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Magnetic islands in a magnetized plasma with electron flow

J. Vranje$
Institute of Physics, P.O. Box 57, Yu-11001 Belgrade, Yugoslavia
(Received 6 January 1998

A system of two coupled nonlinear equations describing magnetic electron modes in a magnetized inhomo-
geneous plasma with a spatially dependent electron flow is derived. For a homogeneous basic state electron
concentration, the two equations can be decoupled, and a nonlinear solution for the magnetic field in the form
of a traveling stationary vortex chain of magnetic islands is fo(i8d063-651%98)13706-9

PACS numbd(s): 52.35.Hr, 52.35.Mw

I. INTRODUCTION satisfies the conditionk§+ 1)/k?>=1. An instability of the
electron magnetic mode, arising from the Cherenkov interac-
Different forms of coherent structures, double and monotion with the inhomogeneous flow existskf> («x?—1)"?,

pole vorticeq 1], and vortex chaing2,3], resulting from the  while in the opposite case the linear mode is damped. In the
self-organization of fusion and space plasmas, have attractatbnlinear regime, and for some new values of the parameters
a lot of interest in the past 20 years. These coherent struds, and «, two kinds of stationary solutions, in the form of
tures can appear in various processes such as nonlinear imoving single and double chains of magnetic field, localized
teraction of a strong pump propagating through a plasma iim the direction of the shear flow gradient, and periodic along
the processes of plasma heating, with slow low frequencyhe flow, were found. An interesting feature of these nonlin-
perturbations normally existing in plasmig, in the devel-  ear solutions is that the paramet&gsand « have values for
opment of different types of instabilitig$], etc. Since they which the linear mode is highly unstable.
can carry plasma particles effectively, investigations of vor- In this paper, we study nonlinear electron magnetic modes
tices may be of great importance in problems of particlein a magnetized fusion plasma. The fact that plasma is mag-
transport in fusion plasmas. A significant transport of par-netized in the basic state will give some extra terms in the
ticles appears in processes of inelastic collisions of vorticessorresponding equations, compared to basic equations in
in such situations there appear strong gradients of the electrRef.[11]. The plasma model is as follows: the spatially non-
field which, similar to the classic diffusion theory, cause par-ypjiform magnetic field,=Bo(x)€, and the plasma concen-
ticle transport perpendicularly to the magnetic field lihgk tration ng(x), causing an electron flowo(x)éy in the basic

It is known that in plasmas with density and/or tempera- . e .
. . . ._ state, perpendicular both to the magnetic field lines and the
ture gradients, magnetic electron modes can exist, localized_ . : . : :
2 . : asic state gradients. The flow of this type is responsible for
to within a collisionless skin depth. They result from the . . . .
. . o the creation of coherent stationary solutions in the form of
self-generation of a localized magnetic fi¢lt-9], and are . X S . o
e i . .~ _magnetic chains. The approximation of immobile ions form-
of special importance in laser-fusion plasmas. Nonlinear s .
. . ; ing the neutralizing background of a plasma will be used,
equations describing perturbations of the electron component . :
. . i.e., w,<<dldt, wherew,, is the ion plasma frequency. Two
of an unmagnetized weakly nonuniform plasma have mo- p ; pr L
. : , . coupled nonlinear equations for the perturbed magnetic field
nopolar and dipolar moving vortex solutiof&0], arising

due to the dominance of vector-product type nonlinearities‘.’de the plasma temperature will be derived. In the linear

Their group velocity, perpendicular to the density gradient inri?i'gi'ﬁ S:Clge?\ﬂﬁ?lﬂgrnih%?tlg-r:g tg Itl:set actlﬂfé ofL ggﬁﬁtlo?osrde-
the basic state, is found to be larger than the velocity e . 0%Z-lyp 0 9
Lo stationary solutions, periodic along tleaxis with the wave
corresponding linear waves. numberk, , traveling with a constant velocity in the direc
In our earlier papef11], we derived equations describing tion of the basic state electron flow, similar to Rgif1], our

the nonlinear magnetic electron mode in a nonuniformnonlineare uations will be integrated once. Then, using the
(along thex axis), unmagnetized plasma, with a sheared q 9 ' ' 9

plasma flow in the basic state. Such a flow introduces ne\f}aTe procedurs, ﬁhey will be S];.ONEd nlumen(;allyl. 'A.‘S In ;)ur
terms in the corresponding evolution equations, which ar ef. [11], we sha attempt to find a class of solutions for
responsible for the self-generation of coherent stationar)(;orresmndmg plasma parameters.

