
PHYSICAL REVIEW E JULY 1998VOLUME 58, NUMBER 1
Self-assembled DNA–cationic-lipid complexes: Two-dimensional smectic ordering,
correlations, and interactions

T. Salditt,* I. Koltover, J. O. Ra¨dler,† and C. R. Safinya
Materials Department, Physics Department, and Biochemistry and Molecular Biology Program, University of California,

Santa Barbara, California 93106
~Received 12 February 1998!

We report a synchrotron small-angle x-ray scattering~SAXS! study of the mutilayered, self-assembled
structure~complex! that is formed by mixing DNA with cationic liposomes. In these complexes the DNA is
confined between charged lipid bilayers and orders as a two-dimensional~2D! smectic liquid crystal. The
power-law bilayer-bilayer correlations of the 3D multilayer smectic liquid crystal, which are coupled to the 2D
lattice of DNA chains, are found to deviate significantly from those described by the standard Caille´ model of
smectic-A phases. To model the DNA ordering, the 2D smectic correlation function and the corresponding
structure factor are derived from the smectic Hamiltonian in harmonic approximation. The resulting line shape
is then fitted to the DNA correlation peak. It is found that for samples of higherd, short-range correlations
between the DNA in adjacent sheets have to be assumed to explain the data. From the least-square fitting, the
2D DNA interchain compressibility modulusB is extracted as a function ofd and discussed in view of
different possible microscopic interactions responsible for the ordering.@S1063-651X~98!10207-6#

PACS number~s!: 87.22.Bt, 61.10.Eq, 61.30.Eb
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I. INTRODUCTION

Recently, a novel multilamellar structure of DNA san
wiched in between cationic lipid membranes has been
ported by Ra¨dler et al. @1,2#. The structure is formed in a
self-assembled manner when mixing suspensions of cati
lipid vesicles ~cationic liposomes! with DNA. Such com-
plexes have been shown to be able to mimic certain cha
teristics of natural viruses in their ability to act as efficie
chemical carriers of extracellular DNA across outer c
membranes and nuclear membranes~transfection! for gene
therapy applications@3#. The correlation of the gene carrie
mechanism and transfection efficiency to the microsco
structure of the complex remains a fascinating challenge
the near future. At the same time, the statistical physics
the complexes exhibit interesting ordering and fluctuat
phenomena, which are currently studied in several theo
cal works @4–6#. More generally, the self-assembly of s
pramolecular structures, and in particular the interaction
membranes and polymers, is currently an active area o
search@7,8#.

In the case of the structurally well defined DNA macr
molecule, the ability to produce perfectly monodispers
DNA has led to many important experimental studies in
lution over the past two decades@9#. These include studies a
a model system for direct observation of chain reptation
namics@10#, and persistence-length measurements in po
electrolytes@11#. Structural studies have been designed
elucidate the various mechanisms by which giant DNA m
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ecules are able to undergo dense conformations, with p
sible similarity to their biologically active native state, eith
induced by multivalent cations@12#, or in high density liquid
crystalline phases, bothin vitro and in vivo in packing of
DNA in bacteria and eukaryotic cells@13#. Theoretically, a
high density phase of DNA chains has been predicted wi
novel ‘‘braided chiral’’ structure with crystalline order@14#.
With the obvious relevance of DNA and given the prese
understanding of the macromolecule in solution, the eluci
tion of its interaction with other macromolecular assembl
is of fundamental interest.

In this work we report a quantitative synchrotron x-ra
scattering study elucidating the nature of the DNA order
in two-dimensional~2D! layers confined between the lipi
bilayers of the complexes. A 2D smectic order is inferr
from the analysis of the line shape of the DNA correlati
peak for samples of different average spacingd between
DNA. Furthermore, for largerd we find additionalcross-
correlations between the DNA of adjacent layers. The ela
constants extracted from the least-square fitting of the co
lation peak indicate a repulsive long-ranged electrostatic
teraction.

The structure and positional correlations of low dime
sional systems are often governed by strong thermal fluc
tions. In the case of smectic symmetry, for example,
lower critical dimension is three~3D!. In 3D, true long range
order breaks down and is replaced by an algebraic deca
correlations. This Landau-Peierls instability has been inv
tigated in detail both theoretically@15# and experimentally
@16,17#. However, only few experimental studies have be
reported on smectic phases below their lower critical dim
sion @18#. In this case, the positional correlations are wea
than algebraic, resulting in an anisotropic short range or
Related to the correlation functions are the interesting ela
properties of smectic phases, which have recently been s
ied in the framework of a nonlinear theory, in which th
spacial fluctuations of smectic liquid crystals were related

-
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890 PRE 58SALDITT, KOLTOVER, RÄDLER, AND SAFINYA
FIG. 1. Sketch of the self-
assembled DNA-cationic lipo-
some complex with the DNA
double helices represented by rod
in between the lipid membrane
comprising the neutral and cat
ionic lipids. The corresponding
lipid headgroups are shown in
light and dark shade, respectively
dm denotes the multilamellar peri
odicity andd the interhelical dis-
tance.
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the spatiotemporal fluctuations of growing interfaces, in p
ticular to the Kardar-Parisi-Zhang~KPZ! equation@19#. The
elastic coefficients that contain much of the microscopic
teractions governing a particular system can be determ
from scattering experiments@16,17#. As a consequence of th
Landau-Peierls effect, this becomes experimentally feas
in spite of often low cross sections, since the correlat
peaks themselves refect the thermal scattering, unlike
thermal diffuse scattering in 3D crystals, which forms only
background to the Bragg peaks.

When mixing aqueous solutions of DNA with a suspe
sion of cationic lipid vesicles~cationic liposomes!, a highly
condensed system~complex! is formed in a self-assemble
manner, with the cationic lipids neutralized by the negat
phosphate groups of the DNA. The driving force of the co
plex self-assembly is the entropic gain in releasing the co
terions both from the cationic lipids and in particular fro
the DNA ~Manning condensation! @20#. Multilamellar com-
plex structures were observed for three types of DNAl
phage,Escherichia coli, and pBR322 plasmid!, and two dif-
ferent phospholipid systems consisting each of catio
DOTAP ~dioleoyl-trimethylammonium-propane! and of
DOPE ~dioleoyl-phosphatidyl-ethanolamine! or DOPC
~dioleoyl-phosphatidylcholine!, respectively,@1#. In addition,
complexes made out ofl-DNA and DLPC/DDAB
~dilaureoyl-phosphatidylcholine/didodecyl-dimethyl-ammo
ium bromide!, a lipid system with shorter hydrocarbon tai
and therefore also smaller bilayer thicknessdm , have been
found to exhibit the same structure@21#. Thus the multila-
mellar phase is not specific to a certain DNA/lipid syste
but of more general nature. In this work we will not repe
the complete line of arguments including experimental e
dence from x-ray scattering as well as light microscopy
periments~double fluoresence, crossed polarizers, differ
tial imaging contrast! @1#, which led to the postulation of the
multilamellar structure depicted in the schematic of Fig.
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We will rather start from this structure as the basis and st
the details of the DNA ordering from the line shape of t
DNA correlation peak. The results will allow us to dra
conclusions on the nature of the relevant microscopic in
actions.

The paper is organized as follows. Section II gives a br
account of sample preparation and the setup of the SA
experiment. The data will be presented with a discussion
the main features in the scattering distribution. In Sec. III
x-ray structure factor of a 2D smectic liquid crystal is d
rived from the Hamiltonian. Both ‘‘single crystal’’ and
‘‘powder-averaged’’ expressions are discussed. This par
the work is quite general and can be readily applied to
study of other 2D smectic systems. The model is then use
fit the DNA correlation peak for a series of samples. T
results of the least-square fitting are presented in Sec
along with a discussion of the implications on the effecti
interactions between the DNA in the complex. Appendix
contains a detailed calculation of the 2D smectic correlat
function, and Appendix B discusses the compressibility o
linear array of line charges.

