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Exact nonequilibrium potential for the FitzHugh-Nagumo model in the
excitable and bistable regimes
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We obtain an analytically exact nonequilibrium potential for the space-independent FitzHugh-Nagumo
model, valid in the excitable and bistable reginmigsthe limit of small noisg¢ This potential allows us to
characterize the nature of the barrier in the excitable regime and, after subjecting the system to a modulated
weak signal that rocks the potential inducing the phenomenon of stochastic resonance, to calculate the signal-
to-noise ratio in the bistable regime51063-651X98)08506-1

PACS numbes): 05.40:+j, 87.22.Jb

[. INTRODUCTION densities, in this case in order to evaluate the ensemble-
averaged escape rates from local attrack@fs
The past decade has seen a considerable increase in theln a series of remarkable papers, Graham and collabora-
research of nonequilibrium phenomena in macroscopic sydors developed and exploited in several contexts the notion of
tems, in order to explain the plethora of phenomena observegonequilibrium potentialNEP), defined as a coarse-grained
in experiments in physical, chemical, and biological systemsBoltzmann-likeH function, and provided explicit procedures
instabilities in fluids, etc[1]. Particular attention has been for its calculation in exact fornfin the limit of small nois¢
paid to the search for extremal principles allowing one toOf at least in a perturbative wd,13-13. The knowledge
characterize the stationary probability distribution of macro-Of Such nonequilibrium potentials gives a direct access to

scopic variables, in order to understand pattern selection imat of the statior_lary probability d_istribg.tion. and allows one
self-organizing systems and other related phenoni2nal. to address questions such as the identification of the globally

For nonvariational systems, where the dynamics cannot b%table states, the calculation of the height of the barrier that

entirelv deduced from the existence of a Lyvapunov functionseparates local attractors, the characterization of nontrivial
entirely dedu . . yap - thresholds in excitable dynamics, and the quantitative analy-
it is a nontrivial task to determine stationary probability den-

o sis of noise-induced transitiof46].
smes_. . . In this paper we obtain an exact nonequilibrium potential
_ _It is now well known that the _mterplay between de_:tgrmm- for the FitzHugh-NagumaFHN) model (for the nonex-
istic nonlinear dynamics and noise can lead to nontrivial phegegeq systejpwhich is a two-component nonlinear oscilla-
nomena such as purely noise-indugettasetransitions[6] oy of the Bonhoffer—van der Pol type. The FHN model has
andstochastic resonand@R) [7,8]. The last phenomenon is peen considered in physiologically motivated SR investiga-
characterized by the enhancement of the signal-to-noise ratigons [17], because its dynamics provides a simple represen-
(SNR) caused by the injection of an optimal amount of noisetation of the firing dynamics of sensory neurons. Being a
into a periodically modulated nonlinear system. The increaseypical two-component dissipative system, it lacks a cher-
in the noise intensity from small initial values induces anished feature of one-component ones, namely, being varia-
increase in the SNR until it reaches a maximum, beyondional. The search for an exact NEP for the FHN model had
which there is a decay of the SNR for large noise values. SReen unfruitful up to now: At most, approximate expressions
phenomena have been reported in monostable, multistablead been given in slaving approximatiofis,19. Here we
and excitable system®]. Several recent proceedings and consider the zero-dimensionstochasticFHN system

reviews show the wide interest of these phenomena and the
state of the arf10]. -

One aspect that recently has attracted considerable inter-"~ € Tu(u—a)(L-w—v+ AT +r1€(D) +ra8(0),

est is related to SR in extended or coupled systgisi.
The characterization of the SR phenomena is one of the is- 0=BU—v+T3& (1) +T4Ex(1), (1)
sues that require the knowledge of the stationary probability

wheree is the ratio of the relaxation rates ofandv, A(t) is
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A, being a constanttonic) signal, SA<Ay, and ther; (i HeredV,=d"q/yG(q) is the invariant volume element o
=1,...,4) arereal positive constants. Thg(t) (i=1,2) space ands(q) is the determinant of the contravariant met-
are statistically independent sources of Gaussian white noigéc tensor(for the Euclidean metric it i$S=1). In the sta-
tionary case, EQ.(3) can be written in the form
(&(1))=0, (&M)&(t))=ns;ot—t"). 23"(q,7)/99"=0, J” being the stationary probability current

