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Stochastic resonance in neural systems: Effect of temporal correlation in the spike trains
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We consider here the effect of temporal correlations on the transmission of spike trains in an integrate-and-
fire neuron. We find that if the noisy input spike train is variable enough, the signal-to-noise ratio can display
more than one peak as a function of the noise strength. This result is analyzed in terms of a simple probabilistic
description of the problen}S1063-651X98)08407-4

PACS numbg(s): 87.10:+e, 05.40+j, 02.50.Fz

I. INTRODUCTION For instance, in9], it is found that the ratio between the
variance of the number of spikes observed in a given interval
Stochastic resonand&R) is a nonlinear effect in which and the mean value of the number of spikes is 1.9, while for
noise can enhance the detection of weak signals. It was origh Poissonian distribution it should be 1. Even higher ratios
nally proposed to explain the recurrences of Earth’s ice agelBave also been observgtD,11]. This non-Poissonian behav-
[1,2], and later applied to a variety of systems such as eledOr indicates that there must be correlations in the timing of
tronic circuits, lasers, superconducting devices, and neurorf§€ Spikes, i.e., the probability of having a spike in a given
[3,4]. time interval is a function of the timing of the previous

The concept was first applied to bistable systems. A weaRPIkes. _ _
signal could be too small to induce a transition from one In this work we address the question of the influence of

minimum to the other, but adding noise will allow the systemteémporal correlations in the timing of the spikes on SR. To
to overcome the barrier. If the level of noise is too high thedo this we will simulate an IF neuron that receives as inputs
state of the system will become uncorrelated to the signafWo Spike trains: one is periodic and the other is noisy with a
Therefore one can expect the existence of a value of thdistribution of interspike intervals having a given variability.
noise that optimizes the detection of signals. The plan of the paper is as follows. In Sec. I_I we introdU(_;e
The phenomenon has also been found in different kinds ofh€ model for the neuron and for the generation of the noisy
systems, such as single potential wgi$and integrate-and- sp!ke trains. In Sec. lll we describe the result_s of the simu-
fire (IF) dynamics[6]. The latter is a common model for lations. In Sec. IV we analyze the problem in terms of a
neural dynamics. It consists of a linear differential equationsimple probabilistic description of the systef2,13. In
for the subthreshold dynamics and a resetting of the memo€c. V we discuss the results and possible extensions.
brane potential when it reaches a given threshold vifie
The output of the system is, in this case, a “pulse” each time Il. MODEL
the membrane potential of the neuron crosses the threshold.
The noise-enhanced transmission of spike trains in IF
neurons has been investigated &. In this work the signal dv
is taken as a series of penqdm spike trains, while the noise T —V(t)+G(t)[V,e— V(1)], )
consists of random spike trains. The latter ones are assumed t

to be independent Poisson processes. The strength of th(:h , o
noise is controlled by changing the number of random spikd/n€re V(1) is the membrane potentiat, is the membrane

trains (that is equivalent to changing the mean value of theiMe constantG(t) is the synaptic conductance, aw, is
Poisson processwhile the size of the postsynaptic potential the reversal potentlal_o_f the mt_eractlon.\!’(t) reaches the
generated by each spike is kept constant. Let us note that thidreshold valug then it is reset instantly to 0. The output of
does not affect the mean value of the noise only, but also itd€ neuron is given by the function
variance. In fact, in the limit of an infinite number of noisy
spike trains, the ratio between the variance and the mean ot)= >, 8(t—tspiked )
value of the intervals goes to zero. Another possibility is to tspikes
keep the number of noisy inputs in a given time interval
constant and change the size of the postsynaptic potenti#iheretspiesare the times wher®(t) has reached the thres-
generated by each individual spike. In this way we can inhold.
crease the mean value of the noisy input without decreasing The evolution of the synaptic conductance is given by
the relative variance of the interspike intervals.

An interesting point that is not usually addressed in the - d_G: —G(t) +E(t) 3)
context of neural dynamics is the influence of temporal cor- G dt '
relations in the spike trains. Noisy spike trains are usually
assumed to be Poissonian, a{&h However, experimental where 7 is the characteristic decay time of the interaction
measurements of activity do not agree with this assumptiorand E(t) represent the input spike trains:

The subthreshold dynamics is given by
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, . appears at a value of,;s. that is approximately 1/2 of the
E(t):WsignaEk 5(t_tﬁlgnab+wnoispzk S(t—=1°), (4) second peak. This suggests that pairs of spikes arriving in a
small time window are contributing to the response of the
where Wgigna and Wygise are the strength of the signal and system. This pairi_ng is more probabl_e_ for smgller vall_Jes of
noise spike trains ang9"® andt°*®are the times of thath ~ x«, because for this case the probability density function of
spike in each one of the trains. the interspike intervals is maximum at 0. In the next section

