~cn11 ,un!

]cn11
5un1

] f ~cn11 ,un!

]cn11
~mod 1!.

~10!

These equations define the map in a semi-implicit fo
~the explicit form is obtained by solving the first equation f
cn11!. The unperturbed map is obtained by taking
f (cn11 ,un)5F0(cn11). We then obtain

cn115cn , un115un1W~cn11! ~mod 1!. ~11!

This map represents the exact solution of the integra
Hamiltonian system~4!. Indeed,cn remains constant andun

increases byW(c) upon each iteration~i.e., after a toroidal
turn of 2p!. The winding number is simply related to th
generating function

W~c!5
]F0~c!

]c
. ~12!

Comparing this equation to Eq.~5!, we see that the gen
erating function is here simply the Hamiltonian of the~con-
tinuous time! dynamical system. The phase portrait of th
map is of the type shown in Fig. 1. For all the values ofc
such thatW(c)5n/p(n,pPZ), the pth iterate coincides
~modulo 1! with the starting point, i.e., we have ap-periodic
orbit represented by a chain ofp discrete points. For al
irrational values ofW the orbit fills densely a horizonta
segment in Fig. 1~i.e., a circle around the origin in the pola
representation!. The location of these features depends,
course, on the shape of the winding number functionW(c).
Whenever this is a monotonous~growing or decreasing!
function, Eq.~11! is called asimple twist map.

We now introduce aperturbationby considering a gener
ating function of the form

F~cn11 ,un!5cn11un1F0~cn11!1KdF~cn11 ,un!,
~13!

whereK is the stochasticity parameter introduced in Eq.~6!.
Map ~11! becomes
e

le

f

cn115cn1Kh~cn11 ,un!,

un115un1W~cn11!1K j ~cn11 ,un!. ~14!

From Eq.~10!, we find the following definitions:

h~cn11 ,un!52
]dF~cn11 ,un!

]un
,

j ~cn11 ,un!5
]dF~cn11 ,un!

]cn11
. ~15!

It follows that

]h~cn11 ,un!

]cn11
1

] j ~cn11 ,un!

]un
50. ~16!

Equations~14!, with the functionsh and j interrelated by
Eq. ~16!, is the general form of aHamiltonian map. The
simple relation between the generating function and Ham
tonian is, however, no longer valid. Generically, whenev
the generating function dependsnonadditivelyon bothc and
u, it is not possible to determine the Hamiltonian functio
that produces a given Hamiltonian map~although the exis-
tence of the former is ensured by the construction!.

A simple realization of constraint~16! is obtained by tak-
ing h5h(un), j 5 j (cn11): this corresponds to ageneral
twist map. The fact that each function depends on a sin
variable greatly simplifies the analysis: the maps studied
most textbooks are of this type. In particular, the celebra
Chirikov-Taylor standard map @22,21,23# @h(u)
52(2p)21 sin 2pu and j (c)[0; W(c)5c# belongs to
this class. The standard map is, however,not a faithful model
of a tokamak, for several reasons. In the first place, the saf
factor profileq(r ) is, in most tokamak experiments, a m
notonously growing function ofr , hence ofc5r 2. @In recent
experiments one produces a locally ‘‘reversed shear,’’ i.e., a
minimum ofq(r ) near the magnetic axis. This reversed sh
configuration can easily be implemented in our work, a
will be discussed in a forthcoming paper#. Typically, the
safety factor on the magnetic axis isq(0)51, and, at the
edge,q(1)54. The value on axis may, however, be smal
q(0),1: this has an important effect on the properties of
discharge. It follows that in a tokamakthe winding number
W(c) is a monotonously decreasing function ofc: This is
just opposite of the standard map.

A useful analytic form for this profile was derived b
Misguich and Weyssow@24#, by assuming that the densit
and electron temperature profiles in the tokamak are, res
tively, n(r )5n(0)@12r 2# and Te(r )5Te(0)@12r 2#2; one
then obtains, in the large aspect ratio limit,

W~c!5
w

4
~22c!~222c1c2!. ~17!

Here the positive constantw5W(0) is the value of the
winding number on the polar axis. The winding number p
file W(c), given by Eq.~17!, as well as the correspondin
safety factorq(c), are shown in Fig. 2.

A very important additional constraint to be fulfilled by
tokamak model is itscompatibility with toroidal geometry. It



;
l

tiv

on
ri
xi

be
on
tiv

on

l

m
w

of
t.

e

ting

mi-

con-

e
for
e

lu-

al

h

,

xis.

ity

e

o-
ve,

954 PRE 58R. BALESCU, M. VLAD, AND F. SPINEANU
follows from its geometrical meaning that the coordinatec
must be a definite positive number; it may vary in the physi-
cal range 0<c<1 ~it is bounded by the limiter or the wall
the upper limit is, however, left free in the present mode!.
An indispensable condition is thus

If c0.0 then cn.0, ;n. ~18!

On the other hand, the polar axis represented byc50
plays a special~singular! role in the toroidal~or cylindrical!
geometry. As the radial coordinate can admit no nega
values, the axisc50 represents@in the ‘‘square’’ represen-
tation ~Fig. 1!# a barrier that can never be crossed. This c
dition can be satisfied when the polar axis is globally inva
ant: an orbit starting on the axis remains forever on the a

If c050 then cn50, ;n. ~19!

The condition of impenetrability can, however, also
realized more weakly, by requiring that a point starting
the axis may either remain on the axis or move to a posi
c ~but never to a negativec!, thus

If c050, then cn>0, ;n. ~20!