i
Whereas in the excitable regime the nuliclines of the deterde sity

ministic version of Eq(1) have one root, the stable attractor, -

in the bistable regime they have three: two stable rdotsal Jv )=—K*(q)P )+ = —Q¥(q)P ).
attractor$ and one unstable ongepelley. We should em- (@7 (@)Psiad 0.7 2 (9q“Q (@)Psiad a7
phasize that the deterministic version of the original set of

equationg1) is nonvariationalas long as3 is positive[1]. As it was shown by Grahai], ®(q) is the solution of
In the following sections we present a brief review of the

notion of the nonequilibrium potential, the derivation of that b 1 P 9P

potential for Eq.(1), an analysis of the “topography” of the K*(q) poe 5Q"™(q) poe [?q—MZO

nonequilibrium potential landscape in the excitable regime,
and an analysis of the stochastic resonance phenomenon |n

the bistable regime. andZ(q) is the solution of a linear first-order partial differ-

ential equation depending ah(q)

Il. THE NONEQUILIBRIUM POTENTIAL
A. A brief review (

oK” Q"™ 9d 1 D
+ —+ QU Z
99" gt dq* 27 aq'ogH

In order to introduce the nonequilibrium potentials, we

consider in this section a more general form of nonlinear N o 0P | 9Z ~0 5

stochastic equations, which admit the possibilitynadltipli- 99"/ o9” - )

cative noisesIn particular, we consider equations of the

form (note that both equations are independentspfas they

, ) should be. Following Ref.[4], we introduce the streaming

=K' (@+gi(@é&®, »=1,...n, (2> velocity R”(q, ) of the probability flow in the steady state

where repeated indices are summed over. Equai®ns 3(q )

stated in the sense of ltoAgain, the &(t) (i=1,... m Ry(q,n):—’”,

=<n) are mutually independent sources of Gaussian white Pstadd,7)

noise with typical strengthy. It is clear that Eq.l) is a
particular case of Eq.2). The Fokker-Planck equation cor-
responding to Eq(2) takes the form

1 od
b 2 R*(@)= lim R*(d, 7) =K"(a) + 5Q"(q) ..
K"(q)P Q™a)P, (3 "0 9

As in Ref.[4] we split the driftK”(qg) into two partsR”(q)
where P(q,t;») is the probability density to observg  andd”(q),
=(qq, ...,q, at timet for noise intensityy and Q"*(q)
=g/(9)g¥(q) is the matrix of transport coefficients of the K*(q)=d"(q)+R"(q),
system, which is symmetric and non-negative. In the long-
time limit (t—o), the solution of Eq(3) tends to the sta- in such a way thaR"(q) conserves the potentid}(q),
tionary distributionP,{q). According to Ref[4], the non-

which in the limit of small noise takes the form

I 251)07//,

equilibrium potential®(q) associated with Eq(3) is then (q)
defined by ’ 6)
<I>(q)=—7lllin077 " Pstad @ 7) @ while the other pard”(q) may be written in the limityn
—0 as
or, equivalently,

1 ad(q)
(CI) d? e 1.7 ) (7)

Pstad@)d"q= Z(q)ex;{—TﬁLo(m (@)=-5Q"(a) po

where ®(q) is the nonequilibrium potential of the system If the inverseQ, , of the transport matrixQ*” exists, we

andZ(q) is defined as the limit may expressP(q) by a quadrature
q
In Z(q)= lim| In Pgad(q, 7) + — <I>(q)} <I>(O|)=<I>(qo)—2fq dg'Q,.(q)d*(q).
n—0 0
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Equation(4) and the normalizability condition ensure thit
is bounded from below. Furthermore, from E.and(7) it
follows that

do P 1 oD 0P
D ) 2D )
dq q

i.e., @ is aLyapunovfunction for the dynamics of the sys-

tem. Under the deterministic dynamicg=K"*(q), ® de-
creases monotonically and takes a minimum value on attrac:
tors. In particular,® must be constant on all extended
attractors(like limit cycles or strange attractgrsince fort

—o there arew-limit sets describing steady states gf

=K"(q) (in which (p:o) [4,14). FIG. 1. Time evolution in {,v) space for deterministic excit-
able dynamics. The curve denoted 4 indicates the separatrix be-
tween nonexcitable and excitable behaviors. The initial conditions
used here ar€l) u=—-0.8p=0.04;(2) u=—-0.8p=—0.1025;(3)
In the case of Eq1), the transport matrix adopts the form u=-0.25p=-0.138 711;(4) u= —0.5068y = —0.1402;(5) u=
—0.25p=-0.138 712; (6) u=—0.8p=-0.15; (7) u=15p=
A A ) —0.15;(8) u=1.7p=0.029; and9) u=1.5p =0.05. The values of
NN

