PHYSICAL REVIEW E VOLUME 58, NUMBER 1 JULY 1998

Collective surface diffusion: n-fold way kinetic Monte Carlo simulation

F. M. Bulnes, V. D. Pereyra, and J. L. Riccafdo
Departamento de Bica, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina

(Received 24 October 1997

Collective surface diffusion of strongly interacting particles is simulated on the basis offald way
kinetic Monte Carlo scheme. The coverage dependence of the jump and tracer diffusion coefficients is calcu-
lated for one- and two-dimensional lattice gases at very (gwbcritica) temperatures. Results are compared
with exact analytical ones and Monte Carlo simulations using the standard Metropolis algorithm. The method
proves to be highly reliable to investigate surface diffusion at subcritical temperatures where phase coexistence
in the adlayer occur§S1063-651X98)07306-1

PACS numbes): 05.50+q, 68.35.Fx, 68.45:v, 02.70.Lq

I. INTRODUCTION determination of the surface diffusion coefficient and its de-
pendence on thermodynamical variables, such as the tem-
Monte Carlo(MC) simulation is increasingly becoming a perature and surface coverage, are difficult to achieve even
generalized set of computational tools for inferring equilib-for adlayers on perfectly homogeneous substrates. Further-
rium and dynamical properties of physical systems. Its applimore, surface diffusion represents a very sensitive probe for
cations range all branches of science. MC is continuouslyphase transitions in adlayer of monoatomic and polyatomic
renewing its usefulness for dependable prediction of physicadparticle§3,12,14—18 A comprehensive and conceptually
properties of a model system hardly tractable by analyticaplain review of this topic in surface science was presented by
means or experimentally inaccessipld. In surface science, Gomer[3].
the collective diffusion of species bounded to an adsorbent’'s Exact analytical calculations are only possible for simple
surface by a highly inhomogeneous potential is, perhaps, ongystems such as diffusion of noninteracting monoatomic ad-
of the most challenging phenomena to be addressed boftbarticles in one- or two-dimensional regular lattices. For in-
theoretically and experimental[y2,3]. teracting particles, mean field, quasichemical, or cluster ap-
Monte Carlo simulation appears particulary useful to in-proximations are necessary[8,9]. However, these
vestigate strongly interacting adsorbates at low temperaturegpproximations are expected to be inappropriate to describe
on heterogeneous substraigée., whenw/kT>1 andw/c  surface diffusion of interacting particles either at subcritical
=1, wherew is the typical energy scale of the adsorbate-temperatures or strongly inhomogeneous external fields.
adsorbate interaction and the variance of the adsorption Standard Monte Carlo simulatioSMC) of collective
potential minima. Collective dynamical relaxation at low diffusion have been already performed for monoatomic ad-
temperatures is seriously hampered by critical slowing dowrparticles[10,11 and dimerg12] on square lattices at slightly
of density fluctuations. When the system goes through phasgubcritical and supercritical temperatures. However, the use
boundaries, the computer time budget necessary to drive thef SMC (i.e., Metropolis schemd 13] far below the critical
system into a stationary regime increases, roughly, exponettemperature and high surface coverage may turn the simula-
tially with the ratiow/kT. tion of collective dynamics into an exceedingly time-
The calculation of stati¢or equilibrium properties has demanding task.
been long investigated and upgraded in such a way that nu- In the present work we investigate collective surface dif-
merous algorithms are currently available that quickly relaxfusion in the canonical ensemble by introducing a fast kinetic
the system from arbitrary initial configurations to equilib- Monte Carlo scheme on the basis of thdold way-—like
rium [4-7]. However, in most cases the local dynamics ofalgorithm(hereafter we use the acronym nFWMC fefold
the original system is appreciably distorted, such that thevay Monte Carlo schemd19]. It relies on the exact com-
kinetic behavior in the non-equilibrium, as well as in the putation of transition probabilities from each state of the
stationary regime, become meaninglébink of a lattice gas  whole set of adparticles and the association of the time evo-
where a “natural” local dynamics driven by jump of ad- lution to a random variable sampled from the waiting-time
sorbed molecules to nearest neighbor empty sites is replacelistribution for the state of the system. Henceforth, dynamics
by a nonlocal relaxation algorithm allowing the molecule to of strongly interacting particles at very low temperatures can
jump over any empty site of the lattice regardless of its sepabe readily achieved at a computational cost several orders of
ration from the starting sile magnitude lesgtypically 10 2 for w/kT~5) than required
Although insight into the collective dynamical behavior by the Metropolis algorithm. Although-fold way—like al-
of strongly chemisorbed atoms is essential to understand egorithms have been long known, and sometimes used for
ementary surface phenomena such as domain growth, surfameproducing equilibrium statd49], they have been almost
aggregation, catalysis, thermal desorption, etc., experimentalerlooked in relation to collective dynamics of particles
[20]. A more elaborate version of tiefold way scheme has
been recently proposed, which can give further improvement
* Author to whom correspondence should be addressed. on it[21]. However, as claimed by the author, they are really
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advantageous for slow dynamics in models with a limited
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P(t'|N,t)=exd —t’"W(N,t)] (4)

