
PHYSICAL REVIEW E JULY 1998VOLUME 58, NUMBER 1
Collective surface diffusion: n-fold way kinetic Monte Carlo simulation

F. M. Bulnes, V. D. Pereyra, and J. L. Riccardo*
Departamento de Fı´sica, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina

~Received 24 October 1997!

Collective surface diffusion of strongly interacting particles is simulated on the basis of ann-fold way
kinetic Monte Carlo scheme. The coverage dependence of the jump and tracer diffusion coefficients is calcu-
lated for one- and two-dimensional lattice gases at very low~subcritical! temperatures. Results are compared
with exact analytical ones and Monte Carlo simulations using the standard Metropolis algorithm. The method
proves to be highly reliable to investigate surface diffusion at subcritical temperatures where phase coexistence
in the adlayer occurs.@S1063-651X~98!07306-1#

PACS number~s!: 05.50.1q, 68.35.Fx, 68.45.2v, 02.70.Lq
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I. INTRODUCTION

Monte Carlo~MC! simulation is increasingly becoming
generalized set of computational tools for inferring equil
rium and dynamical properties of physical systems. Its ap
cations range all branches of science. MC is continuou
renewing its usefulness for dependable prediction of phys
properties of a model system hardly tractable by analyt
means or experimentally inaccessible@1#. In surface science
the collective diffusion of species bounded to an adsorbe
surface by a highly inhomogeneous potential is, perhaps,
of the most challenging phenomena to be addressed
theoretically and experimentally@2,3#.

Monte Carlo simulation appears particulary useful to
vestigate strongly interacting adsorbates at low temperat
on heterogeneous substrates~i.e., whenw/kT@1 andw/s
51, wherew is the typical energy scale of the adsorba
adsorbate interaction ands the variance of the adsorptio
potential minima!. Collective dynamical relaxation at low
temperatures is seriously hampered by critical slowing do
of density fluctuations. When the system goes through ph
boundaries, the computer time budget necessary to drive
system into a stationary regime increases, roughly, expo
tially with the ratiow/kT.

The calculation of static~or equilibrium! properties has
been long investigated and upgraded in such a way that
merous algorithms are currently available that quickly re
the system from arbitrary initial configurations to equili
rium @4–7#. However, in most cases the local dynamics
the original system is appreciably distorted, such that
kinetic behavior in the non-equilibrium, as well as in th
stationary regime, become meaningless~think of a lattice gas
where a ‘‘natural’’ local dynamics driven by jump of ad
sorbed molecules to nearest neighbor empty sites is repl
by a nonlocal relaxation algorithm allowing the molecule
jump over any empty site of the lattice regardless of its se
ration from the starting site!.

Although insight into the collective dynamical behavi
of strongly chemisorbed atoms is essential to understand
ementary surface phenomena such as domain growth, su
aggregation, catalysis, thermal desorption, etc., experime

*Author to whom correspondence should be addressed.
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determination of the surface diffusion coefficient and its d
pendence on thermodynamical variables, such as the
perature and surface coverage, are difficult to achieve e
for adlayers on perfectly homogeneous substrates. Furt
more, surface diffusion represents a very sensitive probe
phase transitions in adlayer of monoatomic and polyato
adparticles@3,12,14–18#. A comprehensive and conceptual
plain review of this topic in surface science was presented
Gomer@3#.

Exact analytical calculations are only possible for simp
systems such as diffusion of noninteracting monoatomic
particles in one- or two-dimensional regular lattices. For
teracting particles, mean field, quasichemical, or cluster
proximations are necessary@8,9#. However, these
approximations are expected to be inappropriate to desc
surface diffusion of interacting particles either at subcritic
temperatures or strongly inhomogeneous external fields.

Standard Monte Carlo simulations~SMC! of collective
diffusion have been already performed for monoatomic
particles@10,11# and dimers@12# on square lattices at slightly
subcritical and supercritical temperatures. However, the
of SMC ~i.e., Metropolis scheme! @13# far below the critical
temperature and high surface coverage may turn the sim
tion of collective dynamics into an exceedingly tim
demanding task.