II. MATERIALS AND METHODS

The samples were prepared by mixingl phage DNA
~48502 bp, contour length of 16.5mm) with liposomes in
ultrapure water, as described in@1#. The liposomes consiste
of cationic DOTAP~dioleoyl-trimethylammonium-propane!
and neutral DOPC~dioleoyl-phosphatidylcholine! at various
weight ratiosn:5mass@DOPC#/mass@DOTAP# ~lipid dilu-
tions!, while keeping the the DOTAP/DNA weight ratio con
stant at 2.2 to ensure overall charge neutrality of the co
plexes. In this so-called isoelectric regime, the catio
groups of DOTAP exactly balance the negative base pair
DNA. To assure a proper mixing of the two lipid types, th
are matched in their respective chain length. By adjusting
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ratio of neutral to positive lipid component, the average
terhelical spacingd between DNA can be controlled over
range of 27–60 Å, i.e., from an almost close-packed t
more diluted state. At higher dilution the system eventua
phase separates to a phase of complexes in coexistence
a pure lipid lamellar phase@21#.

Small-angle x-ray scattering~SAXS! experiments were
performed with the samples sealed in the same quartz c
laries ~1.5 mm diameter! in which they had been mixed
Consequently, the complexes were surrounded by excess
ter, corresponding to the volumes of the initial lipid an
DNA stock solutions before the condensation of the comp
phase. The resulting suspension of complexes was perfe
isotropic, as evidenced by powderlike Scherrer rings on
image plate detector. As observed with light microscopy,
complexes exhibit a globular structure with globule dia
eters on the order of 0.5mm @1#. In the isoelectric regime
~charge neutral complexes! the globules aggregate to larg
clusters. Thus, on semimacroscopic length scales, the sa
structure was not homogeneous. Indeed, x-ray scans tak
different positions of the capillary with respect to the bea
typically showed large intensity variations. However, t
curves overlapped perfectly after scaling the intensity, in
cating an identical structure on the submicrometer scale

SAXS measurements were carried out both at an in-ho
18 kW rotating anode equipped with a bent graphite mo
chromator and a two-dimensional image plate detector,
at the Stanford Synchrotron Radiation Laboratory~SSRL!.
The high resolution data for line shape analysis were c
lected at the Wiggler beamlines 7-2 and 10-2 of SSRL, w
the x-ray energy set to 8.047 keV and 10.00 keV, resp
tively, by double-bounce Si(111) monochromators. High
harmonics were supressed by a mirror, which also focu
the incoming beam in the horizontal plane with a conv
gence of 2 mrad yielding an out-of-plane resolution
.0.008 Å21 ~HWHM!. In the~vertical! scattering plane the
resolution was set by tight slits to 0.0013 Å21 ~HWHM!
and 0.0006 Å21 ~HWHM!, for the two instruments, respec
tively.

III. SMALL-ANGLE X-RAY SCATTERING: LAMELLAR
AND DNA DIFFRACTION PEAKS

SAXS scans for five representative samples in the isoe
tric regime are displayed in Fig. 2 on a semilogarithm
scale, with the respective curves shifted by multiplicat
constants for better comparison. Curves~a! through~g! cor-
respond ton50, 0.35, 0.67, 1, 1.5, 2.33, and 3. All sampl
show strong first- and second-order Bragg peaks~00l! of the
lamellar structure. Some samples, in particular those
higher n, additionally exhibit higher harmonics~004! and
~005!, while ~003! is generally suppressed by a form fact
minimum. Thus, the scattering distribution indicates a w
ordered lamellar structure of stacked membranes, with a
riodicity dl that slightly increases fromdl557.8 Å for n
50 up to dl570.3 Å for n53. The width of the peaks is
resolution limited, setting a lower bound ofLm.2000 Å for
the domain lamellar domain sizes~the subscriptm is carried
on those variables that refer to the 3D smectic liquid crys
of the lipid membranes rather than the 2D smectic liq
crystal of the DNA!. With an upper bound forLm given by
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the diameter of the globules, one can conclude that the g
ules consist of only a few, or more likely, just one lamell
domain.

Apart from the lamellar peaks, the scans exhibit also
much broader and weaker maximum arising from the DN
DNA correlations ~vertical arrows!, shifting over a wide
range as a function ofn corresponding to a change ind
spacing from an essentially closed packed structure od
526 Å up to d554 Å. This increase is governed by th
relationship

d5
ADrD

dmr l
~L/D !, ~1!

which results from simple mass conservation in the mult
mellar geometry~neglecting the extra space that is left op
due to defects of the DNA ordering!, with AD the DNA
cross-sectional area,rD and r l the mass densities of DNA
and lipid, respectively,dm the membrane thickness, andL/D
the lipid to DNA mass ratio.

FIG. 2. Small-angle scattering of charge-neutral lipid/DN
complexes in excess water. Curves for samples of increasing r
between neutral and cationic lipidn are shifted by multiplicative
factors: from top to bottomn50, 0.35, 0.67, 1, 1.5, 2.33, and
@curves~a!–~g!#. Apart from very sharp Bragg reflections with th
typical power-law tails of multilamellar phases, a much broader a
weaker peak arising from DNA-DNA correlations is observed~ver-
tical arrows!.
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892 PRE 58SALDITT, KOLTOVER, RÄDLER, AND SAFINYA
Figure 3 shows the changes of the structural changes
sociated with the lipid dilution in the isoelectric regime.
Fig. 3~a! the variation of the multilamellar periodicitiesdm is
plotted versus the total lipid to DNA ratioL/D, for the
DOPC/DOTAP ~solid circles! and DLPC/DDAB systems
~open circles!. The systems differ mainly in the chain leng
leading to a much shorterdm and therefore alsodm5dw
1dm in the DLPC/DDAB case@22#. In each case the in
crease ofdm with L/D is due to the fact that the neutra
colipid is always somewhat shorter than the cationic lip
Therefore,dm of the combined systems intrapolates the t
single-component values, which can be measured inde
dently by water dilution in the pure lipid system witho
DNA. The average thickness of the water gapdw5dm2dm
remains approximately constant corresponding to the di
eter of DNA, 2r D.20 Å plus a hydration layer@1#. Figure
3~b! shows the DNA spacingd as a function of the lipid/
DNA mass ratio for the two lipid systems, DOPC/DOTA
~solid circles! and DLPC/DDAB~open circles!, with the cor-
responding dilution lines according to Eq.~1!. The devia-
tions from the linear behavior result from the changes indm .
These findings indicate that the lipid dilution law is genera
valid for lamellar complex phases, as long as the neutral
cationic lipids do not phase separate@21#.

Over the past decades a large body of experimental w
has confirmed that fluctuations in multimamellar stacks
membranes or more generally lamellar phases of lipids
surfactants in solution are well described by the harmo

FIG. 3. The increase of~a! the multilamellar distancedl and~b!
the interhelical distanced with increasing total lipid to DNA ratio
L/D ~lipid dilution! for the system DOPC/DOTAP~solid circles!
and DLPC/DDAB~open circles!. The solid and dotted lines in~b!
are the corresponding theoretic predictions according to Eq.~1!.
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smectic Hamiltonian including terms of bending and co
pressional modes@16,17,23#, resulting in the well-known
Caillé line shape of the lamellar Bragg peaks@15#. A funda-
mental assumption in the derivation of that model is isotro
in the plane of the membrane. In the case of lipid/DNA co
plexes, however, the bending rigidity must locally be orie
tation dependent, with the rigidity enhanced in the direct
along the stands. Given the high persistence length of ab
500 Å, thermal height fluctuations along they axis must
therefore be totally suppressed at least on smaller len
scales, while the system can support bending alongx more
easily. The compressional modes must also be affected
the DNA, reducing the fluctuations of the lamellar period
ity dl due to electrostatic and hard core interaction, resp
tively. Moreover, from a more fundamental viewpoint, the
must be additional terms in the Hamiltonian describing
modes of DNA and also the possible coupling between
fluctuations of the layers and those of DNA, see below.