For the periodic spike train the spike times are given bywe Will formulate this argument in a more quantitative form.
t89" kT, whereT is the period. For the noisy spike train
) ) IV. PROBABILISTIC DESCRIPTION
(= o5 Uy ®) | |
A simple argument by Gammaitofi2] can be used to
for k>0 andtgoise:o_ The interspike intervalg, are inde-  obtain an estimation of the output signal from the probability

pendent random variables with a probability density functiondensity function of the noise in a threshold system.

given by We denote the average firing rate for a constant ifput
with (O(A)). Let us suppose that the signal is not a train of
AHUH g M spikes but it is alternating periodically between the values

P(u)= T'(p) : ®  A—B andA+B with frequencywg. The signal, that is, the

power spectrum at frequeneyy, will be proportional to the
This probability density function has a mean val(e) square of the difference of theutputfiring rate of theA
=u/\ and a variance’=(u?) — (u)?= u/\2. Therefore the — B period[(O(A—B))] minus theoutputfiring rate of the
coefficient of variability is A+B period [(O(A+B))]. If the value ofB is small the
signal will be[13]
NS @
<u> M1/2' S

For u=1 we recover an exponential distribution of the
interspike intervals and a Poisson distribution for the numbeFor a fixed value of the inpuA the average firing rate will be
of spikes in a given time interval. Fe>>1 we have a less proportional to the probability that the noise becomes equal
variable process, leading to a periodic spike train in the limitto or larger than the difference between the signal and the
of very largeu. For u<1 the process is more variable than threshold. If the probability density function of the noise is
Poisson. In this case the spikes have a tendency to “clusterP(£), then
because the distribution of interspike intervals has a diver-
gence au=0.

2

. 9

Cy d

JA(O(A)

)= [ Peae (10

lll. SIMULATION RESULTS

Replacing this result in Eq(9) we find that the signal is
proportional to the square of the probability density function
of the noise evaluated #t-— A.

In this approximation the problem is reduced to evaluat-
ing the probability density function of the noise from the
distribution of the interspike intervals. The calculation is
quite simple in the casez<< 7. In this limit each spike in the
Shoisy train generates a post-synaptic potential with an expo-

nential time evolution:

We solved Eqgs(1) and (3) numerically using an Euler
discretization scheme with a time step of 0.1 fmsuch
smaller than the time constants of the problelve choose
=10 ms, 7¢=3 ms, V,,,=70 mV above rest, and a
thresholdé=20 mV. The strength of the periodic spike train
is chosen aw/gjgn,=6 ms. Let us remark that because of the
form of Eq. (1), the synaptic conductance is dimensionles
while Wgjgna @andwgise have units of time. For this strength
of the periodic input the neuron will have no output if there
iS No noise present.

The noisy spike trains are generated using Efs.and Vioisd 1) = Vinay exf — (t—t1%59/7]1@ (t—t2°9),

(6). The output functiorO(t) is Fourier transformed in order k

to evaluate its power spectrum. The value of the peak at the 1D
frequency of the periodic train is identified as the sig8al
and the background value is the noldeThe signal-to-noise
ratio is defined by

where

_ WhoiseV rev

Vmax_ - (12)

S T
R=10 |og10N. (8)
and 0@ is the Heaviside function.

In Figs. 1(a)—1(e) we show the results for the signal-to-  The potential at a given time is determined by the timing
noise ratio as a function of the noise strength,s.for dif-  of all the spikes previous to this time. However, there will be
ferent values ofx: 3, 2, 1, 0.5 and 0.25. The most interesting one predominant contribution coming from the last spike in
feature of these results is the appearance of a double peakftime train previous to that time. If we take into account the
the signal-to-noise ratio for small values @f The first peak effect of this spike only, neglecting the contribution of the
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FIG. 1. Signal-to-noise ratio as a function of the noise stremgffy.for (8 ©=3, (b) =2, (c) u=1, (d) ©=0.5, and(e) x=0.25.
Squares: simulation results. Triangles: estimation from the probabilistic description.

others, the probability density function of finding a value of count that it is more probable to find longer interspike inter-
the potential betweeN e and Vst dV inside an inter- vals than shorter ongsve obtain

spike of lengthT would be
P g (Vigied = ™ T(, TN IN[Vimax!/ Vinoisel)
W noise/ —
T noise Vinax I'(p+1)
P(Vhoisd = V. (13
noise X ®(Vmax_ Vnois&v (14)

where Ve is in the range[Vma,Vma 7). Averaging  wherel (a,x)= [ e 't !dt is the incomplete gamma func-
over all the possible interspike intervalnd taking into ac- tion.
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FIG. 2. Probability density function of the noiﬁeﬂ,noise(vnoise) for Viuise=5 as a function ofv,qse, for the same values qf as in Fig.
1: (@ =3, (b) u=2,(c) u=1, (d) u=0.5, and(e) ©=0.25.