In the present work we investigate collective surface d
fusion in the canonical ensemble by introducing a fast kine
Monte Carlo scheme on the basis of then-fold way–like
algorithm~hereafter we use the acronym nFWMC forn-fold
way Monte Carlo scheme! @19#. It relies on the exact com
putation of transition probabilities from each state of t
whole set of adparticles and the association of the time e
lution to a random variable sampled from the waiting-tim
distribution for the state of the system. Henceforth, dynam
of strongly interacting particles at very low temperatures c
be readily achieved at a computational cost several order
magnitude less~typically 1023 for w/kT'5! than required
by the Metropolis algorithm. Althoughn-fold way–like al-
gorithms have been long known, and sometimes used
reproducing equilibrium states@19#, they have been almos
overlooked in relation to collective dynamics of particl
@20#. A more elaborate version of then-fold way scheme has
been recently proposed, which can give further improvem
on it @21#. However, as claimed by the author, they are rea
86 © 1998 The American Physical Society
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advantageous for slow dynamics in models with a limit
number of states. Hence, its efficiency in inhomogene
systems is still unknown.

There is one salient contribution in this work. It is dem
onstrated that nFWMC allows for the calculation of a colle
tive diffusion coefficient with remarkable exactness a
speed at subcritical temperatures. This is shown by a t
ough comparison between analytical results@22#, SMC in
one and two dimensions and nFWMC. In addition, diffusi
of interacting lattice gases is studied at temperatures ap
ciably lower than those reported before. Attractive, as wel
repulsive, interaction between nearest neighbor adparti
are considered in this work.

Other kinetic processes such as thermal desorption,
sorption, and reaction kinetics can be identically simula
through nFWMC owing to their isomorphism with collectiv
diffusion.

II. N-FOLD WAY KINETIC SCHEME

Hereforth, we assume our model physical system to b
set of N particles adsorbed onM sites of a lattice having
either regular geometry or nonuniform connectivity. Sin
we are ultimately interested in describing surface diffusion
constant coverage,u5N/M ~canonical ensemble!, N will be
kept constant. Nevertheless, the following discussion app
in general to any kinetic processes such as thermal des
tion or surface reaction for whichN varies in time.

The state of the whole system at any given timet is de-
noted by (N,t) ~N contains the information about all part
cle’s coordinates on the lattice!. For the sake of simplicity,
let us suppose the particles can jump only to nearest ne
bor empty sites of a regular lattice with connectivityc. Since
every particle can, in principle, attempt a jump to any of
c neighboring sites, there is at mostcN possible events to
happen at the timet. Provided the system is at the state (N,t)
the probability that thekth event (k51,2,...,cN) occurs
within the time interval (t8,t81dt8) is pk(t8uN,t)dt8 ~t8 be-
ing the time interval elapsed fromt!,

pk~ t8uN,t !dt85P~ t8uN,t !Wk~N,t !dt8, ~1!

where P(t8uN,t) is the probability that nothing~out of the
cN events! occurs in the interval (t,t1t8), andWk(N,t) the
transition probability for thekth event per unit of time. From
the definition ofP(t8uN,t) it arises that

P~ t81Dt8uN,t !5P~ t8uN,t !P~Dt8uN,t !

5P~ t8uN,t !@12W~N,t !Dt8#1O~Dt8!

~2!

whereW(N,t)5(kWk(N,t).
Therefore

]P~ t8uN,t !

]t8
5 lim

Dt8→0

@P~ t81Dt8uN,t !2P~ t8uN,t !#

Dt8

5P~ t8uN,t !W~N,t ! ~3!

whose solution is
s

-
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P~ t8uN,t !5exp@2t8W~N,t !# ~4!

with the boundary conditionP(t850uN,t)51, provided that
the system is in the stateN at t850.

This represents a distribution with mean waiting time

tN5
1

W~N,t !
.

By replacing Eq.~4! to Eq. ~1! one gets

pk~ t8uN,t !dt85Wk~N,t !exp@2t8W~N,t !#dt8. ~5!

Equation~5! clearly defines a density function of two sto
chastic variablesk and t8; k has a discrete domain~k
P$1,2,3,...,cN% for surface diffusion through jumps be
tween nearest neighbor sites!, andt8, the time elapsed from
t for thekth event to occur, has a continuous one. The as
ciated marginal density functions are straightforward fro
Eq. ~5!:

gk~N,t !5E
0

`

pk~ t8uN,t !dt85
Wk~N,t !