number of states. Hence, its efficiency in inhomogeneous

systems is still unknown.

with the boundary conditiof(t' =0|N,t) =1, provided that

There is one salient contribution in this work. It is dem- the system is in the stafé att’ =0.

onstrated that nNFWMC allows for the calculation of a collec-

This represents a distribution with mean waiting time

tive diffusion coefficient with remarkable exactness and
speed at subcritical temperatures. This is shown by a thor- 1

ough comparison between analytical resyRg], SMC in

one and two dimensions and nFWMC. In addition, diffusion

NTW(NT)

of interacting lattice gases is studied at temperatures appre- By replacing Eq.(4) to Eq. (1) one gets
ciably lower than those reported before. Attractive, as well as

repulsive, interaction between nearest neighbor adparticles

are considered in this work.

pe(t’IN, ) dt’ =W, (N,t)exd —t'W(N,t)]dt’. (5

Other kinetic processes such as thermal desorption, ad- Equation(5) clearly defines a density function of two sto-
sorption, and reaction kinetics can be identically simulatecchastic variablesk and t’; k has a discrete domairk
through nFWMC owing to their isomorphism with collective €{1,2,3,..,cN} for surface diffusion through jumps be-

diffusion.

Il. N-FOLD WAY KINETIC SCHEME

tween nearest neighbor sifeandt’, the time elapsed from

t for the kth event to occur, has a continuous one. The asso-
ciated marginal density functions are straightforward from
Eq. (5):

Hereforth, we assume our model physical system to be a

set of N particles adsorbed oM sites of a lattice having

either regular geometry or nonuniform connectivity. Since

W (N,1t)

a0 = [Tt INodr =G @

we are ultimately interested in describing surface diffusion at

constant coverag#,=N/M (canonical ensembleN will be

whereg, is the probability that th&th event occurs anytime

kept constant. Nevertheless, the following discussion applieggter the timet, and
in general to any kinetic processes such as thermal desorp-

tion or surface reaction for whicN varies in time.
The state of the whole system at any given titris de-

noted by (\,t) (N contains the information about all parti-

cle’s coordinates on the latticeFor the sake of simplicity,

h(t'[N,t)dt’ =, py(t’'|N,t)dt’
k

—W(N,t)exd —t'W(N,t)]dt’,  (7)

let us suppose the particles can jump only to nearest neigh-

bor empty sites of a regular lattice with connectivitySince

where h(t’|N,t)dt’ accounts for the probability that any

every particle can, in principle, attempt a jump to any of itsevent occurs in the time interval’(t' +dt’).

¢ neighboring sites, there is at masN possible events to
happen at the time Provided the system is at the stalé 1)
the probability that thekth event k=1,2,..,cN) occurs
within the time interval {’,t’ +dt’) is p,(t'|N,t)dt’ (t’ be-
ing the time interval elapsed froi,

pr(t’'|N,t)dt’ =P(t'|N,t)W,(N,t)dt’, (1)
where P(t'|N,t) is the probability that nothingout of the
cN eventg occurs in the intervalt(t+t'), andW,(N,t) the
transition probability for théth event per unit of time. From
the definition ofP(t’|N,t) it arises that

P(t'+At’[N,t)=P(t’'|N,t) P(At’|N,t)
=P(t'|N,t)[1-W(N,t)At' ]+ O(At’)