nonlinear structures in the form of chains of magnetic is-
lands. In the linear limit the general solution can be written
as a combination of associated Legendre functions of degree
1, and of the orde;u=(kf,+ 1)k, wherek, is the wave We use the standard set of equations describing electron
number along the/ axis, andk is the characteristic length motion, i.e., the momentum equation, energy equation, and
for the shear flow. The only linear solution localized alongMaxwell equations:

the x axis is obtained provided that the wave numiggr

Il. BASIC EQUATIONS AND SOLUTIONS

D45 ¥ o= S(E+ixB)- —VT), @
s Tv V=" (EtvXB)— —¥V(nT), (1
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d . - In the derivation of the above set of two coupled nonlinear
L V) (Tn*"7)=0, (2)  equations, the second order scalar nonlinear term of the form
{ny,B% has been neglected compared to the vector-product-
o 9B type nonlinear tern{B,V2B}, as being much smaller in the
VXE=——, 3 regime whermgelkzc2 is close to, or not much larger than, 1.
o It is assumed also thé~*|<L,, Ly, whereL,, andL; are
the characteristic lengths of inhomogeneity fgy and T,
respectively.
In the local approximation along, from Eqgs.(7) and(8)
we obtain the same dispersion equation as in F&f.

VXB=— ueens. (4)

Equationg1)—(4) describe electron perturbations in the limit
of immobile ions, i.e..wy<d/It<wpe, CV. Thus we study
slow electron motion, neglecting the displacement current in 2 _

) . - + - + 8=
Eq. (4), and the density perturbations so thang(x). (0=voky)™+ a(@=voky) + =0, (10
These assumptions are standardly used in the theory of 9¢Qhere
eration of magnetic fields and magnetic vorti¢8s-11].

Stationary basic state, with the magnetic field given by 2 2
-> _ - . . . . . )\Sky 2 " xSQO ’ QO
Bo=By(X)e,, is described by the following equation: a=— 20y - —QH+—,
Rék)zl‘f‘l Ly Ly
d( B}
ax 2Mo+n0T0 0. (5

:k§>\§v$/ 1 _7—1) N ,_To
Also, from Eq.(4), we have an expression for the basic state )\ékfﬂr 1\ Lokt L2 Ce m

electron velocity:
Obviously an oscillatory instability is possible #%/4<p

. B - - cz . - andL,Lt>0 (in the case of unmagnetized plasma, it is a
vo(X) =~ MoenOVXBO_w_zeZXVQO' ©) purely growing ong Accordingly, perturbatioricreation in
pe the unmagnetized plasma casef the magnetic field is

Here(), andw,. are the electron gyrofrequency, and plasmaclosely connected with the direction of the basic state gradi-
frequency, respectively. entsny andT. It can be showr8] in the same local ap-
We study a two-dimensional motion of electrons, i.e., weProximation that, in the strongly nonlinear limit, Eq3) and
seekz-independent solutions of the above equations. Taking8) Possess stationary coherent solutions in the form of
the curl of Egs.(1), using Eqgs(3)—(6), after some lengthy double vortex traveling with a constant velocity in the direc-

but straightforward algebra we have an equations for the pefion perpendicular to the basic state gradients, and these non-
turbed magnetic field,: linear solutions may represent the final stage of the above

gradient driven instability.

ol 1 . e ng o In the nonlocal treatment, Eqé7) and (8) yield a com-
v - —————|B; plicated linear eigenvalue equation in thelirection, which
at\ weeng m enS X T .
Mo is difficult to solve in general. The problem becomes much

JB simpler when the effects of the concentration inhomogeneity
1 are neglected. As follows from Eq10), the oscillatory in-

aay stability driven by the density and temperature gradients in
this case disappears, and K@) is decoupled from Eq(8).
Using the normalization

- - eBy; /o Asd 9
S0/ g, 22200
A /)\S_> o =g (11)

1 (BO)’ evg 1 /" n(')v('))

Vo
MoM\ Ng m  peen) No

n(,) &Tl Uo J - Uon(,) (9281

v = 2

My 9y me€Ng dy ' poend IXdy

1 -
+———{B;,V?B,}=0. (7)
(po€Mo)
with the basic state electron velocity written in the form

In the same manner, we obtain an equation for the temper%-o(x)zg\of(x), Eqs.(7) and (8) can be rewritten as

ture:
GAE SR ST A 2t iax¥a 6)(62—1)9 ri-n2 g
i , vn(X) —= z 1’ 1 Y
T pgeny 0T OOy o R
(y—DTo
+———-"{ng,By} =0. (8) P
Mo E+ez><VQ-V T=0. (13

Here we use the Poisson bracket notation
In EqQ. (13), we use notation§)=Qy+ O, andT=Ty+T;.