In Fig. 4 the (001) peak of then50 sample is shown on
a semilogarithmic scale along with simulated line shapes
the Caillétype. Since the peak is symmetric, the line sha
should only depend on the finite domain sizeLm and the
unitless parameterhm containing a combination of the sys
tem’s bending and compressional modulus. Clearly, the
oretical line shape does not explain the data. For higher
ues ofhm the central and mediumq2q0 range can be fitted
but not the tails. For lower values the tails can be fitted,
there are systematic deviations at smallq2q0. This may sug-
gest that, compared to the Caille´ case, fluctuations on shorte
wavelength are indeed suppressed. Figure 5 shows the
tails of the (001) peak after background subtraction on
double-logarithmic scale with an empirical power-law fitI
}q2g to the tail. The exponentg extracted from the tails
ranges between 1 and 2, while the Caille´ model after powder
averaging would give a value below 1,g.12h @17#. The
systematic dependence ofg as a function ofn is depicted in
the inset. For samples of decreasing DNA content, the de
tion from the Caillémodel gets less and less pronounce
One may argue that for very stiff lamellar systems withhm

FIG. 4. The first lamellar peak (001) of then50 sample. A
pronounced deviation from Caille´’s line shape is found; see th
solid and dotted curves for parametershm50.1 andhm50.15, re-
spectively. In the simulations, the domain size was set toLm

52000 Å.
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!1, experimental real structure effects such as deviati
from a perfect powder may spoil the applicability of th
model and explain the deviations with respect to the theor
prediction@24#. However, the powderlike nature of the com
plex suspensions was unambiguously evidenced by
Scherrer lines on an image plate detector. In the same m
ner, finite resolution and finite size are more critical expe
mentally for smallhm @25# and may account for deviation
from the Cailléline shape. However, the resolution functio
was decaying much faster than the observed lamellar
and deviations from Caille´’s model are also found for the
(002) peak, which is usually much less sensitive sincehm is
expected to scale quadratically with the peak order. H
this is clearly not the case, e.g., in the case of then51.5
sample we findg51.55 for the (001) and 1.29 for the (002
peak, respectively. We can thus safely attribute the obse
deviations of the lamellar line shape to a more fundame
difference in the Hamiltonian of the complex phase from t
of the conventional one. In particular, one has to bear
mind that the DNA strands lead to an enhanced stiffnes
the lamellar system along the strand direction. This anis
ropy of an effective membrane bending rigidity~at least on
small length scales smaller than the DNA persistence len!
cannot be captured by Caille´’s model. Accordingly, the de-

FIG. 5. The left tails of the (001) peaks on semilogarithm
scale after subtraction of a constant background level. The ce
width is resolution limited, and followed by a power-lay dec
S(q)}q2g over one decade inq. The results of the fits~solid lines!
are plotted versusL/D in the inset~open circles!, along with the
corresponding exponents of the (002) peaks~solid circles!.
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viations must increase with DNA content as observed.
Presently, without any theories at hand, we cannot furt

analyze the scattering distribution of the lamellar peaks,
we turn directly to the analysis of the DNA correlation pe
to gain insight into the nature of the DNA ordering in th
complex.

The widths of the DNA correlation peaks range betwe
0.013 Å21 and 0.023 Å21. This implies that positional cor-
relations persist over roughly 5 to 10 times the interheli
spacingd. However, the DNA cannot be ordered in a perfe
1D lattice with parallel strands that fluctuate around w
defined positions. Ignoring for the moment the finite bend
stiffness with the resulting loss of positional correlatio
along the strands, a 1D solidlike model is contradicted by
absence of strong higher harmonics of the DNA correlat
peak. In fact, estimating the Debye-Waller factor, e.g.,
samplen51.5 from the ratio of the DNA correlation pea
and the small bump that can be identified as its second
monic, see Fig. 6, one would obtain a rms deviation of
strands with respect to their 1D lattice site of 0.4 d. At th
level of fluctuation, no long-range order can persist. Furth
more, the line shape of the powder-averaged 1D solid
model does not fit the data well in the tails of the peak,
will be shown in the next section. Thus, we can conclu
fom the scattering distribution that there is no long-ran
order between DNA strands. This conclusion can of cou
also be drawn on fundamental grounds that a long-range
dered phase cannot exist in 1D@26#.

More appropriately, the ordering of the DNA has to b
described in a two-dimensional model, since the DN
strands cannot be treated as stiff and parallel rods. At leas
length scales larger than the persistence lengthl p , such an
approximation has to break down, as orientational or
along the stands (x direction in the local coordinate system!

ral

FIG. 6. In then51.5 sample, a weak maximum is observed
the position of the second DNA harmonic. Apart from peak scal
and background, the simulation~solid lines! is to the same param
eters as the fit of the fundamental peak~see Sec. III!.
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will decay. Positional correlations due to small length sca
fluctuations may vanish on even smaller length scalesl
! l p . Additionally, if correlations between the DNA exis
also across the lipid membrane (y direction in the local co-
ordinate system!, a correct model would have to be formu
lated in three dimensions. In the next section, we will sho
that the data are fitted well to the structure factor of a 2
smectic liquid crystal with additional short-range correla
tions across the lipid membrane, which can be regarded a
small pertubation of a purely 2D system. For lown, these
cross correlationsvanish and the system becomes strict
two-dimensional.

Before exploring quantitative modeling in the next se
tion, the issue of background subtraction must be discuss
For curves of mediumL/D ratio where the DNA correlation
peak lies in between the lamellar peaks, the background
fairly uniform with only little deviations from a constant
value towards the tails of the lamellar peaks. A subtraction
the background without free parameters was carried out
the following procedure: The peak centersq5 lq0 of the
(00l ) peaks were used as mirror lines for the unaffected ta
of the opposite sides, which could then be inverted and s
tracted without introducing further parameters. This sche
relies on the general observation that all the lamellar pe
are symmetric. Figure 7~a! shows the case of then51.5
sample~open circles! with the solid line representing the lef
tail of the (001) peak flipped over to the right side. For lo
q good overlap with the right tail is observed until deviation
set in corresponding to the left tail of the DNA peak. Th
equivalent has been done with the tails of the (002) pe
~dotted line!. It is remarkable that the level of background o
the two inverted tails coincides in the centralq region. This
nearly flat background scatter must also be attributed to
complexes, since the pure water scan results in scattering
is smaller by more than a factor of 2 in thisq range. For
samples of higher lipid dilutionn, the influence of the (001)
becomes very dominant, but can still be taken into accoun
a similar manner by subtraction of the inverted left tail of th
first lamellar peak. The situation is illustrated in Fig. 7~b! for
then53 case. The most critical samples are those of lown,
where the (002) peak overlaps with the DNA peak. Since t

FIG. 7. ~a! DNA correlation peak of samplen51.5 with tails of
the lamellar peaks on each side. To subtract the background,
unaffected left tail of (001) and right tail of (002) are flipped ove
~solid and dotted lines, respectively!. ~b! The same for then53
sample, where the DNA peak is riding on the right tail of the (00
peak.
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latter is much broader, we decided to discard the data po
corresponding to a strong (002) contribution and used
remaining data for the subsequent fitting, with correspo
ingly larger errors; see the following sections.

IV. FITS TO THE STRUCTURE FACTOR OF A 2D
SMECTIC LIQUID CRYSTAL

The free energy density of a 2D smectic liquid crystal
given by

H/A5
1

2
BS ]u~x,z!

]z D 2

1
1

2
KS ]2u~x,z!

]x2 D 2

, ~2!

whereu(x,z) is a continuum displacement field of the DN
strands with respect to a perfect lattice in the local coordin
system defined in Fig. 1.B and K are the bulk moduli for
strand compression (J/m2) and strand curvature~J!, with K
related to the bending modulus of a single strand accord
to K5Ks /d. The corresponding free energy density for t
Fourier componentq is given by

F5
1

2
~Bqz

21Kqx
4!u2~q!. ~3!