The standard map does not satisfy any of these conditi
It is well known that, forK.0, an orbit starting atc050
travels through both positive and negative values ofc. More-
over, ~in the globally chaotic regime!, the orbits are 1-
periodic inc ~as well as inu!, hencec50 plays no specia
role: there is no unique polar axis in the standard map.

Wobig @8# took a first step toward solving the proble
posed by the geometrical constraints by making the follo
ing ansatz for the generating function in Eq.~13!:
dF(cn11 ,un)52(2p)22cn11 cos 2pun ; using Eqs.~14!
and ~15! he obtained:

cn115cn2
K

2p
cn11 sin 2pun ,

~21!

un115un1W~cn11!2
K

~2p!2 cos 2pun .

FIG. 2. Usual winding number~solid! and safety factor~dotted!
profiles in a tokamak.
e

-
-
s:

e

s.

-

~Actually, Wobig used more general periodic functions
un ; this does not change our forthcoming argumen!
Wobig’s map satisfies condition~19!; however, it violates
condition ~18! in a certain domain, and may even becom
singular.

Here we propose an alternative ansatz for the genera
function:

dF~cn11 ,un!52
1

~2p!2

cn11

11cn11
cos 2pun , ~22!

which yields the following map:

cn115cn2
K

2p

cn11

11cn11
sin 2pun , ~23!

un115un1W~cn11!2
K

~2p!2

1

~11cn11!2 cos 2pun .

~24!

It is readily verified that this map satisfy conditions~16!,
hence it is a Hamiltonian, area-preserving map. The deno
nators (11cn11) produce a ‘‘self-healing’’ effect which
suppresses the divergences. The winding number profile
sidered here will be the one defined in Eq.~17!, which de-
pends on the parameterw. It is clear, however, that the shap
of W(c) should be considered as being open to variation
studying different regimes@just as in real experiments, th
shape of the safety factor profileq(r ) can be ‘‘tailored’’#.

In form ~23!, the map is nonlinear; it possesses two so
tions cn11 for given (cn ,un). We make the following
choice of the unique root which provides us with the fin
definition of our map:

cn115 1
2 $P~cn ,un!1A@P~cn ,un!#214cn%, ~25!

where the functionP(c,u) is defined as

P~c,u!5c212
K

2p
sin 2pu. ~26!

Equations~24!–~26! define a one-valued iterative map whic
will be called the tokamap.

It is easily checked that condition~18! is satisfied. Indeed
if c.0, then P214c.P2. If P.0, trivially, P
1AP214c.0. If P,0, we still haveAP214c.uPu, and
hence alwaysP1AP214c.0.

We now discuss the properties related to the polar a
From Eq. ~26!, it is seen that, forc50, the sign of the
function P(0,u) depends on the value of the stochastic
parameter and on the poloidal angle.

For (K/2p),1, P(0,u),0; thusP(0,u)1AP2(0,u)50,
and Eq.~25! shows thatcn50 impliescn1150. The polar
axis is thus globally invariant in this case, i.e., Eq.~19! is
satisfied.

For (K/2p).1, P(0,u) is no longer everywhere definit
negative: there exists a range ofu for which P(0,u)
1AP2(0,u).0, and hence the polar axis is no longer gl
bally invariant in this region. Nevertheless, as shown abo
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cn (n.0) is always positive; in particular, an orbit startin
at c050 can only move to positive values ofc ~or remain on
the axis!. Hence in this range ofK, Eq. ~20! is satisfied:the
polar axis cannot be crossed.

It may be noted that the valueK52p56.283 . . . corre-
sponds to a regime of global chaos for the tokamap. A
result the invariance of the polar axis is no longer a v
significant property in this case. Summing up,the tokamap is
a Hamiltonian map, depending on two parameters (K a
w), under which an initially positive radial coordinatec
remains always positive, and the polar axis is a barrier th
cannot be crossed.

III. PHASE PORTRAITS OF THE TOKAMAP

In Fig. 3, we show a typical phase portrait, correspond
to five orbits with K52.55 (w51). We see four island
chains around periodic orbits corresponding to winding nu
bersW51, 2

3 , 1
2 , and 2

5 , as well as two KAM barriers. In the
polar plot, the islands are represented as closed curves
do not encircle the origin, whereas the KAM barriers a
curves enclosing the origin. The separatrix enclosing theW
5 1

2 island chain is also visible, thus displaying the two h
perbolic (X) points associated with the two elliptic (O)
points located at the center of the islands. The increa

FIG. 3. Tokamap island chains and KAM barriers.~K52.55, the
number of iterations isN51000.!
a
y

d

t

g

-

hat

-

ed

density of points near theX points shows the beginning of
thin stochastic layer.

In Fig. 4, we take a higher value ofK53.7 (w51), and
picture five orbits. The remarkable feature here is that
outer part of the torus~near the edge! is now strongly chaotic
around theW5 1

2 and 1
3 island chains. It is, however, remark

able thatthe inner part, near the magnetic axis, remains ve
robust and undestroyed. This feature may lead to a model o
a tokamap with an ergodic divertor.

An interesting case is shown in Fig. 5. It shows four o
bits, for K54.5 (w51). The middle section is strongly cha
otic at this value ofK; it forms a single ‘‘stochastic belt’’
which surrounds several large island chains. This zone
clearly bounded, both below and above, by KAM surfac
two of which are shown in the figure. The presence of th
intact KAM barriers shows that, at this value of the para
eterK, the system isnot yetin a globally stochasticregime.

We now recall a well-known semiempirical result o
Greene@25#, later developed by a renormalization grou
analysis@26–28#. It states that the most robust KAM barrie
in the standard mapis the one corresponding to a windin
number equal tog* 5G

*
21, whereG* is the golden section

defined by the equation:G
*
2 5G* 11 ~thus g* 5G* 21

50.618 033 9 . . .!: this KAM surface will be called ‘‘the
golden KAM.’’ This result is very appealing because, in

FIG. 4. Tokamap regular and chaotic orbits~K53.7,w51, and
N5104!.