In the linear limit, for the perturbation di?, in the form

Sop 1|22t 7 771 9 g2 R
{B1,V°By}= V°B,. ©) QO (x)exp(—iwt+iky), from Eq.(12) we have
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d?04(x) X ]
——— FF(x) (%) =0, (14)
dx
where (l: 8-
f(x)—f"(x)
— _L2_ R
F(x)=—-k"—1+ KF)— k. (15
Equation(14) belongs to the class of equations describing 0 . . : ,
streaming instabilities, and in principle can be solved for 0 48 80

some specific profiles of the flow. Thus, neglecting the den-
sity gradient, the system becomes subject to a completely FIG. 1. Locus of the pair¢—’(0),C) yielding localized and
different regime of instability. The possibility for instability odd solutions of Eq(22) along thex axis.
can be demonstrated using the Rayleigh theory developed in
the hydrodynamics. We multiply E¢14) by a complex con- above functions to be valid everywhere. A detailed discus-
iugate O* (x _and integrate across the flow, sion concerning the choice and nature of sugh fqnctlons is
ug 1(X) 9 given in Ref.[12]. Thus we choose the functiog in the

f form

_ . _ whereC is an arbitrary constant. It will be varied in order to

where the frequency is complex in the general case,@e., obtain localized solutions in thedirection. We look for the

=o,+1 ;. Dividing the real and imaginary part of the solution of Eq.(12) in the form
above integral, and equating the last one with zerodpr

L d20y(0) A a
QF (X) ——— +F(X) Q7 (x)Q1(x) |dx=0,

dx? g(Q—ux)=C/[expQ—ux)+exp —Q+ux)], (20
(16)

#0, one can find that the instability is possible for the flow Q(X,y)=0Q,(x) + 6Q,(x)cogky), (21
satisfying the following condition at any position along the
axis: where|Q,|>|80Q,|. This yields the following two equations
for Q, and 6 :
f"(x)—f(x)=0. 17
2
Thus, in the nonlocal treatment and in the absence of density (a__ 1) QX:;’ (22)
gradients, a streaming type instability is possible, which in ax? 2 coslid,—ux)

the strongly nonlinear limit we expect would eventually satu-

rate into a type of stationary coherent solution in the form of 92

a vortex chain traveling along the flow and localized across (—2— k?— 1) 6Q,=—C80
it. A similar situation was observed in the case of an unmag- Ix

netized plasm4l1]. Consequently we shall concentrate on

solving the nonlinear equaticiL2) in the strongly nonlinear 1N€ @bove set of equations is solved numerically. The sec-
regime, in order to show that such solutions exist. ond order differential equatiof22) is not coupled with Eq.

We write a/dt=—udlay using Eq.(6), and in this case (23), and we solve it from the poink=0, looking for a

sinh(Q,—ux)

— . (23
2 cosR(Q,—ux) @3

Eq. (12) can be integrated once, giving localized solution in the direction. Changing the values of
the derivative(),, atx=0, and the constai@, we find a class
(62_1)Q:g(Q_UX)_ (18)  of localized and odd solutions for certain pairs ©fand
—Qy, represented in Fig. 1. Equati¢®3) is linear, coupled
A similar procedure to Eq13) yields with the former equation, and, according to expressi),
apart from the constai@ it also depends on the parameker
T=G(Q—ux). (19 we look for its localized solution in the direction. It turns

_ . . out that all values ofC are not allowed; well localized and
Here (1=0,+(, is the total(perturbed plus basionag-  qyen solutions of Eq(23) are possible for the values of

netic field, andg and G are arbitrary functions of the same (C,k) given in Fig. 2. A typical appearance of the solutions
argument—stream functiof) —ux. They will be chosen ¢ Egs. (22) and (23) is given in Fig. 3. HereC=20, k

uniquely in such a way that Eqel8) and (19) are satisfied  _q 759 andi=—4. The difference between two neighbor-
asymptotically for arbitrary solutions vanishingjat> = o, Pg magnetic field lines i& 0 =0.2.

i.e., in the region of open stream lines. In those r_egions of "1t is interesting to note that Eq12) admits the steady
space where the stream lines are closed, the funcgamsd  gia4e solutiong2], which can be found by using the follow-