2
whereW(N,t) == W, (N,1).
Therefore
aP(t’|N,t)_| [P(t'+At'|N,t)—P(t’[N,1)]
. m At
At'—0
=P(t'[N,t) W(N,1) €)

whose solution is

Furthermore, since

p(t'[N,D)dt’ =gy (N,Dh(t' [N, t)dt’, (8)

k and t’ are independent stochastic variables within the
present formulation, as it comes out from Ed5)—(8).
Henceforth, they can be separately sampled from their cor-
responding probability distribution function§,(N,t) and
H(t'|N,t), defined respectively by

k 1 k
GiN.D=2 gi(ND= Gy 2 WiND - (9)
and

H(t’|N,t)=th(t”|N,t)dt”=P(t’|N,t). (10

Thus, we can effectively represent the dynamical evolu-
tion of the system by using two basic functios,andH.
The simulation of collective dynamics turns out to be
straightforward and relies on only two steps, which can be
stated in a general manner: for any given stalet) of the
system we have the following:

(i) The transition probabilitiesw,, i=1,2,..,.cN, are
evaluated. Then thkth event to happen is chosen when the
condition[23]
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e 1 & whereC(t) is the N-particle velocity cross-correlation func-
w2 Wi<b=g 2 W (1) fion
N
I(% [i;arformed, wherg, is randomly uniformly distributed in C(t)= < .21 Ji(O)-Jj(t)>, (14)

(ii) The timet’ elapsed front in the transition of stefi)
ist'=(—1MW)In &. Then, the time elapsed from the initial
state (Np,t=0) is incremented ag24]

where the average is taken over all time origins and statisti-
cal ensemble{(6N)?) in Eq. (13) is the mean-square fluc-
tuation of the number of particle® can alternatively be

1
t=t+t'=t= o &. (12)

written as[3]
1 1 N R 2
Sat \N |- Ar,(t) (15
The collective dynamics proceeds by successively repeat- =1
ing steps(i) and(ii).

<<5N>Z>}l

im
<N> t—oo

In terms of simulation, every step) produces a success- 07 & d,dim'ensional system, whergr;(t) denotes thath
ful jump to a nearest neighbor sitgenerally speaking, it is a particle’s displacement at time Using shorter notation Eqg.
successful transition In (ii), the time is treated as being a (15 reads
dependent variable that is updated according to the waiting- D=T.D. (16)
time distribution for the given state. h =i

The above fgrmalism is generally valid for any kinetic \ypere
process for which the rates of the elementary events are

known. ((5N)2) -1

The transition probabilitiedV, have not been specified h= W} 17
yet. An explicit form for diffusion on homogeneous and het-
erogeneous surfaces will be given in Sec. Ill. However, itis named thermodynamic factor, which can also be written in

can be already rationalized that, for thermally activated proterms of the chemical potential derivative with respect to

cessesW~exp(—AE/KT) whereAE is a typical free energy surface coverage, namely,
variation. The number of trials for a successful transition to

take place in the SMC framework scales asw1/

~ exp(AE/KT). Th=
For an attractive interacting lattice gas at<T,,

AE/kT>1 so the efficiency of SMC is extremely low. Con-  FurthermoreD; is the so-called jump diffusion coeffi-

trarily, the efficiency ofi) and(ii) [Egs.(11) and(12)]is not  cient, and holds for the second factor on the right side of Eq.

affected by the rati@d E/kT. Simply, every trial turns into a  (15):

successful one.

N R N N I S
lll. SURFACE DIFFUSION Dj=lm| o5t \ N 2, Ari(t) = lim | Sq (R

— 0

a(uIKT)

dln o (18

T

A. Basic definitions (19

Very promising experimental techniques to measure sur- |n addition, the tracer diffusion coefficie®* can be
face diffusion have been recently developd Among oth-  drawn by averaging the mean square displacement of tagged
ers, the fluctuation method allows for the calculation of cov-particles as
erage and temperature dependence of the diffusion constant
D from the time autocorrelation function of local density )
fluctuationg3]. Since in most cases adsorbed particles inter- D* = lim
act each other, and the experiments are carried out at low o

