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Exact nonequilibrium potential for the FitzHugh-Nagumo model in the
excitable and bistable regimes
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We obtain an analytically exact nonequilibrium potential for the space-independent FitzHugh-Nagumo
model, valid in the excitable and bistable regimes~in the limit of small noise!. This potential allows us to
characterize the nature of the barrier in the excitable regime and, after subjecting the system to a modulated
weak signal that rocks the potential inducing the phenomenon of stochastic resonance, to calculate the signal-
to-noise ratio in the bistable regime.@S1063-651X~98!08506-7#

PACS number~s!: 05.40.1j, 87.22.Jb
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I. INTRODUCTION

The past decade has seen a considerable increase i
research of nonequilibrium phenomena in macroscopic
tems, in order to explain the plethora of phenomena obse
in experiments in physical, chemical, and biological syste
instabilities in fluids, etc.@1#. Particular attention has bee
paid to the search for extremal principles allowing one
characterize the stationary probability distribution of mac
scopic variables, in order to understand pattern selectio
self-organizing systems and other related phenomena@2–5#.
For nonvariational systems, where the dynamics canno
entirely deduced from the existence of a Lyapunov functi
it is a nontrivial task to determine stationary probability de
sities.

It is now well known that the interplay between determ
istic nonlinear dynamics and noise can lead to nontrivial p
nomena such as purely noise-inducedphasetransitions@6#
andstochastic resonance~SR! @7,8#. The last phenomenon i
characterized by the enhancement of the signal-to-noise
~SNR! caused by the injection of an optimal amount of no
into a periodically modulated nonlinear system. The incre
in the noise intensity from small initial values induces
increase in the SNR until it reaches a maximum, beyo
which there is a decay of the SNR for large noise values.
phenomena have been reported in monostable, multista
and excitable systems@9#. Several recent proceedings an
reviews show the wide interest of these phenomena and
state of the art@10#.

One aspect that recently has attracted considerable i
est is related to SR in extended or coupled systems@11,12#.
The characterization of the SR phenomena is one of the
sues that require the knowledge of the stationary probab
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densities, in this case in order to evaluate the ensem
averaged escape rates from local attractors@7#.

In a series of remarkable papers, Graham and collab
tors developed and exploited in several contexts the notio
nonequilibrium potential~NEP!, defined as a coarse-graine
Boltzmann-likeH function, and provided explicit procedure
for its calculation in exact form~in the limit of small noise!
or at least in a perturbative way@3,13–15#. The knowledge
of such nonequilibrium potentials gives a direct access
that of the stationary probability distribution and allows o
to address questions such as the identification of the glob
stable states, the calculation of the height of the barrier
separates local attractors, the characterization of nontri
thresholds in excitable dynamics, and the quantitative an
sis of noise-induced transitions@16#.

In this paper we obtain an exact nonequilibrium poten
for the FitzHugh-Nagumo~FHN! model ~for the nonex-
tended system!, which is a two-component nonlinear oscilla
tor of the Bonhoffer–van der Pol type. The FHN model h
been considered in physiologically motivated SR investi
tions @17#, because its dynamics provides a simple repres
tation of the firing dynamics of sensory neurons. Being
typical two-component dissipative system, it lacks a ch
ished feature of one-component ones, namely, being va
tional. The search for an exact NEP for the FHN model h
been unfruitful up to now: At most, approximate expressio
had been given in slaving approximations@18,19#. Here we
consider the zero-dimensionalstochasticFHN system

u̇5e21@u~u2a!~12u!2v1A~ t !#1r 1j1~ t !1r 2j2~ t !,

v̇5bu2v1r 3j1~ t !1r 4j2~ t !, ~1!

wheree is the ratio of the relaxation rates ofu andv, A(t) is
an external periodic subthreshold activation signal@8#

A~ t !5A01dA cos~Vt1f! ,
93 © 1998 The American Physical Society
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A0 being a constant~tonic! signal, dA!A0, and ther i ( i
51, . . . ,4) arereal positive constants. Thej i(t) ( i 51,2)
are statistically independent sources of Gaussian white n

^j i~ t !&50, ^j i~ t !j j~ t8!&5hd i j d~ t2t8!.