FIG. 5. Tokamap stochastic belt~K54.5, w51, and N51.5
3104!.
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sense, the golden section may qualify as ‘‘the most irratio
number,’’ being defined as the continued fractio
@1,1,1,1, . . . #. Greene’s result is, unfortunately, not gener
The determination of the most robust KAM barrier in a
arbitrary map appears to be, at present, a largely unso
problem@29#.

Coming back to the tokamap, we may try to locate t
golden KAM in a picture like Fig. 5. For a rather large valu
of K, it is impossible to ascertain the value of the windi
number of a chaotic orbit. We may argue, however, as
lows. Consider first theunperturbed map(K50). In this
case the KAM barriers are represented by horizontal stra
segments. The radial coordinatec corresponding to any
given value ofW is determined from the graph of Fig. 2
Alternatively, we can find this number analytically, by sol
ing the cubic equation

W~c!5v, ~27!

wherev is a given value of the winding number. The re
root of Eq.~27! is

c5J1/32
2

9J1/31
4

3
, ~28!

with

J5 10
27 22v1 2

9 A3230v181v2. ~29!

We thus find that the golden KAM, withv5g*
'0.618 03, is located atc'0.315 93. In the same way, w
find that the periodic orbit corresponding tov51/2 is lo-
cated atc'0.456 31, i.e.,abovethe golden KAM, and that
the periodic orbit withv5 3

4 lies atc'0.189 46, i.e.,below
the golden KAM. The golden KAM, together with these tw
periodic orbits, is shown in Fig. 1 for the unperturbed toka
map.

Consider now theperturbed tokamap, K.0. The KAM
barriers are no longer straight, but are deformed or brok
on the other hand, islands are formed around the perio
orbits. In spite of these deformations, the general topolog
the phase portrait is maintained, in the sense that therelative
position of the features associated with successive value
the winding number is preserved. In particular, the gold
KAM ~if it exists! must be located somewhere between
two-island chain (v5 1

2 ) and the four-island chain (v5 3
4 ).

Looking now at Fig. 5, we clearly recognize these two isla
chains; in between them there is a purely chaotic sea. T
at K54.3, the golden KAM is destroyed. On the other hand
the chaotic belt is bounded both above and below by un
stroyed KAM barriers. Thus, as noted above, the system
not yet in a globally chaotic state, although the golden KA
is broken. We thus arrive at the following interesting conc
sion: In the tokamap, the golden KAM is not the most rob
KAM barrier. The search for the most resistant barrier
certainly not a trivial matter. It will not be discussed furth
here.
al
:
.

ed

e

l-

ht

l

n;
ic
f

of
n
e

d
s,

e-
is

-
t

IV. FIXED POINTS OF THE TOKAMAP

It is seen, especially in Fig. 3, that all island chains
periodp>2 have the ‘‘expected’’ structure predicted by th
Poincare´-Birkhoff theorem @21,23#, which tells us that,
wheneverW(c) is a monotonous function~i.e., for any twist
map!, a rational surface breaks under a sufficiently sm
perturbation into an even number 2n of fixed points,n ellip-
tic points alternating withn hyperbolic ones. This structur
is not apparent for the period-1 fixedO point appearing in
Figs. 3 and 4; no correspondingX point is visible. A careful
analysis of the proof shows that the breakdown of the th
rem is due to the special nature of the polar axisc50: the
latter cannot be crossed upon iteration by the map. M
generally speaking, it will be shown that the phase portrai
the neighborhood of the polar axis is determined by the nu
ber and the nature of the fixed points. The latter depend
the relative values of the parametersw and K, and will be
analyzed below.

In order to study the problem quantitatively, we wri
down the equations determining the fixed points by us
Eqs.~23! and ~24! with cn115cn5c andun115un5u:

c

11c
sin 2pu50, ~30!

W~c!2
KA

~2p!2

1

~11c!2 cos 2pu50 ~mod 1!. ~31!

@In Eq. ~30!, we used the implicit form of map~23!; it should
be kept in mind, however, that only one branch of the e
pression in the right hand side is retained.# The study of fixed
points should be completed by alinear stability analysis,
starting from the tangent map~which we do not write down
explicitly here!. It has been well known, since the classic
work of Refs.@25, 21, 23#, that a very simple stability crite-
rion is based on theresidue, defined as follows in terms o
the trace of the matrixM defining the latter map:

R5 1
4 ~22TrM!. ~32!

The fixed point~around which the map is linearized! is
linearly stable whenever 0<R<1. The residue for the toka
map is obtained by a standard calculation:

R52
K

8p H F 1

~11c!22
2p

2p~11c!21K sin 2puGsin 2pu

2
K

p

c

~11c!4 cos2 2pu

1w
p

2

c~628c13c2!

11c
cos 2puJ , ~33!

wherec andu are the coordinates of the fixed point arou
which the linearization is made. We recall that thephysical
domain of the variablesis 0<c<1, and 0<u<1 ~mod 1!;
the physical range of the stochasticity parameteris 0<K
<2p.
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~i! Equation~30! has a first obvious solution:c50. Sub-
stituting this value into Eq.~31!, and recalling thatW(0)
5w, we find

G~u,K,w,n![w2
K

~2p!2 cos 2pu2n50, ~34!

wheren is any integer, positive, zero, or negative. It will b
shown below that the physically relevant value isn51,
which we use here. ForK lying in the physical range and
kept fixed, it is easily seen that Eq.~34! has a real solution
only for w restricted to a finite range. Indeed, there is
such solution~with ucos 2puu<1! asw increases from zero
up to a certain minimum valuewm , for which there suddenly
appears a solution: cos 2pu521, i.e., u5 1

2 . This bifurca-
tion point is determined by settingG(1/2,K,wm,1)50, from
which we find, using Eq.~34!:

wm512~2p!22K. ~35!