temperature$10], it is likely that the chosen surface cover- It should be noted thad* refers to the displacement of
age § and temperaturd (that define the thermodynamic single particles whileD; does for the center of mass of the

state place the system in a phase-coexistence region. It i e ; ;
expected that further insight and improvement of this tech:§VhCJIe set of diffusing particlesT, can be determined by

nique will turn the analvsis of surface diffusion at verv lo either evaluating fluctuations dfl in the grand canonical
tei(rqnu e\r,:tur:s into a serilsiltive tolél for anlaluzlin h;seytragsﬁnsemblqi'e" p andT fixed) according to Eq(17), or by
tiong yzing p deriving the adsorption isotherfne., # versusu/kT) as in

We start defining the collective diffusion coefficiebt Eq.(18). D;, in turn, can be readily drawn from the slope of

(usually it is referred to as chemical diffusion coefficieloy the center of mass mean-square displacentBii(t)) for
. long times, as its definitiofEq. (19)] states.
the general Kubo-Green formula from the linear response

. (20

1 (1 .
2di Ni:1<[Ari(t)]>

theory[3
yI3l B. Elementary jump probabilities
2 -1 g . . "
D= ([N f C(t)dt (13) Now we precise the particular form for the transition
2 0 ' probabilities W, (N) in terms of the particle-surface and
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particle-particle interactions. As stated in Sec. Il, we assume 100 one-dim
the surface to havéM adsorption sites regularly arranged
with connectivityc; c=2 (one dimensionandc=4 (square
lattice) were used in the present work. We denote the site
energies (particle-surface potential energyby e;, i
=1,2...,M. For a given configuration of the particles on the
lattice sites, the total interaction energy of a single particle
on sitei, E;, is

attractive interactions

Ei:8i+,E,JNN SJ+ 2 A‘]NNN Sk+Ui! (21)
j,NNi k,NNNi

whereJyy andJyyy are the nearest neighb@iN) and next
nearest neighbofNNN) coupling constantss; (s;=0 or 1)

the occupation number of sije andU; symbolically repre-
sents all other interactions that may be taken into account
(interaction between more distant sites, three body interac-
tions, etc). In the present study only NN interaction has been
considered. Jumps are thermally activated processes with

transition probability 103 A TR T TN TR
0.0 0.2 0.4 0.6 0.8 1.0
AE;; 0
Wisz ex _W(l_sj'), (22)
FIG. 1. Collective diffusion coefficient vs coverage for a one-

dimensional lattice gas with attractive interactigyy between NN

: : P . : . particles[the dimensionless rati®/D,, is represented, wher®
wherei andj denote the initial and final sites respectively ~lim, o D(6)]. The solid lines represent the exact solutionsor

andAE; :.Sibi —E, is the activation energy barrier defined in 4 "o or [22]. The symbols are results from nFWMC; squares,
terms of interaction energy of the adparticle at the Sadd'%NN/sz—l; circles, Iy /KT=—2; trianglesJyy /KT=—4.

point between sites and j, sit} , and the energ¥; at the
initial equilibrium site. The factor (+s;) accounts for the
fact that only single occupancy of sites is allowed. It is worth
noticing that the detailed balance principle is fulfilled be- |n order to check the dependability of nNFWMC at very
cause low temperature, comparisons with exact analytical results
and previous SMC simulations have been carried out. Futh-
ermore, simulation of diffusion in two dimensions at ex-
tremely low subcritical temperatures is performed. The re-
sults can be sorted out in three categories.

