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Noisy Levy walk analog of two-dimensional DNA walks for chromosomes of S. cerevisiae
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The DNA sequences of all the chromosomesSatcharomyces cerevisiaee mapped onto d=2 space.
The resulting patterns are interpreted as a two-dimensional walk. Their mean square displacement shows a
superdiffusive behavior. We address the question if this behavior can be understood in terms of a random walk
model. We found that it can be modeled as a superposition ofvg walk and white noise.
[S1063-651%98)12407-9

PACS numbes): 87.10+e, 05.40+]

There has been interest in the physics community irs single displacements, each equally distributed with vari-
studying DNA sequences from a physical or mathematicahinceo?. Then, if there is no bias, the MSD corresponds to
point of view. The findings of some recent works suggesthe variance of the whole displacement aftesteps. As the
that the sequence of base pairs or nucleotides in DNA disvariance of a sum of independent random variables is the
plays power-law correlation&,2] and several controversial sum of their variances, we get a linear dependences.on
points have been discussed in recent years. Most of thed@eviations from the pure linearity is characteristic of corre-
works are based on a one-dimensional mapping of the sdations between steps. These correlations can be so strong or
quence. Here we study a two-dimensional mapping that wilf0 long ranged that even for the asymptoses a linear
be described immediately below. regime is never reached. This lack of linearity makes it im-

In particular, in this work we analyze the two-dimensional possible to define a diffusion coefficient and one speaks of

mapping of DNA sequences of the organiSaccharomyces anomalous diffusignin most of the cases characterized by a
2 e I

cerevisiae(S.c) (baker's yeast the first eukaryote whose power law(r=(s))~s '.If 0<a<l one spgaks asubdiffu

complete genome has been sequerf@dThis provides us sionand the case € « is calledsuperdiffusionor enhanced

with several very large sequences corresponding to the Sanq%ffusmn V‘.’h"e. supdn‘fusmn IS 'prlcal for transport Of.
; : : charge carriers in disordered media and amorphous materials
organism. Such sequences consist of a succession of fo

) . . . t‘g], enhanced diffusion is characteristic in turbulent transport
symbols.A (ademné, G (guaning, T (thyming a,”dC (cy- [6,7], chaotic[7—10], polymer[13], and biological14] sys-
tosing. Typically, the frequency ofA and of T is around tems, and generalized statistical thermodynarf&s.

0.30 and that QG andC is abou_t 020 The frequency of  The MSD of a RW(r2(s)) is understood as an average
bothA+G (purines andC+T (pyrimidines is very close o oyer many realizations of the walk, each one performed un-

0.5. We will envisage these sequences as realizations of ger the same conditions. On the other hand, for DNA se-
stochastic process. For its analysis, we introduce a mapping

into a two-dimensional walk. With ead@ (G) symbol we 3500 — . . . . — :
associate one step in the positigreegative direction along :

the verticaly axis. With eachTl (A) symbol we associate one 3000 - .
step to the rightleft) along the horizontak axis. In this way

we obtain a roughly unbiased walk. A typical resulting pat- 2500 - ]

tern is displayed by chromosonik; see Fig. 1.

Among the many quantities useful to characterize a walk,
the mean square displacemdiMSD) is one of the most Y
important, as it is closely related to the correlatipaf For
a standard random wallRW), the MSD(r?(s)) is a linear
function of the number of steps (r%(s))=2dDs. The pro-
portionality constant @D (whered is the dimension of the
spacg defines the diffusion coefficiem. This purely linear
behavior is an immediate consequence of the fact that a RW
is a sum of identically distributethdependentandom vari-
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ables: The total displacement aftestepsr(s) is the sum of (-)500 0 5<I)o 1oloo 15|oo 2o|oo 25Ioo 30|oo 35})0 40|oo 4500
X
*Present address: Max-Plank-Instittit fehysik komplexer Sys- FIG. 1. DNA walk corresponding to the chromosoieof S.
teme, Nahnitzer Strasse 38, 01187 Dresden, Germany. cerevisiae
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FIG. 3. Shown in a logy—logyo plot are(r?(s)) (full line) of the