Whereas in the excitable regime the nullclines of the de
ministic version of Eq.~1! have one root, the stable attracto
in the bistable regime they have three: two stable roots~local
attractors! and one unstable one~repeller!. We should em-
phasize that the deterministic version of the original set
equations~1! is nonvariationalas long asb is positive@1#.

In the following sections we present a brief review of t
notion of the nonequilibrium potential, the derivation of th
potential for Eq.~1!, an analysis of the ‘‘topography’’ of the
nonequilibrium potential landscape in the excitable regim
and an analysis of the stochastic resonance phenomen
the bistable regime.

II. THE NONEQUILIBRIUM POTENTIAL

A. A brief review

In order to introduce the nonequilibrium potentials, w
consider in this section a more general form of nonlin
stochastic equations, which admit the possibility ofmultipli-
cative noises. In particular, we consider equations of th
form

q̇n5Kn~q!1gi
n~q!j i~ t !, n51, . . . ,n, ~2!

where repeated indices are summed over. Equation~2! is
stated in the sense of Itoˆ. Again, the j i(t) ( i 51, . . . ,m
<n) are mutually independent sources of Gaussian w
noise with typical strengthh. It is clear that Eq.~1! is a
particular case of Eq.~2!. The Fokker-Planck equation co
responding to Eq.~2! takes the form

]P

]t
52

]

]qn
Kn~q!P1

h

2

]2

]qn]qm
Qnm~q!P, ~3!

where P(q,t;h) is the probability density to observeq
5(q1 , . . . ,qn) at time t for noise intensityh and Qnm(q)
5gi

n(q)gi
m(q) is the matrix of transport coefficients of th

system, which is symmetric and non-negative. In the lo
time limit (t→`), the solution of Eq.~3! tends to the sta-
tionary distributionPstat(q). According to Ref.@4#, the non-
equilibrium potentialF(q) associated with Eq.~3! is then
defined by

F~q!52 lim
h→0

h ln Pstat~q,h! ~4!

or, equivalently,

Pstat~q!dnq5Z~q!expF2
F~q!

h
1O~h!GdVq ,

where F(q) is the nonequilibrium potential of the syste
andZ(q) is defined as the limit

ln Z~q!5 lim
h→0

F ln Pstat~q,h!1
1

h
F~q!G .
se

r-

f

t

,
in

r

te

-

HeredVq5dnq/AG(q) is the invariant volume element inq
space andG(q) is the determinant of the contravariant me
ric tensor~for the Euclidean metric it isG51). In the sta-
tionary case, Eq. ~3! can be written in the form
]Jn(q,h)/]qn50, Jn being the stationary probability curren
density

Jn~q,h!52Kn~q!Pstat~q,h!1
h

2

]

]qm
Qnm~q!Pstat~q,h!.

As it was shown by Graham@4#, F(q) is the solution of

Kn~q!
]F

]qn
1

1

2
Qnm~q!

]F

]qn

]F

]qm
50

andZ(q) is the solution of a linear first-order partial differ
ential equation depending onF(q)

S ]Kn

]qn
1

]Qnm

]qm

]F

]qm
1

1

2
Qnm

]2F

]qn]qmD Z

1S Kn1Qnm
]F

]qmD ]Z

]qn
50 ~5!

~note that both equations are independent ofh, as they
should be!. Following Ref. @4#, we introduce the streaming
velocity Rn(q,h) of the probability flow in the steady state

Rn~q,h!5
Jn~q,h!

Pstat~q,h!
,

which in the limit of small noise takes the form

Rn~q!5 lim
h→0

Rn~q,h!5Kn~q!1
1

2
Qnm~q!

]F

]qm
.