where P;xexq —E;/kT] denotes the probability to have a
particle in sitei with energyE; in the canonical ensemble.
This assures that thermodynamic equilibrium is observed
during the simulation of collective diffusion according to  Calculations ofD [collective diffusion coefficient in Eq.
Egs.(11), (12), and(22). In SMC simulations the factorin  (16)] were carried out by following the NFWMC outlined in
Eq. (20) is chosen to bec=exd —AE,/kT], whereAE,, is  Sec. II. Strongly attractive as well as repulsive NN particles
the energy difference of the most favorable jump. Thus were considered. In Fig. 1 the coverage dependend® isf
refers to the transition probability of the fastest process in thgompared with exact results from RdR22] for weakly
system. In this way, computational efficiency is improved(J,/kT=—1) and strongly Jyn/kT=—4) attractive in-
and transition probabilities larger than unity are circum-teractions. The agreement is absolute for all coverages. Re-
vented when repulsive interactions appiy0,18|. sults for repulsive interactions are shown in Fig. 2. Full
However, for the kinetic scheme presented in H@d)  agreement between the exact solution and simulation is also
and (12) the election ofx is irrelevant to the simulation found. Much larger ratiogyy /KT (Jyy/kT=5 and § were
efficiency, which is already maximun because every stefised in this case compared with those of Fig. 1. The ex-
leads to a successful junig cancels out in Eq(1l); itonly  pected pronounced increag2?] of D with a maximun atd
affects the unit of time in Eq(12)]. The simulation of col-  =0.5, as well as the slow monotonic decreasesoi0.5 are
lective diffusion through then-fold way algorithm in the clearly reproduced. A detailed discussion of the coverage
canonical ensemble is then Slmply carried out by leIng thqjependence db was given in Ref[22] A common charac-
surface coveragé and temperaturd, evaluating the jump teristic of the curves in Fig. 1 and 2 is that no qualitative
probabilities according to Eq22), and following the basic changes are observed in each set as the interaction increases.
steps(i) and (i) [Egs. (11) and (12)] up to reaching the This is because of the absence of phase transition in a one
asymptotic regimétypically, When((llN)(Ei’“:lAﬂ)Z)oct ].  dimensional lattice gas.

IV. RESULTS AND CONCLUSIONS

PiWi;=P;W;; , (23)

A. Interacting lattice gas in one dimension
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104 100+ 7100
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10721 AL ¢ {102
101 ] i “a ]
] two-dim
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1 repulsive interactions —————
o 05 1.0 15 20 25
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0

FIG. 3. Tracer diffusion coefficie®* vs Jy/kT for various
FIG. 2. Same as Fig. 1 for repulsive interaction between NNSUrface coverages; squaress=0.1; circles, 6=0.4; triangles, 6

particles; circlesJyy/KT=5; triangles,Jyy/kKT=8. =0.6. [The dimensional ratid*/Dj is represented, wherBg
_ _ _ _ _ =limy_o D*(0)]. All the results correspond to a lattice gas on a
B. Interacting lattice gas in two dimensions square lattice. Full symbols were obtained by simulation using

Calculations oD* by using the nFWMC for a lattice gas "FWMC: open symbols correspond to SMC from ).

on a square lattice were compared with previous simulationge inear regime of diffusion is very well attained for all
applying SMC(Metropolis schemedone by Uebingt al.in  ¢oyerages, as shown in Fig. 6.

Ref. [10]. The cases of both attractive and repulsive NN
interactions are thoroughly reproduced for various values of
the ratioJyn/KT. In Fig. 3, the variation 0D* on Jy\/kT

for different surface coverages is shown. All data have been Finally we present results concerning the relative effi-

obtained by a\/eraging overs1l0® runs. A particu|ar|y in- Ciency of both methods. Figure 7 shows the temperature de-
teresting result is shown in Fig. 4 wheE* versusé is 1
plotted for repulsive interactions at supercritical and subcriti- ] Vij
cal temperaturek T, /| Jyn| = 0.567 atd=0.5). The behavior :
changes from a smooth variation, showing a broad maximum ,
at 6~0.5 for temperatures well abovE,, to a completely 1 o’
distinct coverage dependence for temperatures slightly below
T.. The sharp minima a#=0.5, due to the presence of a 101:- 7 10’
c(2x2) ordered phase, is plainly reproduced by the ] u ]
nFWMC simulation. ]