Additional terms describing the coupling of the 2D-DN
phase to membrane undulations, i.e., the coupling betw
fluctuations of the nested 2D smectic and the 3D sme
‘‘host’’ structure, may be neglected for membranes with hi
bending rigidityKm@kBT. Rigorous theoretic treatments o
the free energy density containing also coupling terms h
been developed independently by O’Hern and Lubensky
well as Golubovic´ and Golubovic´ @5,6#. However, it seems
that the scaling behavior of the nested 2D smectic liq
crystal is not altered by the lamellar fluctuations of the 3
host fluctuations, thus justifying the simplistic approach o
rigid lamellar host structure. Furthermore, the very intere
ing effects arising from nonlinear elasticity theory and inte
layer coupling become relevant only for length scales lar
than those found in this experimental work. Equation~2!
differs from the Hamiltonian of many previously studied 2
systems such as stripe-phase domain walls or step edge
crystal surfaces in that there is no line tension term@27#, so
that form fluctuations are governed by bending rigid
alone.

It is instructive to compute the mean-square fluctuat
^u2& by applying the equipartition theorem to Eq.~2!,

^u2&5
kT

~2p!2 E
2q0

qmax
dqz2E

qmin

qmax
dqx~Bqz

21Kqx
4!21

5
2kBT

~2p!2Eqmin

qmax
dqx2

arctan~AB/Kq0 /qx
2!

ABKqx
2

5

qmin→0 kBT

2pABKqmin

5
kTLx

~2p!2ABK
, ~4!

where the integrals have been performed withMATHEMATICA

@28#. Thus,^u2& diverges linearly with the lateral system siz
Lx , which has to be compared to the^u2&}L3 behavior of a

he
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single curvature governed polymer. The effect of the h
monic coupling between strands effectively reduces the
vergence of̂ u2&. The resulting power law is the same as th
of a single flexible polymer in 2D governed by surface te
sion rather than curvature. This also means that in contra
the single chain result, the orientational order of the polym
confined in the stack becomes long-ranged. The correla
function g(x,z):5^exp„iq0@u(x,z)2u(0,0)#…& is calculated
from Eq. ~3.1! in Appendix A, yielding

g~x,z!5expF2h
2p

l
Apluzu e2x2/~4luzu!

2h
p2

l
uxuerfS uxu

2Aluzu
D G , ~5!

with constants l:5AK/B and h:5kTq0
2/(2p)2B, and

erf(z) denoting the error function@30#. Parallel to the
strands, the correlation function decays exponentiallyg(x,z
→0)5exp@2uxu/jx# with a corresponding correlation lengt
jx5l/hp2. Normal to the strands, the correlations decay
g(x→0,z)5exp@Az/jz#, with jz5l/(2ph)2p.

This result is noteworthy. Along the DNA strands th
positional order decays exponentially in contrast to the a
braic decay of the 3D membrane counterpart. Normal to
strands, the decay is also much stronger than algebraic
still weaker than the liquidlike exponential decay that wou
apply, i.e., for harmonically coupled stiff rods or plates (K
50). Instead, the exponentz/jz is replaced byAz/jz, lead-
ing to a steep initial decay of correlations withz followed by
elevated tails for largerz. This effect is visualized by the
eye-shaped contour plot ofg(x,z) in Fig. 8. In this sense the
2D smectic liquid crystal is a unique liquid crystalline sta
of matter.

The structure factor of a single-domain sample is obtai
by Fourier transforming in the variable (qz2q0 ,qx). Along
the qx axis the peak is a simple Lorentzian (HWHM
51/jx), but alongqz it exhibits a singularity with tails tha
decay to lowest order likeq23/2 for q@1/jz . Analogous to
the power-law singularities of 2D crystals and stacked me

FIG. 8. The contour plot~logarithmic shading! of the correlation
function g(x,z) with x andz in units of l at h50.08.
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branes, a finite size factor is introduced@29#, that accounts
for a broadening of the central peak to a finite domain sizeL.
Since the data were taken from perfectly isotropic susp
sions, the ‘‘single crystal’’ result then has to be ‘‘powde
averaged’’ in three dimensions. First, the structure facto
averaged in the two-dimensionalqx /qz space over the angle
f between the average helical axis of the DNA and thex
axis, resulting in an expression that is applicable when
DNA is powderlike but the membrane stacks are perfec
oriented,

S2D~qxz!5
1

2pE2p

p

dfE
2`

`

dx

3E
2`

`

dz g~x,z!e2r 2p/Le2 i „q2G…•r. ~6!

Here,q5(qx ,qy), r5(x,z), andG5q0ẑ52p/dẑ. Investi-
gating the resulting line shapes one finds that curves of fi
jz andL become independent ofjx ~apart from an absolute
scaling factor! if jx becomes larger thand; see Fig. 9. In
other words, in this limit the line shape is the same as tha
an equivalent ensemble of rigid rods fluctuating only in th
positions alongz. Since the DNA is known to be quite stiff
it is therefore not surprising that onlyjz can be extracted
from the fitting, in the same manner that the bending rigid
Km cannot be determined for stiff membranes@17#.

Next, the membrane normal is summed in 3D over
configurations with respect toq,

FIG. 9. The 2D smectic line shape after in-plane powder av
aging: ~a! varying jx at constantjz5200 Å andL5900 Å; ~b!
varying jz at constantjx5400 Å andL5800 Å; ~c! varying L at
constantjz5200 Å andjx5400 Å.



rm

de

nd

-
um

.e

ng

n
in
be

ss

A

the

g

at-

ex-
02)
an

s of
nd

er
the
the

en

es
ng
no
rs
ort-
ar
tial

as

e
o
al

ied
of

g to

lot-
(
ng

-
re-
g

to
to

und
es

o
l
g
i-
a

896 PRE 58SALDITT, KOLTOVER, RÄDLER, AND SAFINYA
S3D~q!}E
2p/2

p/2

du sin~u!S2D~q sinu!

3S J1~r Dqcosu!

r Dqcosu D 2

f y~q cosu!. ~7!

The second factor in the integrand is the cylindrical fo
factor of DNA with radiusr D511 Å. The form factor ap-
pears only here rather than already in Eq.~6!, because it can
be shown numerically that it does not affect the 2D pow
average if the correlation lengthjz is large compared with
the DNA radiusr D . Contrarily, it must be included in the
present step of the 3D powder averaging, if the DNA stra
are not correlated over a long range alongy, i.e., across the
layers. A long-range correlation in this direction would im
ply the existence of additional peaks in the powder spectr
which are not observed.f y(qy) is the structure factor of the
truncation rod, which is constant for a true 2D system, i
also for perfectly uncorrelated layers . However,f y51 does
not fit the data with the right tail of the simulated peak bei
systematically too high; see Fig. 10~c!. In other words, the
model of perfectly flat and uncorrelated planes of DNA ca
not explain all the data. We therefore introduce a decay
structure factor that for the sake of simplicity is taken to
of one of the two following simple forms:

FIG. 10. Fit of ~a! Lorentzian and~b! Gaussian line shapes t
the DNA peak of samplen51.5. Obviously, these simple empirica
line shapes fail to explain the data, and a more rigorous modelin
required.~c! Simulation of 2D smectic correlation with no pos
tional correlations of the DNA across different layers, yielding
right slope that is systematically too high.
r

s

,

.,

-
g

f 1~qy!5
1

jy
21qy

2
, f 2~qy!5exp@2~sqy!2#, ~8!