As w is further increased, this fixed point splits into tw
new fixed points moving apart, one to the left and one to
right, until they reach, respectively, the valuesu50 andu
51, which are physically equivalent (150 mod 1). This
merging occurs forw5wM , which defines another bifurca
tion point, determined by the equationG(0,K,wM,1)50,
which yields

wM511~2p!22K. ~36!

Whenw is further increased, these fixed points on the po
axis disappear.

In conclusion, for wm<w<wM , there are two fixed
points on the polar axis: X15(0,u1), X25(0,u2); their
location is shown in Fig. 6 (for K51). The extreme values o
w are bifurcation points: for w5wm the fixed points merge
at u5 1

2 , and for w5wM they merge atu50. For w below
wm , or above wM , these fixed points disappear.

For the correct understanding of this result, it should
kept in mind that the polar axisc50 is globally invariant,
but its individual points arenot fixed points, except when
K50. WhenK.0, andw lies in the range defined above
there remain exactly two fixed points on the axis. Note a

FIG. 6. Angular position of the fixed points on the polar ax
(K51). Solid line:u1; dotted line:u2.
e

r

e

o

that these points do not appear as distinct in the polar re
sentation@such as Fig. 3~b!; this feature will be further dis-
cussed in Sec. V.#

The residue at these fixed points is calculated from
~33!, and is plotted in Fig. 7~for K51!. Both residues are
negative over the whole range of allowed values ofw ~and
also for all physical values ofK!, meaning that both fixed
points on the axis areunstable X points.

Equation~34! possesses additional solutions obtained
choosingn50, 21, 22, . . . orn52,3, . . . One caneasily
convince oneself that the latter solutions exist only for valu
of K and w which are well beyond the physically releva
range; these solutions will no longer be discussed here.

~ii ! Equation~30! also possesses solutions withcÞ0, for
which sin 2pu50. This equation is satisfied foru50 and
u5 1

2 . Substituting these values into Eq.~31! we find the
following equations forc :

u5
1

2
: F1~c,K,w,n![W~c!1

K

~2p!2~11c!22n50,

~37!

u50: F2~c,K,w,n![W~c!2
K

~2p!2~11c!22n50.

~38!

We analyze the solutions of these equations by a gra
cal and numerical method. We fix a value ofK somewhere in
the physical range, and plot the graphs of the two functio
F1 andF2 for different values of the integern.

~a! The graph of the functionsF1(c,K,n) for the typical
fixed valueK52.3 is shown in Fig. 8 in the range21,c
<1. The obvious property of this function, visible in Eq
~37!, is the existence of a singularity atc521 for all K and
w. For all values ofn, the curves are monotonously decrea
ing from 1` to 2`; hence they cross the axisc50 exactly
once. It follows that there exists an infinite number of roo
in the range21,c,`, one for each value ofn. Our task is
to identify the roots located in the physical domain 0<c
<1.

For small values ofw, there is no root in the physica
domain, as can be seen in Fig. 8~a!. As w is increased, the
curves representing the functionF1 are lifted upward. As a
result, for a certain critical valuew5wC1

(1)50.941 ~for K

FIG. 7. Residue at fixed points on the axis (K51). Solid line:
X1, dashed line:X2.
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52.3!, the curve forn51 produces a rootc150, and hence

a fixed pointY15(c1,1
2 ) in the physical domain. Asw is

further increased, the rootc1 moves to the right@Fig. 8~b!#.
Then, suddenly, whenw reaches a new critical valuewC1

(2)

51.941, an additional rootc1(2) appears in the physica
domain: it is produced by the curven52. A new critical
value appears atwC2

(3)52.941, with a third rootc1(3) entering
the physical domain (n53). For still higher values ofw,
this pattern no longer changes; whenn54 produces a physi
cal root, the rootc1 (n51) leaves the physical domain
Thus, for all values ofw.wC2

(3) , there are three roots in th
relevant range.

The critical values ofw depend, of course, onK. The
fundamental threshold,w5wC1 , above which the first physi
cal root appears, is obtained by expressing that the func
F1, for n51, possesses a rootc150, corresponding to a
fixed pointY1. From Eq.~37!, we find

F1~0,K,wC1,1![wC11
K

~2p!22150. ~39!

Comparing this equation with Eq.~34!, we see that it is
identical to the equationG(1/2,K,wm,1)50 determining the
lower bifurcation point for the fixed points on the axis; hen

wC15wm512~2p!22K. ~40!

FIG. 8. The functionF1(c,K,w,n) for K52.3 and two values
of w. ~a! w50.2; ~b! w51.2. The three curves correspond ton
50 ~dotted line!, 1 ~solid line!, and 2~dashed line!. The physical
range ofc is emphasized.
n

Thus, for this value ofw, the two merged fixed points on
axis (X1,X2) and the fixed pointY1 at u5 1

2 coincide at
(c50,u51/2). The stability of this fixed point is margina
@residueR(Y1)50#.

In Fig. 9, we plot the residue atY1 ~for K52.3! as a
function of w. We see that below the thresholdwm50.942,
when c1,0, the fixed pointY1 is hyperbolic, whereas
above the threshold, whenc1.0 ~i.e., in the physical do-
main!, Y1 is elliptic.