B. The FHN model

2 2
rit+rs Fir3+rory

the parameters ar®;=0.02, S§A=0, B=0.034, a=0.8, and
€=0.0341, which configure a neatly defined excitable regime.

rfg+ror,  ra+ra

Here we consider only those situations in which the inverse
of the transport matrix existdi.e., det|Q**||=(rir5
—r,r,)2#0]. For that case, the nonequilibrium potential as-Equation(8) is the exact expression for the nonequilibrium

sociated with Eq(1) is potential we shall work with.
2 4
(I)(u,v)zv__z_ﬂuv+ 2)\[; u2_i _u_ Eus
Ay Ao Niho N 4 3 ll. EXCITABLE AND BISTABLE REGIMES

a , A. Nature of the threshold
- Eu +Au

, 8

Here we analyze the time evolution of the FHN system in
the excitable regime in terms of the nonequilibrium potential
given by Eq.(8). We consider a parametric regime in which
u(t) is a fast variable and(t) is a slow(recovery variable.

For completeness, we show in Fig. 1 the evolution from
I®(a) several initial conditions in,v) space for the following
aq* values of the parameters:$=0.034, a=0.8, A
=0.02, S6A=0, and €=0.0341. We verify that a sub-
and the matrix threshold perturbation decays to the stable attraGtui-
cated by a small circle in the figureOn the other hand,
0 A above-threshold initial conditions experience a large excur-
-\ 0/ sion in the configuration space before decaying. The curve
labeled 4 denotes the limit trajectofyhreshold between
By symmetry,R” satisfies Eq(6). The following equation nonexcitable and excitable decays.
relates the parameters of the system with the transport matrix In Fig. 2 we show, for the same parameters as in Fig. 1,
coefficients and can be interpreted as an integrability condithe structure of the nonequilibrium potential. Associated
tion: with curve 4 in Fig. 1(and denoted by the same labgliglan
extendegotential barrier that inota saddle point. In fact, it
2N =M1 B=N;. (9 corresponds to aonconstanpotential line that separates the
) ] ) excitable from nonexcitable behaviors. In Fig. 3 we show the
By solving Eq.(5), Z(q) can be obtained in terms of the time evolution of the nonequilibrium potential for subthresh-

nonequilibrium potential, the transport matrix, and the drift. |4 and above-threshold initial conditions. It can be appreci-
For the FHN systenil), it results in a positive constant. The

stationary probability current density adopts the form

where, in order to obtain the original drift, we have consid-
ered the expression

1
R'(q) =~ ZA”

e

ated thatd <0. In both cases, the slow time variations are
associated with the evolutions along the null clines. We have
used a finite-difference scheme with a time step=2.5
‘]u:EAW%Z exp(— ¢/ 7). %10 in order to simulate the excitable dynamics.

2 aqH The NEP given in Eq(8) can be written in the form
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passage time associated with the escape from a local attractor
Ometa @dopts the Kramers-like form

(7)= ToeX[{A;

whereq,,st IS the nondegenerate saddle point that confines
the attractor in the configuration space ah® =®(q,nsy)
AD=Dd(qunsi— D (qmeta [20]. The prefactor

5~ Z(Ametd VIH(dynsd|
g Z(Qunsy VH(Qmeta

is essentially determined by the curvatureloft its extrema

To=

FIG. 2. Nonequilibrium potential inu,v) space for the noise 2P
parameters r;=29.3147, r,=0.7943, r;=0.9982, and r, H(qk)=det( )
=0.0270(the remaining parameters are the same as in Bigni 49”9q" a=q
the projected time evolution of the initial conditions=0 and(1)
u=0.7,(2) u=0.7164,(3) u=0.7172,(5) u=0.7176,(6) u=0.75,  and is typically several orders of magnitude smaller than the
(7) u=0.8, and(8) u=0.9. The curve labeled 4 corresponds 10 4yerage timd 7). The inverse of 7) gives us the transition
curve 4 in Fig. 1, ie., the separatrigarrie) between nonexcitable probability W for the escape from,qrs. In order to analyze
and excitable behaviors. the SR phenomenon, we consider a situation in which we
have a well-defined bistable regime, i.e., we consider nu-