FIG. 2. Mean square fluctuatioR?(s) (log;o—l0gs, plot) for simulated LW[Eq. (2)], with y=1.537, andF2(s) of chromosome
the 16 chromosomes &.c.As a reference. the dashed line corre- |1 (dashed ling Note the deviation at middle and short distances.
sponds to the pure linear behavief(s)=s. ) )
Herer is the length of the displacement=|r|=x?+y?,

guences the equivalent quantity is the mean square deviatié'}ﬁhIIe th? d|rgct|on of_eaph d|splaceme(mhe a'Tg'e of t_he
(or mean square fluctuatipiof the walk [1,4]. This is de- vectorr) is uniformly distributed irf 0,27). We will call this

a Levy walk (LW) model. The MSD can be computésee

fined as the Appendix and we have
F2(s)=(Ar?) —(Ar)?, (1) s if 0<y<1
(ry(s))~q s*77 if 1<y<2 (3)
whereAr=r(sy+5s)—r(sp) is the difference in position be- s if 2<y.
tween the walker at stepand the walker at thénitial) step
Sy and the averages are taken over initial positiss As a first example let us take chromosomheof S.c.From

In Fig. 2 the mean square fluctuatiéit(s) of the DNA  Fig. 2 we can measure the corresponding slope, that is, the
walks corresponding to the 16 chromosomeS§afis shown exponent 3-y in Eq. (3). We get 3- y=1.463. Then, with
as a function of the step numbeiin a log,g-log;g plot. Itis  y=1.537, we simulate a walk with the here proposed
evident that the walk is superdiffusive. Two superdiffusivecoupled transition probability2). In Fig. 3 we show the
regimes seem to appear: at short and at long distances, witdSD (r?(s)) obtained from simulations in comparison with
a transition ats~10%. Moreover, ats~10* there seems to the mean square fluctuatidf?(s) of this chromosome.
occur a transition to a linear regime, following which, for ~ We see that only the exponentBf(s) at large distances
some chromosomes, a negative slope appears. can be reproduced b{r?(s)). In order to account for the

In this work we will consider the problem of finding a whole range of distances, we have found that it is necessary
RW model with a MSD similar to this DNA walk. That is, to incorporate a noisy component into the model. This can
we address the question whether there exists a simple R\asily be achieved in the following way:
analog whose MSIr?(s)) behaves similarly td3(s). As L
explained above, we could think of a random walk with cor-  #(r,8)~pr =7 8(r—s)+(1—p) &(r—1)é(s—1).
related steps. Instead of this, we choose a simpler model that (4)
consists of a renormalized walk. A single step of the renor
malized walk corresponds ®(now a random variab)esteps
of the original walk. Then the renormalized step displace
ment(corresponding to the sum sfsingle displacements of
the original walk will be a random variable correlated with
s. Therefore, their joint probability distributior(r,s) does
not factorize(otherwise, if the variance of each renormalized
step is finite, we would obtain pure diffusipn

The coupled scheme that we propose to investigate h
the following joint probability distribution for each renor-
malized single-step displacement:

The first term, weighted with probabilitp, corresponds to
the already mentioned coupled distributi(®). The second
term, with probability 1-p, is a decoupled probability dis-
tribution corresponding to a standard RW. In other words,
with probability p the walk is of the coupled form just men-
tioned, while with probability *-p it is a standard RW. This
model has only two parameters to be fitteds 4<2 and
0=p=1. In Fig. 4 we show the same case as in Fig. 3, but
&¥ith this new distribution. The agreement with chromosome
Il of S.c.is satisfactory up to the deviation due to finite size
effects in the sequence.