with f 1 corresponding to an exponential correlation acro
different layers with a decay lengthjy , andf 2 corresponding
to a damping due to height fluctuations of amplitudes. Be-
forehand, we knew thatjy must be of the same order asdm ,
since if it was larger, extra peaks of 2D ordering of the DN
strands~e.g., on a hexagonal or rectangular lattice! would
have to appear; see above. Alternatively,f 2 is appropriate for
an uncorrelated but strongly fluctuating system, where
fluctuations of the DNA and lipid sheets in they direction
would give rise to such a Debye-Waller term. The fittin
results in this case vary betweens50.3 d ands50.4 d,
wheres corresponds to the fluctuation amplitude on the l
eral length scale of the DNA domainLx , i.e., typically a few
hundred Å. These high values are incompatible with the
istence of higher harmonics of lamellar peaks, e.g., the (0
peak that is observed throughout, typically weaker th
(001) by one order of magnitude. More drastically, ats/dl
.0.3 the fourth harmonic (004) observed in then51.5
sample should be weaker than (001) by about 23 order
magnitude. By estimating the rms deviations to be arou
s.10 Å, consistent with the intensity ratios of the high
harmonics, we can safely rule out this model, and accept
existence of weak short-range cross correlations between
DNA strands of neighboring layers as the valid effect, ev
if least-square fitting leads to similarx2 values for either
form. Recent theoretical studies on DNA-lipid complex
predict a ‘‘new phase’’ of vanishing positional and persisti
orientational cross correlations, i.e., an orientational but
positional coupling between DNA strands of different laye
@5,6#. This does not mean, however, that there are no sh
range positional correlations. Indeed, the ‘‘sliding column
phase’’ predicted by the studies also implies an exponen
decay alongy of the positional cross correlations, i.e., just
is assumed for the line shape fitting in this work@first term in
Eq. ~8!# @5#. Moreover, the 3D smectic undulations of th
lipid membrane ‘‘host structure’’ were shown to have n
qualitative effect on the DNA ordering, i.e., on the function
behavior ofg(x,z) @6#.

Figure 11 shows the fits of the data to Eq.~6! with f 1 in
Eq. ~7! as the rod function, where the fitting has been carr
out on a pentium PC platform with a software package
nonlinear and evolutionary fitting algorithms@31#. Seven
peaks with least-squares fits are displayed, correspondin
samples ofn50, 0.35, 0.67, 1, 1.5, 2.33, and 3@curves~a!
through~g!#, with respective least-squares deviationsx typi-
cally around 1.5 per degree of freedom. The curves are p
ted as a function of the normalized wave vectorq
2q0)/q0, and have been shifted by additive constants alo
the abcissa for better comparison. In curves~a! and ~b! the
lamellar ~002! peak falls on the left slope of the DNA cor
relation peak so that the affected data points had to be
moved, resulting in larger fitting uncertainties. The fittin
parameters of the model werejz ,jy ,L,d as well as a scaling
factor and a constant background level that was allowed
vary in a range of a few percent of the peak maximum
account for small possible errors in the previous backgro
subtraction.jx was kept constant in the range where it do

is
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not affect the lineshapejx@2d; see above. In the simula
tions, L is found to be inversely proportional to th
Gaussian-like center of the curve. Changes ofjz are most
visible in the left tail where the scattering gets weaker w
increasingjz resulting in a steeper left slope. The right ta
was dominated by the value ofjy , which can be understoo
in geometrical terms, since the truncation rods are tang
to the Ewald sphere and intersect atq.q0. The striking
asymmetric profile observed, in particular, for samples
medium n ratio, occurs when the correlation lengthjz is
relatively large, leading to a steep left tail, butjy is still
relatively small, leading to a slowly decaying right tail. Th
fitting results of all samples are displayed in Table I and w
be discussed in the next section.

As described above, the low-dimensional nature of
self-assembly is directly apparent in the powder-avera
scattering profile, and models with different geometries~e.g.,
2D hexagonal phase, 3D nematic, etc.! fail to explain the
data. However, within the given geometry of DNA order
as parallel strands in a two-dimensional plane, different m
els with relatively small variations in the correlation functio
alongz are harder to differentiate by the line shape analy
since small domain sizes and powder-averaging effe
somewhat blur the distinct features of each model. To inv
tigate this issue, alternate models were fitted assuming
solidlike and liquidlike ordering of parallel DNA strands
respectively. The latter case corresponds to the line shap
a 2D nematic liquid crystal composed of stiff polymers li

FIG. 11. Normalized and rescaled DNA correlation peaks a
background subtraction and the corresponding fits to 2D sme
line shape@Eqs. ~6! and ~7!# for samplesn50, 0.35, 0.67, 1, 1.5,
2.33, and 3@curves~a! through~g!#.
ts

f

l

e
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DNA. The x2 values of the corresponding curves were ge
erally higher than for the smectic liquid crystal model. T
situation is illustrated in Fig. 12 for the case of the sam
n51.5, with the 1D solid structure factor~1D Gaussian,
powder averaged in 3D as described above! resulting in a
least-squares deviation ofxsol

2 52.2, and the 1D liquid struc-
ture factor~1D Lorentzian, powder averaged in 3D as d
scribed above! in a value ofx liq

2 51.95, as compared tox2

51.65 for the smectic liquid crystal model. But even witho
referring to these somewhat small differences, 1D solidl
ordering can be ruled out because higher harmonics wo
be much stronger in this case; see the preceding section.

r
tic

TABLE I. The fitting results: the first three rows correspond
the results of the 2D smectic model fitting to Eq.~6!, with either
f 1(qy) ~parameterjy) or f 2(qy) ~parameters), respectively, as the
rod function in Eq.~7!. The last row gives the results of the corr
lation lengthj when fitting to a 2D nematic~1D liquid! model.

samplen5 0 0.35 0.67 1 1.5 1.94 2.33 3

d ~Å! 27.6 28.7 38.1 39.9 47.9 52.4 53.0 54.
L ~Å! 475 539 667 895 634 521 602 108
jz ~Å! 91 108 141 131 311 189 148 176
jy ~Å! 20 10 24 33 31 60 52
s ~Å! 9.2 8.5 14 13.5 18 26 24
j ~Å! 103 113 167 168 183 173 212

FIG. 12. DNA peak of then51.5 sample with~a! a 1D solid,
~b! a 1D liquid ~2D nematic!, and~c! a 2D smectic line shape. Th
3D powder averaging scheme with an exponential correlation fu
tion alongy was the same for all three fits. Small but statistica
significant differences are observed in the tails.
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2D nematic model, on the other hand, requires untypic
high values for the correlation lengths perpendicular to
strands of the order of four to five lattice units. To this en
a 2D smectic phase and a highly correlated 2D liquid
polyelectrolyte strands cannot be distinguished very well
the line-shape analysis, but the latter can be rejected on
basis of the fitting results. Theoretically, the two phases
come equivalent on long length scales, due to disloca
defects that are free in 2D@32#. Indeed, a high defect densit
in the complexes is also obvious from the small values
smectic domain sizesL inferred from the fitting. Interest-
ingly, defects have also been imaged by atomic-force
croscopy~AFM! in fingerprintlike patterns of DNA adsorbe
to lipid bilayers@33#. This system, however, differs from th
present one in that it is constrained by the presence o
substrate and it is composed only of one bilayer covered w
DNA rather than a multilamellar structure with the DN
sandwiched in between two bilayers. Moreover, for the AF
images the lipid is required to be in the gel phase with
dered tails in contrast to the liquid nature of membranes
the complexes. However, the ordering of DNA strands
most probably also of smectic symmetry.

Finally, we justify the use of the harmonic approximatio
a posteriori by the relative values of the smectic doma
sizesjz andjx obtained in the present work~called disloca-
tion length in @19#!. Nonlinear effects become observab
only when jx and jz become larger than the respecti
Ginzburg lengthjGx andjGz , which are given in 2D by@19#

jGx5
8p~K/kBT!3/2

~B/kBT!1/2
, jGz5

jGx
2

l
. ~9!