G in principle may have different forms, and, in order to ing procedure. Put/at=0 in Eq.(12), i.e.,u=0 in Eq.(18)
work correctly, in addition to the boundary conditions at in- and choose the arbitrary functignas

finity it would be necessary to find the appropriate form of

the functions in these regions, and to match solutions at sepa- AAK 5
ratrices. It would be a difficult task to work in that way and g(Q)=—Q+ ex;{ — _Q)_
we shall take corresponding asymptotic expressions of the a? A
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FIG. 2. Pairs of C,k) giving well localized even solution&(), ’J/

of Eq. (23). <

In this case, Eq(18) has a solution in the form -10 5 /\
- 3

X

Q=AlIn . (29

/ 1
2 cosftkx) +2 1 a2 cosky) FIG. 3. Typical appearance for contour plots of the total mag-
netic field. Here the distance value of the magnetic field between
The above expression fa?>1 represents a row of identical two lines isAQ=0.2, andC=20, k=0.759, andu= —4. Quanti-
Stuart’'s vortices along thg axis. In the limita—1, this ties are dimensionless, normalized in accordance with expressions

gives the zonal flow. On the same condition, chooginas ~ (12).

A 40 scribed using the standard nonlinear theory of drift waves,
9(Q)=—Q- —(az—bz)sin?-<—>, developed to describe drift wave turbulence in present day

4 A tokamak machines. Other examples are vortices and vortex
chains obtained in the analysis of data from the satellite I1C-
B-1300[14].

According to experimental and theoretical investigations
of high-confinement modes in tokamaks the appearance of
, (250  edge localized modes in experiments is now an established
phenomenon. From this point of view, the formation of vor-
tex chains in the edge region can act as a barrier to the
particle transport. In the presence of finite dissipations, these
structures have a finite lifetime. In some cagEs], because

1. CONCLUSIONS of the shear flow, they show an oscillatory behavior which is

In this paper we have investigated the dynamics O1related to thg Fransition from I_owlto high regimes, and back
strongly nonlinear electrons in a system with immobile ions(l‘.'H'L transition3. These o_smllaﬂong are closely connected
of an inhomogeneous magnetized plasma with a spatiaIIW'th changes of the velocity shear; when shear becomes

dependent magnetic field in the basic state. Such a spati eak, fluctuations grow, and vice versa. In the case of chains
inhomogeneity of the magnetic field causes an electron flovﬁ]ss.oi.'ated W||tht.tea_r mt?\ mt?dlﬁml]’ the ".id(;?b?t'c the_orty Of.t
in the basic state. In the linear limit, two types of instabilities e;rbm;]e evolu 'r?.nr']n € bu IF[) .asmalmd 'C"f: est_an in edrm; 3
are possible: in a local approach we have the gradient driveﬁahn t'e ?V'Or'f";’h Ich may tr.est'J Icljn 'tkeflr els ruc |c])crlhan Sl’l.o'
oscillatory instability, and in the nonlocal case the streaming’. astization ot the magnetic 1ield within a fayer of the coti-

instability. In the strongly nonlinear regime, the first instabil- |onl_es_s_ skin _depth scale. In_the_ same P“’b'e”?’ another
ity may saturate into coherent structures in the form oprSSIbI“ty predicts the stochastization on a longer time scale,

double vortices. In the second case, neglecting density grrJlhrough a sfequttance r?f .blfurcatlonts thz?tkcorrespf)ndstgo abrugt
dients, the corresponding nonlinear electron equations can fgranges of vortex chain parameters like wavelengtn, speed,

integrated once, and the pair of equations obtained in thi§'C:

way, describing total magnetic field and electron tempera: Recently, an interesting investigatk_)n of the influ_ence of
ture, are solved numerically. We have found a range of coron dynamics on generation of flucfcuatmg magnetic f|e|_d was
! erformed[17], and some interesting types of linear insta-

responding parameters for which the solutions are localizeq; ... ’ ; o
ilities on an ion time scale were found. This influence on

and are in the form of chains of islands. the f i ¢ coh ¢ stati hain struct Id
The model used here can be of interest for an investiga- € formation of coherent siationary chain structures wou
eem to be of interest to investigate, and this work is in

tion of experimental plasmas and various magnetized plasm%
configurations in space, like the Earth magnetoplasma, dprogress.

magnetic arcs on the Sun, in spite of the fact that the param- ACKNOWLEDGMENTS

eters in these systems differ very much. A good example of

this is the analysis of data obtained recently from the Freja This work was supported by the Ministry of Science and
satellite[13]. Vortex solitons discovered in this way, with Technology, Republic of Serbia. The author is grateful to Dr.
characteristic spatial scales of 300—600 m, can be nicely deéb. Jovanovicfor helpful discussions.

whereb=<a, andA are arbitrary constants, one can find the
solution of Eq.(18) in the form

b coqay)

O=A arctan?é m

which represents a row of counter rotating vortices.
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