W~N,t !
, ~6!

wheregk is the probability that thekth event occurs anytime
after the timet, and

h~ t8uN,t !dt85(
k

pk~ t8uN,t !dt8

5W~N,t !exp@2t8W~N,t !#dt8, ~7!

where h(t8uN,t)dt8 accounts for the probability that an
event occurs in the time interval (t8,t81dt8).

Furthermore, since

pk~ t8uN,t !dt85gk~N,t !h~ t8uN,t !dt8, ~8!

k and t8 are independent stochastic variables within t
present formulation, as it comes out from Eqs.~5!–~8!.
Henceforth, they can be separately sampled from their c
responding probability distribution functionsGk(N,t) and
H(t8uN,t), defined respectively by

Gk~N,t !5(
i 51

k

gi~N,t !5
1

W~N,t ! (
i 51

k

Wi~N,t ! ~9!

and

H~ t8uN,t !5E
t8

`

h~ t9uN,t !dt95P~ t8uN,t !. ~10!

Thus, we can effectively represent the dynamical evo
tion of the system by using two basic functions,G and H.
The simulation of collective dynamics turns out to b
straightforward and relies on only two steps, which can
stated in a general manner: for any given state (N,t) of the
system we have the following:

~i! The transition probabilitiesWi , i 51,2,...,cN, are
evaluated. Then thekth event to happen is chosen when t
condition @23#
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1

W (
i 51

k21

Wi,j1<
1

W (
i 51

k

Wi ~11!

is performed, wherej1 is randomly uniformly distributed in
~0,1!.

~ii ! The timet8 elapsed fromt in the transition of step~i!
is t85(21/W)ln j2. Then, the time elapsed from the initia
state (N0 ,t50) is incremented as@24#

t5t1t85t2
1

W
ln j2 . ~12!

The collective dynamics proceeds by successively rep
ing steps~i! and ~ii !.

In terms of simulation, every step~i! produces a success
ful jump to a nearest neighbor site~generally speaking, it is a
successful transition!. In ~ii !, the time is treated as being
dependent variable that is updated according to the wait
time distribution for the given state.

The above formalism is generally valid for any kinet
process for which the rates of the elementary events
known.

The transition probabilitiesWk have not been specifie
yet. An explicit form for diffusion on homogeneous and he
erogeneous surfaces will be given in Sec. III. However
can be already rationalized that, for thermally activated p
cesses,W;exp(2DE/kT) whereDE is a typical free energy
variation. The number of trials for a successful transition
take place in the SMC framework scales as 1W
;exp(DE/kT).

For an attractive interacting lattice gas atT!Tc ,
DE/kT@1 so the efficiency of SMC is extremely low. Con
trarily, the efficiency of~i! and~ii ! @Eqs.~11! and~12!# is not
affected by the ratioDE/kT. Simply, every trial turns into a
successful one.

III. SURFACE DIFFUSION

A. Basic definitions

Very promising experimental techniques to measure s
face diffusion have been recently developed@3#. Among oth-
ers, the fluctuation method allows for the calculation of co
erage and temperature dependence of the diffusion con
D from the time autocorrelation function of local densi
fluctuations@3#. Since in most cases adsorbed particles in
act each other, and the experiments are carried out at
temperatures@10#, it is likely that the chosen surface cove
age u and temperatureT ~that define the thermodynami
state! place the system in a phase-coexistence region.
expected that further insight and improvement of this te
nique will turn the analysis of surface diffusion at very lo
temperatures into a sensitive tool for analyzing phase tra
tions.

We start defining the collective diffusion coefficientD
~usually it is referred to as chemical diffusion coefficient! by
the general Kubo-Green formula from the linear respo
theory @3#

D5
^@dN#2&21

2 E
0

`

C~ t !dt, ~13!
t-

g-

re

-
it
-

o

r-

-
ant

r-
w

is
-

i-

e

whereC(t) is theN-particle velocity cross-correlation func
tion

C~ t !5K (
i , j

N

vW i~0!•vW j~ t !L , ~14!

where the average is taken over all time origins and stat
cal ensemble;̂ (dN)2& in Eq. ~13! is the mean-square fluc
tuation of the number of particles.D can alternatively be
written as@3#

D5F ^~dN!2&

^N& G21

lim
t→`

F 1

2dt K 1

N S (
i 51

N

DrW i~ t !D 2L G ~15!

for a d dimensional system, whereDrW i(t) denotes thei th
particle’s displacement at timet. Using shorter notation Eq
~15! reads

D5Th D j , ~16!

where

Th5F ^~dN!2&

^N& G21

~17!

is named thermodynamic factor, which can also be written
terms of the chemical potential derivative with respect
surface coverage, namely,

Th5F]~m/kT!