From the results of the fitting we only get a combination
K and B ~or alternativelyl and h, or jx and jz , see the
definitions above!, so that we cannot evaluate the Ginzbu
lengths directly. However, as will be discussed in the n
section, the bending rigidity can be related to the persiste
lengthjp of DNA according toK5kBTjp /2d, which allows
us to remove this ambiguity and calculate the quanti
above tojGx.0.7 mm andjGz.80 mm. These values are
much higher than those found experimentally forjx andjz ;
see the next section. Accordingly, nonlinear terms in
Hamiltonian are irrelevant and the interesting theoretic re
tionship @19# between a 2D smectic liquid crystal and th
KPZ theory of a growing interface~growth in D5111, with
one substrate dimension!, which has been mentioned in th
Introduction, must in this case be drawn as an analogy to
linear version of the KPZ equation, the so-called Edwar
Wilkinson ~EW! equation@34#. The EW equation has bee
used in many different linear theories of interfacial evoluti
as well as in corresponding computer simulations. Furth
more, it has been verified experimentally to apply to t
interface evolution of sputter-deposited amorphous multil
ers~in D5211! @35#. In the picture of the analogy, thez axis
of the 2D smectic liquid crystal would be mapped to the tim
axis of the interface evolution, whilex would be the spatia
coordinate. Interface fluctuations of different smectic lay
~strands! would then correspond to interface positions
subsequent points in time in the stationary growth regim
with the EW coefficient proportional tokBT/ABK. Indeed,
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for D5111 the equation predicts the same divergence
^u2& with the lateral system size as Eq.~3!.

V. FITTING RESULTS AND MICROSCOPIC
INTERACTIONS

The results forL, jz , and jy obtained from fitting the
data to Eq.~6! with rod functionf 1(qy) in Eq. ~7! are shown
in Table I. The second to last row contains the Gauss
width s, as obtained by using the alternative rod functi
f 2(qy). As discussed in the preceding section, an increas
width of the 2D layers could only be explained by a strong
fluctuating multilayer, and by inspection of the values t
model can be ruled out, since it is inconsistent with t
strong second harmonic of the lamellar peaks; see ab
The fitting results forL and jz obtained with f 2(qy) and
f 1(qy) fall within the respective error bars. The values ford
are shifted by about 0.2 Å when usingf 2(qy) instead of
f 1(qy). Finally, the last row of the table gives the values
the liquid correlation length as obtained from the 1D liqu
~2D nematic! structure factor. Again, the model can be rul
out on the basis of the unrealistically high correlation leng
and also the slightly higherx2 values, e.g., see Fig. 12~b!.

Therefore, the 2D smectic ordering with weak exponen
correlations alongy can be established as the valid model.
Fig. 13 the corresponding values ofL, jz , andjy are plot-
ted versusd. L is found to vary nonsystematically betwee
500 Å and 1200 Å, see Fig. 13~a!, while Fig. 13~b! shows a
moderate overall increase ofjz with d. The highest value of
jz5311 Å is determined for then51.5 sample. Expresse

FIG. 13. The results of the least-square fitting:~a! DNA smectic
domain sizeL, ~b! correlation lengthjz , and~c! correlation length
jy perpendicular to the layers, as a function of DNA spacing.
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in lattice units, this flat dependence translates into a sign
cant decay of the correlation length withd. Using the defi-
nitions of jz andjx given in the preceding section, one ca
extract the 2D chain-chain compressional modulusB,

B5~2p!2222/3
~kBT!4/3

K1/3 S jz

d D 2/3 1

d2
. ~10!

We can now proceed by estimating the bending rigidity~or
splay modulus! K. As a reasonable assumption,K can be
linked to the single DNA bending rigidityKs by K5Ks /d,
with Ks in turn being proportional to the DNA chain persi
tence lengthjp52Ks /kBT @36#, which has been experimen
tally measured to bel p.500 Å @11#. The corresponding val
ues are plotted in Fig. 14 forjp5500 Å. Different values of
jp merely change the curve by a multiplicative factor, b
not thed dependence. Of course, the analysis of the resul
severely limited by the small number of points and the re
tively large error bars. Refined data will become available
time with ongoing studies, and possibly also from orien
samples. However, to this end the experimental curveB(d)

FIG. 14. The compressional modulusB in units ofkBT/Å2 as a
function of d on double-logarithmic scale. The data points as
tracted from the fitting~see text! are the same in~a! and ~b!, but
plotted versus the predictions for different microscopic interactio
~a! Helfrich steric repulsion~solid line!, ~b! exponential interaction
B}exp@2d/l# as resulting from hydration forces or screened el
trostatics, respectively, withl 53 Å ~dotted line! and 25 Å ~solid
line!. Hydration interaction could only explain the very first da
points, and screened electrostatics can be discarded since the D
lengthlD is several hundred Å in the present case, and thus m
larger than the 25 Å obtained from the fit.
-

t
is
-
n
d

can be compared to various different models, from wh
significant conclusions can be drawn.

~a! Let us consider if steric repulsion of the DNA stran
may be responsible for the ordering, analogous to the st
interactions in membrane systems@17#, which were theoreti-
cally proposed by Helfrich@37#. However, this would imply
considerable strand undulations on lateral length scale
the order ofd, with a corresponding line shape significant
different from the one observed, which is consistent w
undulations only on longer length scales. Thus, we concl
that steric undulations are irrelevant in the present case
dependent of the line-shape argument, Helfrich’s interact
can be clearly ruled out from the measuredB(d) depen-
dence. Following Helfrich@38#, the mean square of the dis
placementu for a polymer of lengthl in a two-dimensional
plane is^u2&5kBTl3/2Ks , whereKs is the bending rigidity
of the polymer. The mean number of contacts per unit len
of a polymer confined between walls of separationd or in a
corresponding array of parallel polymer chains is theref
given by 1/l H , with a collision length of l H
5(d22Ks /kBT)1/3. An entropic free energy cost ofkBT can
be attributed to each collision, so that the free energy
surface area is given by

F

dlH
5

kBT~kBT!1/3

~2Ks!
1/3d5/3

. ~11!

From the definition of the compressional modulus as the s
ond derivative of the free energy densityB
5d2]2(F/A)/(]d)2, we get for Helfrich’s interaction

B5
40

9

kBT

jp
1/3

1

d5/3
, ~12!

whereKs has again been expressed in terms of the kno
persistence lengthjp . The corresponding form is plotted a
the solid line in Fig. 14~a! for l p5500 Å, and corrected for
the finite size effect, i.e., by replacingd by d2r D @39#. A
similar result with a different prefactor has been derived
hexagonal phases of polymers@40#. Clearly, this curve does
not fit, and this remains to be the case also when the pre
tor is treated as a fit parameter, which is appropriate, si
only a more rigorous derivation can yield a correct value
the prefactor@41#.

~b! Hexagonal phases of DNA have been extensiv
studied by osmotic pressure techniques for different salt c
centrations@42,43#. At high DNA densities corresponding t
interhelical distances of up to aboutd530 Å, hydration in-
teraction dominates, giving rise to an exponentially decay
repulsive force per unit length of DNA,

f h~r !5 f h0e2~d22r D!/lh, ~13!

with typically f h0590 dyn/cm andl53.123.5 Å @42#. In
the same way, the DNA packed in the complexes can
expected to experience a strong contribution of hydrat
forces at smalld<30 Å. The corresponding curve of th
compressional modulusB(d)}exp(2d/3 Å) is plotted in
Fig. 14~b!. Clearly, hydration alone cannot account for t
experimental data over the whole range ofd.
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In the regime of interhelical distances 30 Å<d<120 Å,
pure solutions of DNA in brine exhibit an electrostatic inte
action screened by the salt ions, leading to an expone
decay of the repulsive forces. Fitting the data to an expon
tial decay of arbitrary rangel , B}exp@2r/l#, agreement can
be obtained only forl .25 Å; see the solid curve in Fig
14~b!. The corresponding salt concentration of 14.4 mMol
however, much higher than in our samples. Indeed, prepa
the samples with ultrapure water~Millipore!, the ion concen-
tration is given by only the anions corresponding to the c
ionic lipid and the cations corresponding to the DNA, whi
get fully released when the DNA and the lipid conden
This increase in free ions and the corresponding gain in
tropy is the driving force of the self-assembly. However, t
ions are released into the full volume of excess water in
capillary, resulting in a relatively low concentration, whic
can be estimated to be below 1 mM. Further experime
proof is of course given by the fact that the DNA dilutes
above 60 Å ~where this number is not limited by electrosta
ics but by lipid phase separation!, giving an upper bound for
the concentration of salt of about 2.5 mM. A fit to an exp
nential curveB(d) with l 560 Å is, however, in complete
disagreement with the data. Thus, we conclude that in c
trast to pure DNA solutions, electrostatic interacti
screened by salt cannot account for the DNA ordering in
complexes.