As in Ref. @4# we split the driftKn(q) into two partsRn(q)
anddn(q),

Kn~q!5dn~q!1Rn~q!,

in such a way thatRn(q) conserves the potentialF(q),

Rn~q!
]F~q!

]qn
50, ~6!

while the other partdn(q) may be written in the limith
→0 as

dn~q!52
1

2
Qnm~q!

]F~q!

]qm
. ~7!

If the inverseQnm of the transport matrixQmn exists, we
may expressF(q) by a quadrature

F~q!5F~q0!22E
q0

q

dqnQnm~q!dm~q!.
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Equation~4! and the normalizability condition ensure thatF
is bounded from below. Furthermore, from Eqs.~6! and~7! it
follows that

dF~q!

dt
5Kn~q!

]F~q!

]qn
52

1

2
Qnm~q!

]F

]qn

]F

]qm
<0,

i.e., F is a Lyapunovfunction for the dynamics of the sys
tem. Under the deterministic dynamicsq̇n5Kn(q), F de-
creases monotonically and takes a minimum value on att
tors. In particular,F must be constant on all extende
attractors~like limit cycles or strange attractors! since for t

→` there arev-limit sets describing steady states ofq̇n

5Kn(q) ~in which Ḟ50) @4,14#.

B. The FHN model

In the case of Eq.~1!, the transport matrix adopts the form

Qnm5S l1 l

l l2
D 5S r 1

21r 2
2 r 1r 31r 2r 4

r 1r 31r 2r 4 r 3
21r 4

2 D .

Here we consider only those situations in which the inve
of the transport matrix exists@i.e., detuuQmnuu5(r 1r 3
2r 2r 4)2Þ0#. For that case, the nonequilibrium potential a
sociated with Eq.~1! is

F~u,v !5
v2

l2
2

2b

l2
uv1

2lb

l1l2
u22

2

l1eF2
u4

4
1

11a

3
u3

2
a

2
u21AuG , ~8!

where, in order to obtain the original drift, we have cons
ered the expression

Rn~q!52
1

2
Amn

]F~q!

]qm

and the matrix

Anm5S 0 l

2l 0D .

By symmetry,Rn satisfies Eq.~6!. The following equation
relates the parameters of the system with the transport m
coefficients and can be interpreted as an integrability co
tion:

2l2l1b5l2 . ~9!

By solving Eq. ~5!, Z(q) can be obtained in terms of th
nonequilibrium potential, the transport matrix, and the dr
For the FHN system~1!, it results in a positive constant. Th
stationary probability current density adopts the form

Jn5
1

2
Amn

]f

]qm
Z exp~2f/h!.
c-

e

-

-

rix
i-

.

Equation~8! is the exact expression for the nonequilibriu
potential we shall work with.

III. EXCITABLE AND BISTABLE REGIMES

A. Nature of the threshold

Here we analyze the time evolution of the FHN system
the excitable regime in terms of the nonequilibrium poten
given by Eq.~8!. We consider a parametric regime in whic
u(t) is a fast variable andv(t) is a slow~recovery! variable.
For completeness, we show in Fig. 1 the evolution fro
several initial conditions in (u,v) space for the following
values of the parameters:b50.034, a50.8, A
50.02, dA50, and e50.0341. We verify that a sub
threshold perturbation decays to the stable attractor~indi-
cated by a small circle in the figure!. On the other hand
above-threshold initial conditions experience a large exc
sion in the configuration space before decaying. The cu
labeled 4 denotes the limit trajectory~threshold! between
nonexcitable and excitable decays.

In Fig. 2 we show, for the same parameters as in Fig
the structure of the nonequilibrium potential. Associat
with curve 4 in Fig. 1~and denoted by the same label 4! is an
extendedpotential barrier that isnot a saddle point. In fact, it
corresponds to anonconstantpotential line that separates th
excitable from nonexcitable behaviors. In Fig. 3 we show
time evolution of the nonequilibrium potential for subthres
old and above-threshold initial conditions. It can be appre

ated thatḞ<0. In both cases, the slow time variations a
associated with the evolutions along the null clines. We h
used a finite-difference scheme with a time stepDt52.5
31026 in order to simulate the excitable dynamics.