A second threshold which is also physically relevant
the value ofw5wC1

(2) above which the root determined b
n52 enters the physical domain. By the same reasoning
above, we find that this second threshold is

wC1
~2!5wm11. ~41!

Thus, for wm<w,wm11, there is exactly one elliptic
fixed point Y1 within the physical domain. The location of
the fixed elliptic pointY1 within the physical domain, for a
given K, as w is varied in the interval defined above,
shown in Fig. 10, forK52.3. For reasons shown below,
appears that the situations corresponding to higher value
w, for which the functionF1 produces two or three solution
in the physical range, are physically irrelevant, and will n
be further discussed here.

~b! The graphs of the functionF2(c,K,w,n) are shown
in Fig. 11 in the range21,c,1 for K52.3 and for two
values ofw. From Eq.~38!, we see that this function also ha
a singularity atc521, but here it takes thenegativevalue
F2(21,K,w,n)52`. As a result, the shape of the curves

FIG. 9. Residue at the fixed pointY1 (K52.3).

FIG. 10. Radial coordinatec1(w) of the fixed pointY1 (K
52.3).
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quite different fromF1 ~Fig. 8!: all curves have nowa maxi-
mum. As a result, there are three possibilities, varying w
n, K, and w: ~1! the curve crosses the axisc50 at two
points;~2! the curve is tangent to the axisc50; and~3! the
curve does not cross the axisc50.

For small values ofw, there is again no root in the phys
cal domain 0<c<1. As w increases, the curves move u
ward, and whenw reaches a critical valuewC2 , the branch
n51 produces a root atc250 @hence a fixed pointY2
5(c2,0)]. Just as in the previous case, one readily finds
this threshold value coincides with the upper bifurcati
point wM , Eq. ~36!:

wC25wM511~2p!22K. ~42!

FIG. 12. Residue at the fixed pointY2 (K52.3).

FIG. 11. The functionF2(c,K,w,n) for K52.3 and two values
of w: ~a! w50.8; ~b! w51.3. The three curves correspond ton
50 ~dotted line!, 1 ~solid line!, and 2~dashed line!. The physical
range ofc is emphasized.
at

The residue atY2 shows that as soon as this fixed po
enters the physical domain (c2.0); i.e., at w5wM
~51.058 forK52.3!, its character changes from elliptic t
hyperbolic~Fig. 12!.

The equalitywC25wM shows that the threshold value fo
Y2 coincides with the upper bifurcation point forX1 andX2.
At this value ofw the two fixedX pointsX1 andX2 and the
former O point Y2 merge at the origin~c50, u50!. For
w.wM , there are no longer any fixed points on the po
axis, and there remains a singleX point in the physical do-
main, at~c2.0, u50!. The location ofc2 as a function of
w for K52.3 is shown in Fig. 13.

The second thresholdwC2
(2) , above which a second roo

for n52, enters the physical domain atu50 is: wC2
(2)

5wM11. Thus, for wM,w,wM11 there is exactly one
hyperbolic fixed point Y2 at u50 within the physical do-
main. We do not further discuss situations in which add
tional fixed points appear in the physical domain.

Before summing up this discussion, it is interesting
consider the limitK→0, which is singular. Indeed, as see
from Eqs.~37! and~38!, whenK is strictly 0, the pole of the
functions F1 and F2 no longer exists; moreover, the tw
functions coincide:F1(c,K,w,n)5F2(c,K,w,n) ~Fig. 14!.
The two rootsc1 andc2 tend continuously to the commo
valuec1(0)5c2(0)50. ~This does not mean that the tw
fixed points merge: they have different values ofu.! All

FIG. 13. Radial coordinatec2(w) of the fixed pointY2 (K
52.3).

FIG. 14. The functionF1(c,K,w,n)5F2(c,K,w,n) for K
50, w51, n50 ~dotted line!, 1 ~solid line!, and 2~dashed line!.
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curves cross the axisc50 once; they produce positive roo
outside the physical domain forn<0, a zero root forn51,
and negative roots forn>2.

V. TOPOLOGY OF TOKAMAP PHASE PORTRAITS

We now illustrate the modifications of the phase portra
in the neighborhood of the polar axis asw is progressively
increased, keepingK fixed. We take for illustration a rathe
small valueK50.5, in order to have well-defined islan
chains and KAM surfaces~i.e., very narrow chaotic layer
nearX points!. For clarity, we represent in the forthcomin
figures only a rather narrow strip (0<u,1,0<c,Dc) near
the polar axis; in the square representation, we someti
also plot an extended phase portrait, including a strip in
negativec domain. For the chosen valueK50.5, we find by
Eqs.~35! and ~36!: wm50.9873,wM51.0127.

Case I. Our first illustration ~Fig. 15!, w50.8, corre-
sponds tow,wm . In this casethere is no fixed point in the
physical domain. As a result, there are no period-1 islan
near the axis: all surfaces visible in the physical strip
represented in the square form as slightly deformed horiz
tal curvesc'const.0. In the polar representation, the pha
portrait in this region appears as a set of concentric circ
centered on the origin. Such a picture provides a model
tokamak in the (rather idealized) high aspect ratio lim,
(R/a@1), sometimes called the standard tokamak mo
@1#. The physical magnetic axis—around which the magneti
surfaces are wound—coincides in this case with the math
ematical polar axis. The fixed points are located in th
negative-c region, where we find a ‘‘regular’’ pair of fixed

FIG. 15. Tokamap phase portrait: case I~K50.5, w50.8, and
N5103!.
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points: one ellipticY2, at ~c2520.163, u250! and one
hyperbolic atY1 ~c1520.139,u150.5!; but these features
are mathematical ‘‘ghosts’’ that are physically inaccessib
We know indeed that any orbit starting initially with a pos
tive c remains forever in the positive-c domain.