~c! The interactions may thus be attributed to a combi
tion of hydration forces~at short range! and long-ranged
electrostatic forces. In the limiting case of infinitely hig
mixing enthalpy of the cationic lipid and the neutral colipi
or, equivalently, in the special case of no neutral colipidn
50), the system could be approximatively treated as an
sembly of oppositely charged planes and lines; see Appe
B. For nÞ0, the system has to be described self-consiste
by the Poisson-Boltzmann equation just as in the well kno
case of stacked membranes@45#. However, the present ge
ometry is somewhat more complicated, since the elec
field distribution has to be parametrized in at least two

FIG. 15. Schematic of the DNA and the corresponding coun
rions of cationic lipids~DOTAP! in the lipid bilayers composed o
DOPC/DOTAP. The concentration profile of the DOTAP counte
ons is sketched above the bilayer.
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mensions. A 2D cross section with quantitative field lines
sketched in Fig. 15.

Bruinsma and Marshl have addressed the problem@4# and
obtain two main contributions for the repulsive forcef (d)
per unit length,

f 0~d!.
pkBTrD

2l B~d2d!2
, f 1~d!52ln~2!S e l

ew
D kBT

l Bd
, ~14!

which are due to the osmotic pressure of lipid counterio
and long-range electrostatic forces, respectively, calcula
by using the Maxwell stress tensor, i.e., considering the
ergy of the electric field between neighboring DNA chain
In these equations,l b is the Bjerrum length in waterl b
5e2/(ekBT)57.131028 cm (eH2O578.5, e lipid52), r D

51027 is the DNA radius, andD is a somewhat empirica
distance below which the formula forf 0 does not work,
roughly equal to the DNA radius.f 0 and f 1 are the lowest-
order terms in an expansion of smallr D /r , so that the result
is valid only for large DNA separations. The finite size
neglected, and the equation is not applicable forn50 ~pure
cationic lipid, see Appendix B!, where the osmotic pressur
of lipid counterions vanishes. The two force contributio
are shown in Fig. 16~a!: f 0}1/d2 dominates at smalld, with
a crossover atd5483 Å.

-

FIG. 16. The force laws of various microscopic interactio
~force per unit length of DNA!: ~a! The two dominating terms of the
solution of the Poisson-Boltzmann problem@4#, ~b! the contribu-
tions of the van der Waals force~attractive!, hydration force, the
Poisson-Boltzmann result~sum of f 0 and f 1), as well as the com-
bination of all of the above. As can be seen, the van der Wa
contribution is negligible over the entire range, while hydrati
forces become comparable to the electrostatic~Poisson-Boltzmann!
term at smalld.
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Let us also consider the van der Waals force between
DNA strands,

f vdW52
AAr d

16~d22r D!5/2
, ~15!

where the Hamaker constantA55.2310214 erg has been
derived witheDNA54 andeH2O580 @46#. This is an attrac-
tive force that is smaller than the previous two contributio
at least at very low ionic strengths. The electrostatic, hyd
tion, ~van der Waals!, and the resulting total force are show
in Fig. 15~b! for the distances covered in the lipid dilutio
experiment. We see that electrostatic forces are domin
except at smallr , where hydration forces are comparable

To compare the above forces with the experimentalB(d)
data, we need to calculateB and to convert it to the units o
kBT/Å2. This is accomplished with the thermodynamic de
nition B5d(] f /]d), where f is the force per unit length a
used in the above formulas. Correspondingly, we obtain

BPoiss.-Boltz.5
pkBTrDd

l B~d22D!3
12ln~2!S e l

eH2O
D kBT

l Bd
, ~16!

Bhydr5d
f h0

lH
e2~d22D!lH, ~17!

BvdW5
5AAr D

32

d

~d22D!7/2
. ~18!

In the above formulasD, f h0, and lh are fitting param-
eters, since they may be somewhat different in the DN
lipid complexes than predicted or measured for bulk DN
phases. The comparison with the experimental data in
17~a! shows that the decay inB(d) is slower than curren
thoeretical predictions. The solid curve in Fig. 17~a! is a fit to
the data, restricting coefficients to be reasonable~positive
and not larger than several Å in the case ofD andlh). The
values of the simulated curve areD59 Å, lh53.1 Å, and
f h050.014kBT/Å2, all of which are very close to the one
given in the literature (f h050.021kBT/Å2 in bulk DNA
phases, but this difference is not significant, considering h
poor the fit is!. Thus, the conclusion can be drawn that t
electrostatic prediction@4# is two large at smalld and decays
too quickly compared with the data. This is not too surpr
ing considering the above discussion, where the work of R
@4# does not take into account that the lipid osmotic press
should vanish asd→2r D with n50 ~pure cationic lipid!.

What can then be compared favorably with the data? F
ure 16~b! shows a fit to a hypothetical 1/d dependence with
added hydration and van der Waals contributions~solid line!.
The fit is to the sum of the respective termsB5Bh1BvdW
1C/d, with Bh , BvdW, and l b the same as above andC as
the coefficient of the 1/d term. As shown above, theBvdW
contribution is negligible, but has nevertheless been inclu
here since it introduces no free parameters. The fit par
eters wereC543.6, f h050.109, andlh53.23 Å. We can
draw a definite conclusion that hydration forces are imp
tant ~improving the fit in a statistically significant way! at
small d with a decay length of 3.2 Å, of about the sam
e

,
-

nt

-

-

g.

w

-
f.

re

-

d
-

-

strength as in bulk DNA phases. At larger separations,
1/d term dominates. Moreover, an additional 1/d2 term does
not improve the fit. The 1/d decay of the electrostatic con
tribution may be related to a short calculation for the case
pure cationic lipid or no lipid demixing presented in Appe
dix B, suggesting that the simplest electrostatics withou
Poisson-Boltzmann-like counterion pressure captures the
sence of the DNA-DNA interaction in the complexes. T
counterion pressure in this quasi-two-dimensional sys
with very large and relatively few ‘‘solvent’’~neutral lipid!
and ‘‘counterion’’ ~cationic lipid! molecules may not be a
relevant as in the ordinary three-dimensional analog
charged membranes. However, to safely draw conclusion
this issue, further theoretical calculations that are valid a
in the experimentally important regime of small DNA spa
ings d are required.

Another possible contribution to the compressibili
modulusB may arise from changes in ratio of the membra
area to lipid head group area, and the associated c
stretching. This mechanism assumes that the average
per lipid molecule is reduced rather than neutral lipids be
expelled from the complex when the DNA distance is d
creased. However, an estimate of the lipid compressib
shows that the contribution toB would be independent ofd
and of the order of 2kBT/Å2.

All of the interactions discussed above, aside from
negligible van der Waals contribution, are purely repulsi
The average density and hence an average interhelical
tanced is fixed by the condition of overall charge neutrali
~isoelectric regime!, with the repulsive interactions respon
sible for the ordering.