We see that the evolution d¥?(s) can be well repro-
y(r,s)~ r 177 §(r—s). (2 duced by the MSD of this noisy LW, up to the transition to
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FIG. 4. Same as Fig. 3, using E¢), for chromosomeél. The
analogous noisy ey walk (full line) has the parametery
=1.758 andp=0.02.
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10g,, (5)

=1.537,L=5381 (L yay/L = 150), andp=0.035.

the linear regime, which occurs at-10*. We can further

ask if this transition can also be understood in terms of a
more elaborate RW analog, which in turn could provide a
better understanding of its origin. In the following we show
that it is enough to include the fact that there exists a cutoff

<S>=52l s9s),

FIG. 5. Same as Fig. 3, using E®), for chromosomél . The
analogous noisy Ty walk (full line) has the parametery

L for the maximum possible step size. The cutoffs nec- &€ finite for any value & . Therefore, at long distances the
essary, since in this model the maximum step length canndtiffusive behavior

be longer than the size of the sequence, Lecl 5. This
is achieved with the model

(r¥(s))=asl(s)

(7)

L L is to be expected. The factof’/(s) can be obtained by mea-
pefr =" 7=L""""] &(r—s) for 2s<s<L suring the prefactor in the longlinear regime ofF2(s). The

(r,s)=9 (L—p) &(r—s) for s=1

TABLE |. The 16 chromosomes @&.c.are shown. The columns

0 otherwise.

display the length_ ., of the DNA sequence, the exponent in the

©) proposed power-law forrf2(s)~s3~7 [see Eq(3)], the exponent
v, the maximum step size of the LW analbg the ratioL 5, /L,

Herec is a factor that ensures the normalization

and the fraction of LWp.

) Sequence Lp., 33—y y L Lmax/L p
“loy_ | ~1-7)=
J ,artr L= 7=1k. chrl 226646 1534 1466 9065 25  0.035
chrll 807188 1.463 1.537 5381 150 0.035
. . chrlll 315341 1.455 1.545 26278 12 0.040
In other words, at eacfrenormalizedl step of this analogous chr IV 1531974 1504 1496 5106 300 0.040
walk, with probability p the displacement corresponds to & v 574393 1'495 1'505 6660 230 0'037
LW and with probability I-p to a standard random walk. chr VI 270149 1'516 1'484 2785 550 0'041
Let us now define the marginal distributions : : '
chr VIl 1090935 1.496 1.504 7272 150 0.050
" chrVIII 562638 1.474 1.526 3750 150 0.038
chriX 439885 1.496 1.504 1760 250 0.038
R(r)= ;::l Y(r.s). ©®  chrx 745442 1467 1533 8282 90  0.036
chr Xl 666448 1.485 1.515 2897 230 0.039
. . chr X1I 1066141 1.496 1.504 6663 160 0.035
Now, due to the cutoff, the variance of each single stép chr X111 024430 1477 1523 3555 260 0.039
chr X1V 784328 1.492 1508 3826 205 0.039
o2= fwrzR(r)dr, chr XV 1091282 1.473 1.527 3637 300 0.039
0 chr XVI 948061 1.484 1516 2370 400 0.039
average 752830 1.488 1512 6205 216 0.039