The NEP given in Eq.~8! can be written in the form

FIG. 1. Time evolution in (u,v) space for deterministic excit
able dynamics. The curve denoted 4 indicates the separatrix
tween nonexcitable and excitable behaviors. The initial conditi
used here are~1! u520.8,v50.04; ~2! u520.8,v520.1025;~3!
u520.25,v520.138 711;~4! u520.5068,v520.1402;~5! u5
20.25,v520.138 712; ~6! u520.8,v520.15; ~7! u51.5,v5
20.15;~8! u51.7,v50.029; and~9! u51.5,v50.05. The values of
the parameters areA050.02, dA50, b50.034, a50.8, and
e50.0341, which configure a neatly defined excitable regime.
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F~u,v !5
~v2bu!2

l2
1

b

l1e
u22

2

l1eF2
u4

4
1

11a

3
u3

2
a

2
u21AuG . ~10!

The first term in Eq.~10! is lost when an adiabatic elimina
tion is done in order to estimate the NEP. In fact, the N
given in Eq. ~10! tends to the NEP obtained by adiaba
elimination of the fast variable~with r 25r 35r 450) @18#.
However, the derivation presented here for the NEP is
valid for this singular transport matrix.

B. Stochastic resonance

Let us now consider thebistable regimeof the FHN
model as given by Eq.~1!: We shall use the NEP given i
Eq. ~8! to obtain the SNR within the framework of a two
state description@7#. For bistable systems, the mean firs

FIG. 2. Nonequilibrium potential in (u,v) space for the noise
parameters r 1529.3147, r 250.7943, r 350.9982, and r 4

50.0270~the remaining parameters are the same as in Fig. 1! and
the projected time evolution of the initial conditionsv50 and~1!
u50.7, ~2! u50.7164,~3! u50.7172,~5! u50.7176,~6! u50.75,
~7! u50.8, and~8! u50.9. The curve labeled 4 corresponds
curve 4 in Fig. 1, i.e., the separatrix~barrier! between nonexcitable
and excitable behaviors.

FIG. 3. Time evolution of the nonequilibrium potentialF for an
excitable behavior~curveA) and for a nonexcitable one~curveB).
The values of the parameters are the same as in Fig. 2.
ot

passage time associated with the escape from a local attr
qmeta adopts the Kramers-like form

^t&5t0expFDF

h G ,
wherequnst is the nondegenerate saddle point that confi
the attractor in the configuration space andDF5F(qunst)
DF5F~qunst!2F(qmeta) @20#. The prefactor

t05A2ph
Z~qmeta!

Z~qunst!

AuH~qunst!u

AH~qmeta!

is essentially determined by the curvature ofF at its extrema

H~qk!5detS ]2F

]qn]qmD
q5qk

and is typically several orders of magnitude smaller than
average timê t&. The inverse of̂ t& gives us the transition
probabilityW for the escape fromqmeta. In order to analyze
the SR phenomenon, we consider a situation in which
have a well-defined bistable regime, i.e., we consider
merical values for the parameters of the system in which~for
dA50) both stable attractors have the same value of
nonequilibrium potential and the same value of the cor
sponding Hessian. In that case, the transition probabilities
the two possible noise-assisted transitions adopt the s
value and the effect of introducing the weak periodic co
ponent of the signal is to produce a small change in
relative stability between the local attractors. To proce
with the calculation of the correlation function, we need
evaluate the transition probabilities

W65t0
21expF2

DF

h G
when the periodic signal is activated. The expansion
DF(q,A) in powers ofdA up to first order

DF~q,A!5DF~q,A0!1
]DF~q,A!

]A U
A5A0

dA cos~Vt1f!