In summary, we have demonstrated that the DNA ord
as a 2D smectic phase in the 3D smectic DNA/lipid compl
with the interhelical distance determined by the average
layer charge density. The ordering is found to be inconsis
with pure hard-core interactions, steric repulsion, and hyd
tion forces, but can be well explained by long-ranged el
trostatic forces with the cationic lipids acting as counterio
Furthermore, the line-shape analysis shows that short-ran
positional cross correlations exist between the DNA of ad
cent layers. For the samples of smalld near close packing
these cross correlations vanish, but they become very
nounced for samples of higher spacingn, where the correla-
tion length increases with interhelical spacingd. For the
present work, the analysis was limited by the significant
rors and the effects of powder-averaging. Further insi
may be derived from studies of oriented samples that m
become available in the future. The correlation of comp
structure and fluctuations to properties such as synthetic g
carriers also remains to be explored.
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APPENDIX A: CALCULATION OF THE CORRELATION
FUNCTION

In continuum description the correlation function can
defined as

g~x,z!5^exp$ iq0@u~x,z!2u~0,0!#%&, ~A1!

where q052p/d is the q value corresponding to the firs
correlation peak, andu(x,z) denotes the displacement of th
DNA strands with respect to a perfect lattice in a local co
dinate system. In the harmonic approximation valid for sm
displacement amplitudes,u is a Gaussian random variabl
so that the ensemble average^ & has to be performed only
over u. Using Eq. ~3! of Sec. III we are therefore left to
evaluate

^ 1
2 q0

2uu~x,z!2u~0,0!u2&

5hE
2`

`

dqxE
2`

`

dqz

12cos@qxx1qzz#

qz
21l2qx

4
,

~A2!

with h andl as defined in Sec. III. Using the integral

E
2`

`

dx
12cos@a~b2x!#

x21c2
5

p

c
~12e2accos@ab# !,

~A3!

which can be calculated, e.g., byMATHEMATICA @28# after
switching to a complex representation of the cos functi
the dz integral is carried out, leading to

^ 1
2 q0

2uu~x,z!2u~0,0!u2&

5E
2`

`

dqx

p

lqx
2 ~12e2lqx

2zcos@qxx# !. ~A4!

The remaining integral overqx can be solved by partial in
tegration rewriting the integrand as

f ~Z,x!5 f ~0,x!1E
0

Z

dZ8
] f

]Z8
, ~A5!

with Z5lz. For the integral corresponding to the first ter
on the right-hand side of Eq.~20! we get~MATHEMATICA !

E
2`

`

dqx

1

qx
2 ~12cos@qxx# !5puxu, ~A6!

while the second gives
is
i-

-
ll

,

E
2`

`

dqxE
0

Z

dZ8
] f

]Z8
5E

0

Z

dZ8E
2`

`

dqxe
2Z8q2

cos@qxx#

5E
0

Z

dZ8Ap/Z8exp2x2/~4Z8!. ~A7!

After elementary rearrangements, the remaining integral o
Z8 can be linked to the definition of the error functio
erf(x)52/Ap*0

xdtexp@2t2#,

^ 1
2 q0

2uu~x,z!2u~0,0!u2&52h
2p

l
Apluzu e2x2/~4luzu!

2h
p2

l
uxuerfS uxu

2Aluzu
D , ~A8!

which in the harmonic approximation of Eq.~17! leads to the
correlation function of a 2D smectic as given by Eq.~4! in
Sec. III.

APPENDIX B: COMPRESSIBILITY OF A LINEAR ARRAY
OF LINE CHARGES

In this appendix we calculate the compressional modu
B(d) for a system of equally spaced line charges of cha
densityl(C/m) in between homogeneously charged plan
of sheet densitys(C/m2). This may be a valid approxima
tion for the present case of DNA intercalated in betwe
cationic lipid membranes, if no neutral colipid is present o
the lipids do not demix.

Since the field is constant in between parallel and u
formly charged planes, the only effect of the lipid bilayers
this electrostaticjellium modelis to fix the average spacingd
between the DNA to maintain overall charge neutrality.B is
then determined by the restoring force per unit length t
arises from a small displacementD, e.g., of one strand with
respect to the linear array. In this simplified picture the log
rithmic potential of all the strands can be summed up to g

B5
pl2

6ed
, ~B1!

with l the line density of charges of the DNA (e/1.7 Å), e
the unit charge, ande5e0e r the dielectric constant of the
water in between the DNA. This model can then be appl
to samples of only cationic lipid (n50), i.e., the first data
point in Fig. 14, yielding B52.7431022kT/Å2 for l
5e/1.7 Å, d527 Å, and e r580. The measured value o
B5(3.7760.3)31022kT/Å2 is somewhat larger than thi
prediction, which can be easily attributed to hydration forc
as discussed in Sec. V. Moreover, the above equation c
pares well with the experimentalB(d) values over the whole
range. Without adjustable parameters, the prefactor of
1/d dependence is fairly close to the emperical coefficienC
in Fig. 17~b! found by a free fit. Thus, the present ‘‘jellium
model’’ without any adjustable parameter predicts a res
well in agreement with the data. In reality, however, t
assumption of a perfectly homogeneous charge density in
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lipid membrane may no longer be valid, if a local compre
sion or decompression of the DNA due to thermal fluctu
tions is accompanied by a corresponding change of lipid a
headgroup to maintain local charge neutrality. More imp
tanly, any lateral demixing of charged and uncharged lip
will contradict the central assumption of charge homogen
in the membrane. The mixing enthalpy is not likely to
large enough to prevent the lipids from charge seggrega
@47#. However, even though applicability of this simple ele
trostatic model remains doubtful for samples with neut
colipid nÞ0, it provides an excellent result when compar
to the measuredB(d) values.

FIG. 17. The experimental dataB(d) with a fit to ~a! hydration,
van der Waals, and electrostatic~Poisson-Boltzmann! forces. The
parameters have been varied within physically reasonable va
~see text!. Clearly, the theory predicts a much stronger decay
B(d) than observed.~b! If instead of the Poisson-Boltzmann resu
an empirical 1/d term is included, reasonable agreement is obtain
ce

.

:

-
-
a

-
s
y

n

l

To derive the above equation, we assume the negative
charges to be placed on a one-dimensional lattice with p
odicity d in each of the line charge layers. Since we furth
assume the line charges to be perfectly uncorrelated ac
different layers, it is sufficient for the calculation of averag
elastic constants to consider only one layer of line char
with planes of half the charge densitys/2 on each side.
However, the field between equally charged planes is z
so that we can ignore the presence of the positive sh
charges altogether. Their only effect is to fix the value ofd to
ensure overall charge neutrality. Thus we are left to evalu
the compressibility of parallel and equally spaced li
charges in 2D.

Due to the logarithmic form of the potential of a lin
charge @44# V(r )52l/(2pe)ln(r), with e the dielectric
constant of the medium, the total energy of such an ar
diverges. However, one can calculate the change in en
with respect to the ground state if the position of one li
charge is displaced byD alongz with respect to the perfec
lattice site. Labeling the corresponding line withn50, one
can sum up the terms corresponding to the difference in
tential energy~per unit length along the lines in thex direc-
tion! for each of the other line charges on the left- and rig
hand side, respectively,

DUn5
l2

2pe
~ lnundu2 lnund2Du!,

~B2!

DU2n5
l2

2pe
~ lnundu2 lnund1Du!.

Adding the terms by pairs of6n, one gets

DU5 (
n51

`
l2

2peF lnS undu
und2Du D1 lnS undu

und1Du D G

5
D!d

(
n51

`

2
l2

2pe

D2

d2n2
52

l2

12pe

D2

d2
, ~B3!

where first a Taylor expansion valid for smallD was used
and for the last step the relation(n51

` (1/n2)5p2/6. The re-
sult is of the harmonic formDU}D2 defining a force con-
stant k5l2/6ped2 and the corresponding compression
modulusB5dk5l2/(6ped).
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