Case II. Figure 16 (w51.005) corresponds towm,w
,wM . As w increases from the value of case I, all the fix
points move upwards. The pointY1, which is closest to the
polar axis, reaches the latter beforeY2. At this stage, which
arises whenw5wm , a first bifurcation occurs. Whenw
5wm1e ~with e.0!, the formerly hyperbolic pointY1 pen-
etrates into the physical region~c1.0, u150.5!, and at the
same time changes its nature from hyperbolic to elliptic.
multaneously it gives rise to two additional hyperbolic poin
X1 andX2, located on the polar axis. This ‘‘trebling’’ of the
fixed pointY1 at the bifurcation is actually required by th
Poincare´-Birkhoff theorem. The bifurcation can be describe
in the following picturesque way. As the parameterw
crosses the thresholdwm , the hyperbolic pointY1 ‘‘decays’’
into an elliptic point and two hyperbolic ones. This proce
obeys a law of ‘‘conservation of stability index’’: the differ-
ence between the number of elliptic points and the numbe
hyperbolic points remains constant asw varies. It is impor-
tant to note, however, that this simple conservation rule
quires that all fixed points, both physical and unphysical,
taken into account.

Figure 16 shows the appearance of the phase por
above the first bifurcation. Here again, we must emphas
that all the features appearing in thec,0 half-space are
‘‘ghosts,’’ that are inaccessible. The polar graph correspo
ing to this case is also shown in Fig. 16: it is clearly stru

FIG. 16. Tokamap phase portrait: case II~K50.5, w51.005,
andN5103!.
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tured around the fixed pointY1. The islands of the squar
graph appear in the polar graph as closed curves aroundY1
that do not include the origin; the KAM surfaces appear
closed curves, also centered aroundY1, but also enclosing
the origin. The latter does not appear to play any major r
in the organization of the structure. This shows the ambi
lence of the polar axis in this problem.Although the polar
axis is globally invariant, its individual points are not fixe
points. As a result,the origin in the polar representation i
not a fixed point. The only~physical! fixed point is the ellip-
tic point Y1 ~c150.0116,u150.5!: the closed surfaces o
the island as well as the KAM surfaces are centered on
Hence, we must interpretY1 as themagnetic axis of the
tokamak. The argument in favor of this interpretation
strengthened by recalling that the main effect of am51
perturbation in a tokamak is the displacement of its magn
axis away from the geometric polar axis~see e.g., Ref.@30#,
Sec. 6.4!. The only remaining question is the role of the tw
X pointsX1 andX2 on the polar axis. They do not seem
play any direct role in the polar representation: they a
indeed, ‘‘squeezed’’ into the single origin. They do, how
ever, show up in a certain ‘‘delicate’’ way, as will be se
below.

Case III. As w is further increased, it reaches the ne
thresholdwM , at which a secondbifurcation takes place: its
nature is, in a sense, inverse to the previous one. The twX
pointsX1 andX2 and theO point Y2 now meet and merge
at the origin~c50, u50!. Above the threshold, atw5wM
1e, there remains a singleX point, Y2, in the physical do-
main,~c2.0, u250!. One may thus speak about a ‘‘recom
bination’’ of two X points and oneO point, to yield a single
X point. The rule of ‘‘conservation of the stability index
~hence the Poincare´-Bertrand theorem! is again satisfied. Le
us stress the fact that nowboth fixed points are located in th
physical domain.

The topology of the phase portrait is drastically modifie
Figure 17 shows the neighborhood of the polar axis ab
the second bifurcation, forw51.05. We now have one fixe
O point Y1 ~c150.179,u150.5! and one fixedX point Y2
~c250.167,u250!. Around the first one there appears
island, within which the orbits are closed circles enclosi
the fixed point. At the second point start the two branches
a separatrix, separating the island from the ‘‘outer world
Above and below the separatrix there are ‘‘passing orbit
i.e., KAM surfaces. The picture in the polar representation
quite interesting. The fixedO point Y1 is radially displaced
away from the origin in the 2pu15p direction. The island
orbits have the characteristic ‘‘banana’’ shape centered
Y2: this shape is quite common in tokamak physics. T
separatrix appears as an ‘‘extreme banana’’ whose
merge at the fixedX point Y2, displaced in the opposit
direction (u250) away from the origin. The KAM surface
lying above the separatrix in the square representation
mapped into circles enclosing the separatrix~hence also the
origin!. The KAM barriers which are exterior to the separ
trix, but lie below it in the square, are mapped into circ
encircling the origin, but enclosed by the inner branch of
separatrix. This peculiar topology shows that the concept
‘‘inside’’ and ‘‘outside’’ are somewhat ambiguous in toro
dal geometry.

The remarkable point about this type of phase portrai
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that it arises during the well-knownsawtooth instabilityin a
real tokamak~see, e.g., Ref.@30# and Ref.@31#, Sec. 7.6!,
and is the basis of Kadomtsev’s theory of the sawteeth p
nomenon. In tokamak language, it is produced by anm51
instability. It appears whenever there is a region withq,1
~i.e., W.1 in our language, which requiresw.1!: this fits
precisely the conditions of our case III. In the temporal s
quence, this situation will be followed by a reconnectio
which expels the inner bubble and restores a topology of
type of case II. Thus the tokamap is consistent with tokam
physics.