D. Method efficiency

D*/Dg

C. Interacting lattice gases |
at extremely subcritical temperatures e B

One of the main advantages of the nFWMC is to allow for 10°, g §10°
the calculation of dynamical quantities at very low subcriti- ] ]
cal temperatures. An illustrating example is shown in Fig. 5 ]
where the coverage dependenceDdf in two dimensions {1 two-dim
has been calculated at/T.=0.3. AlthoughD* behaves ]
similarly to the case shown in Fig. 4, it varies over almost repulsive interactions
ten orders of magnitude. It is worth mentioning that, as will 10! —— 107"

be discussed below, SMC would have taken akstito e?* 0.0 0.2 0.4 0.6 0.8

MC steps to reach the asymptotic diffusion regime)=a0.5 0

(see, for example, Fig.)6 No SMC simulation has been

carried out at such a low temperature. The case displayed in FIG. 4. D*/D} vs ¢ for supercritical temperaturel =2.2T
Fig. 5 provides a clarifying example for the reliability of (squaresand subcritical temperatur&=0.73T (circles. Full and
nFWMC at very low temperatures. It should be noticed thatopen symbols have the same meaning as they do in Fig. 3.
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FIG. 5. Same as Fig. 4 for=0.3T, Only the result from
nFWMC simulation is showrino SMC have been reported at this

temperaturg

FIG. 7. R, (as defined in Sec. Mvs the relative temperature

T/T, for a lattice gas on a square lattice with repulsive interactions.

pendence of the relative time taken by nFWMC and smcCircles represent the nFWMC method; squares do for SMC.

simulation runs. We define the rati®,(T)=1t,(T)/t,(T¢)
where x=nFW holds for the nFWMC method ank=S
holds for the standard Metropolis methdg(T) denotes the

computer time(in seconds for instangdaken by a simula-
tion run to perform a fixed number of successful junis

(as many as neccesary to reach the asymptotic regime
through thex-labeled methodR, basically shows how the
efficiency of the algorithnx varies with temperature. The

|two-dim
6 /00.7 0.'1 data in Fig. 7 apply to the two-dimensional lattice gas dis-
/. 06 0 3./ cussed in subsections B and C. It is seen that nFWMC'’s
51 ¢ /-' 0515 g°-4 o
o 7 / 41,04 & two-dim
4 /' [} 055/° / ﬂ.O/.0.4744 ]
Z 1 /°/./ /./ /. ¢ i .U/' //..0.49 repulsive interactions
RPN i) y 00
>[I ] ot
E I ] f
2.-/0 / ./ ././ . .//o /. — ]
! l/ J /. / ./' 7 L_,x ;—0—0\0—0—0—0 ° °
o 4 ! 1/} Joaer7 - '\
| il 1004
0 repulsive interactions . \\
4 8 12 16 20 24 28 —
In(<t>) u
\
FIG. 6. Log-log plot of the mean square displacement vs time "

for tracer diffusion at finite coverage on a square lattice. The slope
of all curves equals unityD* is obtained from the ordinate through
the Einstein relation KR%)=In(D*/2d) +In(t) with d=2. Timet is
given in units of MC steps and mean square displacer®Rft, in

units of the lattice constant.

10'1 — T T T T T T T T T
06 08 10 12 14 16 1.8 2.0
T/Te

FIG. 8. Same as Fig. 7 fdf (T).
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efficiency is approximately temperature independent. Contions agreed remarkably well with exact analytical results
versely, SMC's efficiency decreases exponentially with tem-and standard MC results reported bef¢i®]. In addition
perature as expected. surface diffusion has been simulated at much lower tempera-
Since both methods are implemented by means of sultures and higher coverages than those of previous studies.
stantially different codefor instance, nFWMC requires one It is worth mentioning that all calculations have been car-
to update transition probabilities at every st&y(T) is still ried out in a personal computét33 MHz Intel-based proc-
highly code dependent and does not allow one to compareessoy.
the efficiency of one scheme with respect to the other. It is In general, this methodology allows one to simulate kinet-
worth comparing the computer time taken in either case unics processes, involving many particles at subcritical tem-
der identical conditions. Accordingly, we define the meanperatures, with the use of very modest computational re-
computer time per successful jump,=t,(N)/N where sources. In such conditions standard MC algorithms become
t«(N) is the time elapsed to perforid transitions by using useless or require expensive computational supply.
the x-labeled method. Sincg(N) depends, in general, on
the temperature at which diffusion is simulated, it follows ACKNOWLEDGMENTS
thatf,=f,(T). It is better to express§, relative to a unit of
time. Thus,f} (T)=t,(N)/ts(N) is a useful unitless measure
of the relative efficiency of NFWMC with respect to SMC.
This is shown in Fig. 8.
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