and the mean value of the renormalized step
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5000 ' ' ' ' - ' ' somes it is Ky<2 with a mean valu€ y)=1.51+0.02.
This leads to asuperdiffusiveMSD (r?(s))~s®~ (" =g4°
[see Eq(3)]. The resulting pattern is a random fractal, whose
fractal dimension cannot be easily related theoretically.to
This finding raises the question about why a simple LW
model behaves so similarly to a DNA sequence, both quali-
tatively and quantitatively. If there is an underlying concep-
tual reason for this analogy a different pathway in the math-
ematical study of DNA sequences could be opened.
Recently, our attention was directed to the works of West
and co-worker$16,17]. As in the previously cited works of
Stanleyet al,, these authors consider a one-dimensional RW
mapping, while we are introducing here a two-dimensional
RW mapping. A second difference is that they develop a
“dynamical” (deterministi¢ method that mimics an
3500 -3000 -2500 2000 -1500 -1000 500 O 500 a-stable Ley process with ¥ «<2. The generator of the
X deterministic evolution is a nonlinear map belonging to a
o, class of maps recently tailored to mimic the process of weak
~ FIG. 6. Noisy Lery walk analog of the DNA walk correspond-  chaos responsible for the birth of anomalous diffusion. As a
ing to chromosomél of S.c.Compare with Fig. 1. similar conceptual idea, these authors consider this process
) . . to be superposed to another random one and t8-tomction
exponenty is obtained by measuring the slope of the log-logcorrelated. They call this prescription to generate statistical
In Fig. 5 we show the resultingr’(s)) compared with  our model we consider no deterministic dynamics at all, but
F2(S) for chromosomeél . In this way we obtained the fitted the Superposition of a’w walk, responsib|e for the emer-
parametersy, L, andp shown in Table I. ) gence of correlations, with a standard R#&., a random
In Figs. 6 and 7 we show a simulation of the noiswye noise as in the CMM modglin the CMM model the corre-
walk defined by Eq(5). It is a walk with the same param- |ation effect of the deterministic dynamics is canceled on the
eters as for chromosonié. Compare with Fig. 1. short-range scale, but shows up in the long-range one. In our
In this work we presented a RW analog of DNA se- model this effect also appears, as one can see from a com-
quences, as exemplified by the chromosomes of the organisparison of Fig. 3 with Fig. 4 or 5. Both models cannot be
S.c.We found that this two-dimensional walk can be mod-quantitatively compared since they are essentially different.
eled or simulated as a noisy \yewalk, as long as one fo- However, besides this difference, there remains the concep-
cuses on the MSD and on the reSUIting pattern of the ViSiteﬂjgﬂ S|m||ar|w of describing intron|es§:0din@ and intron-
points. The resemblance of this modified LW to the DNA containing(noncoding sequences in a unified way, interpret-
walk of theS.c.is apparent. Note that the main proportion of ing the DNA sequences as the superposition of two
the analog is noiséstandard RVY, while the LW component  processes, one responsible for the long-ranged correlations
amounts to only 4%. The main parameter of the LW is theand the other essentially a noise. The latter can be interpreted
exponenty of the step-size distributiof®). For all chromo-  as uncorrelated random mutations that destroy short-range
correlations. In fact, in real DNA sequences no large patches
of consecutive sitetstraight displacements in the RW map-
ping) are observed.
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APPENDIX

3700 The so-called [ey walk model was studied by Blumen,

Klafter, and Zumofen(BKZ) [7,11,13. While in a Levy

flight [5,7,13,14 the single-step displacement of the walker

has a divergent variance and therefore the mean square dis-

placement is not define@nd, strictly speaking, is also infi-

nite) in the LW, this trouble is solved by introducing a spa-
tiotemporal coupling. The LW is defined as a continuous-

3500 5500 600 g oo 2500 time rar_1_dom_wa|k with a coupled single-step displacement

X and waiting time between the steps of the form

3600

FIG. 7. Amplification of Fig. 6. Yy~ r= 177 §(r—t”). (A1)
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The model has two parameteysandv. For 0< y<2 the t2v
variance of each single step is infinite. On the other hand, the 5 2—vut2v
5 function penalizes large steps by requiring longer times for (re)~\ t it 2<vu<1t2v  (A2)
them. The resulting MSD was computed by BKZ. In terms t if 1+2v<wvp.
of

if 1<wyu<?2

Then our noisy LW analog takes=1 and we view the DNA
u=y+1 walk as a LW in which the waiting time between consecutive

displacements is given by the number of stegsequired to
and fory>1 andv>1/2 it is reach the distance(s).
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