1•••,

yields, for the transition probabilities,

W65
1

2
@a07a1dA cos~Vt1f!#,

where

a05
2

t0
exp@2DF~q,A0!/h#, a15

a0

h
dDF/dAuA0

.

In the adiabatic limit ~i.e., V much less than the mea
threshold-crossing rate!, the stochastic stationarity can b
continously achieved because the probability densities ad
adiabatically to the changing nonequilibrium potenti
Within the framework of a two-state description~the corre-
sponding theory was developed by McNamara and Wies



tio
ec
he
le

q.

th
h

ure,
nal
s

the
is-

and
the

ub-

ap-
eir
e-

o
tion
ls
ses
ms
n-

ent
ac-

in a
n

ion

ial
nt
wl-

e

PRE 58 97EXACT NONEQUILIBRIUM POTENTIAL FOR THE . . .
feld in Ref. @7# and exploited in Refs.@12,21#! we can use
those transition probabilities to evaluate the autocorrela
function and through its Fourier transform the power sp
trum S(v). In terms of the output signal power spectrum, t
SNR ~indicated byR) takes the standard form for bistab
systems

R~a0 ,a1!5
pa1

2~dA!2

4a0
F12

a1
2~dA!2

2~a0
21V2!

G21

. ~11!

In Fig. 4 we plotR vs h for the system corresponding to E
~1!. The enhancement of the SNR with increasingh is ap-
parent. The existence of a maximum in this curve is
identifying characteristic of the stochastic resonance p
nomenon.

FIG. 4. Signal-to-noise ratioR vs noise strengthh for a bistable
regime. The maximum indicates the stochastic resonance. HerA0

50.02, dA50.002, b50.039, a51/2, e51, r 151 and
r 25r 35r 450.02.
lib

te
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IV. CONCLUSIONS

Summarizing, we have derived, by means of a quadrat
an exact nonequilibrium potential for the zero-dimensio
FitzHugh-Nagumo model in the limit of small noise, thu
obtaining results that are valid in the excitable and
bistable regimes. Then, using this potential, we have d
cussed the nature of the barrier in the excitable regime
the stochastic resonance in the bistable case, within
framework of a two-state description, when an external s
threshold periodic signal is injected.

The relevance of the present results for technological
plications in signal detection is apparent, as well as th
biological implications. Many electronic circuits can be r
garded as nonlinear oscillators~for instance, of the related
Bonhoffer–van der Pol type!. This schematic model has als
been used to discuss numerous problems: pattern forma
and propagation in simplified activator-inhibitor mode
@1,16#, experimental and theoretical descriptions of proces
involving stochastic resonance in neuronal syste
@17,18,22#, as well as in a theoretical description of the i
fluence of the spatial coupling on SR@12#. It is also expected
that it can provide a useful framework to discuss some rec
experimental results regarding SR in several chemical re
tions done under good-stirring conditions@23#, as well as
other recent experiments on resonant pattern formation
chemical system@24#. We are now considering the extensio
of this approach to stochastic-resonant media@21#, and its
possible connection with spatiotemporal synchronizat
phenomena@25#.
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poggi, G. Izús, and R. Deza, Physica A~to be published!.

@13# R. Graham and A. Schenzle, Phys. Rev. A23, 1302~1981!; R.
Graham and T. Te´l, Phys. Rev. Lett.52, 9 ~1984!; J. Stat.
Phys.35, 729~1984!; Phys. Rev. A33, 1322~1986!; 35, 1328
~1987!.

@14# R. Graham, inInstabilities and Nonequilibrium Structures, ed-
ited by E. Tirapegui and D. Villaroel~Reidel, Dordrecht,
1987!.

@15# R. Graham and T. Tel, Phys. Rev. A42, 4661 ~1990!; O.
Descalzi and R. Graham, Phys. Lett. A170, 84 ~1992!; Z.
Phys. B93, 509 ~1994!.
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