If we also take into account the previous spikedth interspike intervals{, T,, etc), the probability density function of
V oise fOr @ given value otV is

(Vnoisd =

Whoise

< N T, TAIN[Vipa(1+e Tt/ 74 e (Tt T2lry -)/Vnois9])>
Vmax F(ﬂ+1) ,

where the bracket§ - -) denote an average oveéy, T,, etc. with the distribution of Eq(6).
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In Figs. 2a)—2(e) we showP,, (Vs as a function of nance, such as the appearance of multiple peaks in the
Wooice fOT @ fixed value ofV, s, and several values gi. signal-to-noise ratio as a function of the noise strength.
These functions display a peak at the vaMig,=V e These peaks appear even in the case of spikes generated with

This corresponds to the contribution of one spike, as showf P0isson statistics, but the relative sizes of the peaks can be
in Eq. (14). The part of the curve to the left of t,his peak controlled by changing the correlation of the input spike

corresponds to contributions from the previous spikes. Thiéram' . : :
e ; The pulsed characteristics of the noise are essential to
contribution becomes more important for smaller valueg of

b in th it bable o h (1 tain this result. Previous works have addressed the ques-
ecause In those cases 1t IS moreé probable 10 have SMay,, of colored noise, for instance, 4,15 using exponen-

values ofTy, Tp, etc. The number of spikes of the most o)y correlated noise or ifil6] studying a threshold system
important contribution will depend on the value pf but  \yith a band limited 1 noise. But in these cases the corre-
independently of this number an expansion of the incompletgtion does not induce multiple peaks in the signal-to-noise

I function leads for this contribution to ratio.
A simple probabilistic description of the system is enough
e —\VO ym o
PWnoise(Vno'Se) (Vinax=Vimax)", (16) to understand qualitatively the appearance of the peaks, and

0 - . . its dependence on the correlation characteristics of the spike
whereVp,, is the minimum possible value & ma for the  yains This description is independent of the details of the
largest contribution. _ , _ dynamics of the neuron. Therefore it is very probable that the

In order to estimate the signal-to-noise ratio we now havgggjts are valid even for more complex dynamics, such as
to divide the result of Eq.15) by the fluctuation of the firing conductance based models.
rate. It is not possible to evaluate this numb_er in the frame- A< mentioned if17] it is important to elucidate the rel-
work of the present theory, because EX0) gives us only  gyance of SR for brain function. The precise nature of the

the average number of spikes in a given time but not the,o 15| code is widely debatddee[18] for a review) If the
variance. However, the numerical simulations indicate tha recise spike times are relevant, then there is no “noise” in

the fluctuations of the firing rate are of the same order as thg,, system. Every spike carries some information. On the
flrlng ratg itself. The coefficient of variability of theutput other hand, if the information is conveyed in firing rates, a
spike train goes from 0.8 fop=3 to 1.2 foru=0.8 (the  isy input can help to detect changes of the signal and

output spike train is more Poissonian than the input Pnes gy, chastic resonance can be a way to enhance information
Neglecting the corrections to Poisson statistics in the outpuf o cessing.

spike train, we can replace the fluctuation of the firing rate We have shown that the variability of the noisy spike
by the firing rate itself. This quantity can be evaluated “Singcrains(and not only the strength of the interactipean con-
Egs.(10 aﬂd(15>- . . . trol the response of the system. In this sense we are showing
_The estimated values of the signal-to-noise ratio for thenat there are additional degrees of freedom that can be use-
different values ofu are shown in Figs. ®-1(e). We can | to control information processing. In nervous systems the
see that for small vaIL_Jes @f the S|_gnal—to-n0|se ratio indeed variability is a consequence of the dynamical properties of
has two peaks. The right-hand-side peak falls on the peak Qe network(synaptic time constants, synaptic efficacies, in-
the signal, and corresponds to an output generated by oRgnsic properties of the neurongne important point to be

noisy spike in the input, while the other peak corresponds tQydied is the relation between these factors and the variabil-
the contributions of the accumulation of two or more splkes.ity of the spike trains.
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