Case IV.As w continues increasing, the topology of ca
III is maintained, with the magnetic axis being pushed fu
ther and further away from the geometric polar axis. A n
bifurcation occurs when the rootc1(2) produced by the
branchn52 of the functionF1 enters the physical domain
The scenario described above for the rootsn51 is then re-
peated: a newO point appears first close to thec50 axis at
u50.5, followed by the appearance of a secondX point at
u50. In the polar representation, this implies the appeara
of a second ‘‘magnetic axis’’ located ‘‘outside’’ the inne
separatrix, and hence encircled by the latter; around this
ond axis a number of concentric KAM barriers are forme
This type of picture does not seem to be produced by
physical process in a tokamak: case IV should therefore
considered irrelevant.

As a result of this discussion,we shall henceforth restric
the variation of w to the range0,w,wm(K)11, this being
the range relevant to tokamak physics. The bifurcation val-
ueswm andwM depend on the stochasticity parameterK. In
practice, the most interesting situations are contained

FIG. 17. Tokamap phase portrait: case III~K50.5, w51.05,
andN5103!.
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962 PRE 58R. BALESCU, M. VLAD, AND F. SPINEANU
tweenwm(K)2D and wm(K)1D, whereD is some small
quantity compared to 1, thus in the neighborhood ofw51.

In order to complete this discussion, we make some
marks about the peculiar role of the polar axis in the to
map. This axis is represented as a single point in the p
representation, but shows up as a segment of length 1 in
‘‘square’’ representation. The axis could thus be thought
as being materialized by a very thin piece of wire perp
dicular to the plane of section, of infinitesimally small radiu
around which the various poloidal orientations are dist
guishable. As was stressed repeatedly, the global invaria
of the polar axis doesnot imply that each of its points is a
fixed point: this is only true forK50. For finiteK, setting
cn5cn1150 in Eq. ~24! leaves us with a nontrivial one
dimensional map~which could be called ‘‘aximap’’ ! show-
ing that, in general, any point of the axis moves at ea
iteration to a new poloidal position~in the polar language
this means that the point moves around the axis by a ce
angle!

un115un1w2
KA

~2p!2 cos 2pun ~mod 1!. ~43!

This map has fixed points@for which it reduces to Eq.
~34!#: for wm,w,wM , there are two fixed pointsX1 and
X2, which we know from our previous analysis. These poi
do not seem to play any special role in the polar represe
tion of Fig. 16; they are squeezed into the origin.

There is, however, one way of making their presen
manifest, even in the polar representation. We recall that
sufficiently high K, a chaotic layer develops around ea
island chain; it grows thicker asK increases, up to the fina

FIG. 18. Stochastic layer around theO point in the presence o
X-points on the axis~K54.47,w51, andN563103!. ~The radial
coordinate in the polar plot is limited toc50.03.!
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destruction of the island chain. This stochastic layer alw
starts in the neighbourhood of theX points of the separatrix
encircling the islands: they are the most ‘‘fragile’’ points
the chain@32#. With these facts in mind, we consider th
phase portrait of the tokamap in the neighborhood of
polar axis forK54.47 andw51 ~Fig. 18!. ~Note that we
have to take a rather large value ofK in order to see any-
thing; we know, indeed, that the region near the axis is v
robust to perturbations.! In this case the stochastic laye
starts near the pointsX1 andX2, as appears clearly in th
square representation. In the polar representation, we see
the corresponding orbit is thickest in the angular sect
2pu'p/2, 3p/2. TheX points thus determine the startin
direction of the stochastic layer.

Consider next the caseK53.9 andw51.05: this is a case
III situation, where there are noX points on the polar axis
there is only oneX point off-axis~Fig. 19!. Here the chaotic
layer starts near theX point: in the polar diagram the layer i
thickest in theu50 direction, contrary to the previous cas

We may note, upon looking at Figs. 18 and 19 thatw has
another important effect on the dynamics.A larger w implies
a lower stochasticity threshold. Indeed, the chaotic layer in
the nearby regions of the phase space is more strongly
veloped atK53.9 for w51.05 than at the larger value o
K54.45, for w51. Thus, increasingw @i.e., decreasing
q(0)# has a destabilizing effect on the magnetic field co
figuration. This is again in agreement with standard tokam
physics.

VI. TOKAMAP AND CONTINUOUS TIME
RANDOM WALK

A quite different type of information about the tokama
dynamics is obtained by a consideration oftime series, in

FIG. 19. Stochastic layer around theO point in the presence o
a singleX point off axis ~K53.9, w51.05, andN56.103!. ~The
radial coordinate in the polar plot is limited toc50.07.!
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particular graphs ofcn vs n. It is in this representation that
very important aspect of the evolution of incompletely ch
otic systems is manifest:stickiness. A chaotic orbit spends a
long time near the boundaries of island chains, KAM barri
and cantori. This property is due to the ‘‘braking’’ action
the complex fractal structure of these boundaries~islands,
around islands, around islands, etc.!. Rather than going into a
detailed description of these extremely complicated p
cesses, we take a rather different point of view in the
proach of this problem: we try to establish a ‘‘coar
grained’’ picture which eventually leads to ‘‘macroscopic
equations of evolution. This methodology was developed
a previous study of the standard map@33#. It started from the
observation that a graph of the successive iterations of
radial coordinate presents rather regular oscillations in a
tain ‘‘basin,’’ followed by a sudden jump to another mode
oscillation in a different basin, which goes on for a certa
time till another jump happens, etc. We show here that
type of behavior is generic.

We consider, forK53.7 andw51, a chaotic orbit start-
ing atc050.20 andu050.80: this orbit remains confined i
a region blocked by two KAM barriers below and above
three-island chain~aroundW5 2

3 !, as seen in the phase po
trait of Fig. 20.