2 4
O (u,p)= (v—ABu) n ﬁuz_ 2| 4 1+au3 merical values for the parameters of the system in wkfich
' \o Ni€ Nie| 4 3 6A=0) both stable attractors have the same value of the
nonequilibrium potential and the same value of the corre-
_ Eu2+Au _ (10) sponding Hes_sian. In_ that case, the trar_lgition probabilities for
2 the two possible noise-assisted transitions adopt the same

. . . ) . value and the effect of introducing the weak periodic com-
The first term in Eq(10) is lost when an adiabatic elimina-

on is d : d _ h p h I:ponent of the signal is to produce a small change in the
tion is done in order to estimate the NEP. In fact, the NER¢ | tve stability between the local attractors. To proceed

given in Eq.(10) tends to the NEP obtained by adiabatic it the calculation of the correlation function, we need to

elimination of the fast variabléwith r,=r3=r;=0) [18]. o 4juate the transition probabilities
However, the derivation presented here for the NEP is not

valid for this singular transport matrix.

1 [{ AD
W.=75"exg — —
n

B. Stochastic resonance

Let us now consider théistable regimeof the FHN when the periodic signal is activated. The expansion of
model as given by Eq1): We shall use the NEP given in A®(d,A) in powers of5A up to first order
Eq. (8) to obtain the SNR within the framework of a two- IAD(q,A)
state descriptioi7]. For bistable systems, the mean first- Adp(q,A)=Ad(q,Ay) + o’!—Aq, SA cog Qt+ ¢)
A=A,

0.004 -
4.

0.003 yields, for the transition probabilities,

1
0.002
where

0.001

2
ao=exi] —AD(q.A)) 7], a1=%dA<bldA|Ao.

0.000

1 In the adiabatic limit(i.e., & much less than the mean
threshold-crossing ratethe stochastic stationarity can be
continously achieved because the probability densities adjust

FIG. 3. Time evolution of the nonequilibrium potentidlfor an ~ adiabatically to the changing nonequilibrium potential.
excitable behaviofcurve A) and for a nonexcitable orfeurveB).  Within the framework of a two-state descripti¢ine corre-

The values of the parameters are the same as in Fig. 2. sponding theory was developed by McNamara and Wiesen-
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0.05 IV. CONCLUSIONS

Summarizing, we have derived, by means of a quadrature,
an exact nonequilibrium potential for the zero-dimensional
FitzHugh-Nagumo model in the limit of small noise, thus
obtaining results that are valid in the excitable and the
bistable regimes. Then, using this potential, we have dis-
cussed the nature of the barrier in the excitable regime and
the stochastic resonance in the bistable case, within the
framework of a two-state description, when an external sub-
threshold periodic signal is injected.

The relevance of the present results for technological ap-
plications in signal detection is apparent, as well as their

biological implications. Many electronic circuits can be re-
0.00 - - . . . .
0.00 0.01 0.02 0.03 0.04 0.05 garded as nonlinear oscillato(®r instance, of the related
n Bonhoffer—van der Pol typeThis schematic model has also
been used to discuss numerous problems: pattern formation

FIG. 4. Signal-to-noise ratiR vs noise strengtly for a bistable  and propagation in simplified activator-inhibitor models
regime. The maximum indicates the stochastic resonance.Mgre [1,16], experimental and theoretical descriptions of processes
=0.02, 0A=0.002, p=0.039, a=1/2, e=1, r;=1 and involving stochastic resonance in neuronal systems
r=rz=r,=0.02. [17,18,22, as well as in a theoretical description of the in-

fluence of the spatial coupling on $&2]. It is also expected
feld in Ref.[7] and exploited in Refs/12,21]) we can use that it can provide a useful framework to discuss some recent
those transition probabilities to evaluate the autocorrelatiorxperimental results regarding SR in several chemical reac-
function and through its Fourier transform the power spections done under good-stirring conditioh3], as well as
trum S(w). In terms of the output signal power spectrum, theother recent experiments on resonant pattern formation in a
SNR (indicated byR) takes the standard form for bistable chemical systerh24]. We are now considering the extension

0.04

0.02 |

0.01

systems of this approach to stochastic-resonant md@a|, and its
. possible connection with spatiotemporal synchronization
Wai(ﬁA)zlr a3(6M)? phenomen425].
R(ao,al)= - 2 2 . (11)
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