In Fig. 21, we see a typical section of the time series~cn

vs n! of this orbit, for 1700,n,2300. The behavior de
scribed above is manifest: three basins can be identified f
three regimes of oscillation~mean position, amplitude, an
frequency!. They correspond to motion encircling the islan
chain ~basinO, 1700,n,1910!, motion below the islands
~basinL, 1910,n,2110! and motion above the islands~ba-
sin H, 2200,n,2400!.

This behavior is exactly analogous to the one seen in
standard map@33,34#. It can be described by acontinuous
time random walk. The orbit is then globally described by
particle sojourning in a basin for a certain time, making
transition to another basin, sojourning there, making ano
jump, etc. The process is completely defined by prescribin
waiting time probability distributionin basinm: pm(z), and
a transition probability from basinm to basinn: f nm . ~We
recall that the role of time is played here by the toroid
coordinate z!. Both quantities can be determined by
analysis of long time series. Using then standard techniq
of random walk theory, the probability density of finding th

FIG. 20. Stochastic orbit around a three-island chain~K53.7,
w51, andN533103!.
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particle in basinm at timez, nm(z) can be found exactly.
We do not describe here in detail the development

these ideas: the methodology is exactly the same as in R
@33–35#, and the conclusion is identical. The magnetic fie
line ‘‘diffusion’’ is a typical example of ‘‘strange trans-
port:’’ the effective running diffusion coefficient decays a
ymptotically to zero as an inverse power law. This behav
is characteristic of the dynamics in anincompletely chaotic
regime, in which the motion is bounded by upper and low
KAM barriers. We checked all these properties successf
on the tokamap; our simulations are, however, not yet su
ciently extensive in order to provide reliable quantitative
sults. This specific problem will be addressed in forthcom
work.

VII. CONCLUSIONS

We have shown that a simple Hamiltonian map can
constructed, fulfilling the minimum requirements for a re
resentation of a magnetic field in toroidal geometry. In t
present paper we considered only the situations in wh
there exists a monotonous profile of winding number~or of
safety factor!. This tokamap describes a structure that is ve
robust in the central region, the global stochasticity start
~for increasingK! in the edge region: the map could ther
fore prove useful as a model of a tokamak with an ergo
divertor. The central region has some quite interesting to
logical features, which can change dramatically~including
bifurcations! as the value of the safety factor on axis is va
ied. Typical configurations known from tokamak physics a
qualitatively reproduced by the map.

Many more properties of the tokamap will be studied
forthcoming works. These include questions such as the
fluence of the shape of the winding number profile, the
pendence on the parameters of various physical proper
similarity and scaling properties. Last but not least, we
tend to put charged particles in this magnetic field and st
the transport properties in a partially chaotic tokamak c
figuration. This problem, which is very poorly understood,
of crucial importance for fusion physics.
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FIG. 21. Time series for the stochastic orbit of Fig. 20.
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@11# D. F. Düchs, A. Montvai, and C. Sack, Plasma Phys. Co
trolled Fusion33, 919 ~1991!.

@12# T. J. Martin and J. B. Taylor, Plasma Phys. Controlled Fus
26, 321 ~1984!.

@13# A. Punjabi, A. Verma, and A. Boozer, Phys. Rev. Lett.69,
3322 ~1992!.

@14# A. Punjabi, A. Verma, and A. Boozer, J. Plasma Phys.52, 91
~1994!.

@15# A. Punjabi, H. Ali, and A. Boozer, Phys. Plasmas4, 337
~1997!.

@16# S. S. Abdullaev and G. M. Zaslavsky, Phys. Plasmas2, 4533
~1995!.

@17# S. S. Abdullaev and G. M. Zaslavsky, Phys. Plasmas3, 516
~1996!.
-

n

@18# S. S. Abdullaev, K. H. Finken, A. Kaleck, and K. H
Spatschek, Phys. Plasmas5, 196 ~1998!.

@19# J. T. Mendonc¸a, Phys. Fluids B3, 87 ~1991!.
@20# H. Goldstein,Classical Mechanics, 2nd ed.~Addison-Wesley,

New York, 1980!.
@21# E. Ott, Chaos in Dynamical Systems~Cambridge University

Press, Cambridge, 1993!.
@22# B. Chirikov, Phys. Rep.52, 265 ~1979!.
@23# A. J. Lichtenberg and M. A. Lieberman,Regular and Stochas

tic Motion ~Springer, Berlin, 1983!.
@24# J. H. Misguich and B. Weyssow, Euratom–CEA Internal R

port No. NTF 8, 1989.
@25# J. M. Greene, J. Math. Phys.20, 1183~1979!.
@26# R. S. MacKay, J. D. Meiss, and I. C. Percival, Physica D13,

55 ~1984!.
@27# D. Bensimon and L. P. Kadanoff, Physica D13, 82 ~1984!.
@28# R. S. MacKay, Renormalisation in Area-Preserving Map

~World Scientific, Singapore, 1993!.
@29# R. S. MacKay and J. Stark, Nonlinearity5, 867 ~1992!.
@30# J. Wesson,Tokamaks~Clarendon, Oxford, 1987!.
@31# B. B. Kadomtsev,Tokamak Plasma, a Complex Physical Sy

tem ~Institute of Physics and Physical Society, Bristol, 1992!.
@32# G. M. Zaslavsky,Chaos in Dynamic Systems~Harwood, Chur,

Switzerland, 1985!.
@33# R. Balescu, Phys. Rev. E55, 2465~1997!.
@34# R. Balescu,Statistical Dynamics: Matter Out of Equilibrium

~Imperial College Press, London, 1997!.
@35# J. Misguich, J. D. Reuss, Y. Elskens, and R. Balescu, Chao8,

248 ~1998!.