] ln u G
T

. ~18!

FurthermoreD j is the so-called jump diffusion coeffi
cient, and holds for the second factor on the right side of
~15!:

D j5 lim
t→`

F 1

2dt K 1

N S (
i 51

N

DrW i~ t !D 2L G5 lim
t→`

F 1

2dt
^R2~ t !&G .

~19!

In addition, the tracer diffusion coefficientD* can be
drawn by averaging the mean square displacement of tag
particles as

D* 5 lim
t→`

F 1

2dt S 1

N (
i 51

N

^@DrW i~ t !#2& D G . ~20!

It should be noted thatD* refers to the displacement o
single particles whileD j does for the center of mass of th
whole set of diffusing particles.Th can be determined by
either evaluating fluctuations ofN in the grand canonica
ensemble~i.e., m and T fixed! according to Eq.~17!, or by
deriving the adsorption isotherm~i.e., u versusm/kT! as in
Eq. ~18!. D j , in turn, can be readily drawn from the slope
the center of mass mean-square displacement^R2(t)& for
long times, as its definition@Eq. ~19!# states.

B. Elementary jump probabilities

Now we precise the particular form for the transitio
probabilities Wk(N) in terms of the particle-surface an
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particle-particle interactions. As stated in Sec. II, we assu
the surface to haveM adsorption sites regularly arrange
with connectivityc; c52 ~one dimension! andc54 ~square
lattice! were used in the present work. We denote the
energies ~particle-surface potential energy! by « i , i
51,2,...,M . For a given configuration of the particles on th
lattice sites, the total interaction energy of a single parti
on sitei , Ei , is

Ei5« i1 (
j ,NNi

JNN sj1 (
k,NNNi

JNNN sk1Ui , ~21!

whereJNN andJNNN are the nearest neighbor~NN! and next
nearest neighbor~NNN! coupling constants,sj ~sj50 or 1!
the occupation number of sitej , andUi symbolically repre-
sents all other interactions that may be taken into acco
~interaction between more distant sites, three body inte
tions, etc.!. In the present study only NN interaction has be
considered. Jumps are thermally activated processes
transition probability

Wi j 5k expF2
DEi j

kT G~12sj !, ~22!

where i and j denote the initial and final sites respective
andDEi j 5« i j

b 2Ei is the activation energy barrier defined
terms of interaction energy of the adparticle at the sad
point between sitesi and j , « i j

b , and the energyEi at the
initial equilibrium site. The factor (12sj ) accounts for the
fact that only single occupancy of sites is allowed. It is wo
noticing that the detailed balance principle is fulfilled b
cause

PiWi j 5PjWji , ~23!

where Pi}exp@2Ei /kT# denotes the probability to have
particle in sitei with energyEi in the canonical ensemble
This assures that thermodynamic equilibrium is obser
during the simulation of collective diffusion according
Eqs.~11!, ~12!, and~22!. In SMC simulations the factork in
Eq. ~20! is chosen to bek5exp@2DEm/kT#, whereDEm is
the energy difference of the most favorable jump. Thusk
refers to the transition probability of the fastest process in
system. In this way, computational efficiency is improv
and transition probabilities larger than unity are circu
vented when repulsive interactions apply@10,18#.

However, for the kinetic scheme presented in Eqs.~11!
and ~12! the election ofk is irrelevant to the simulation
efficiency, which is already maximun because every s
leads to a successful jump@k cancels out in Eq.~11!; it only
affects the unit of time in Eq.~12!#. The simulation of col-
lective diffusion through then-fold way algorithm in the
canonical ensemble is then simply carried out by fixing
surface coverageu and temperatureT, evaluating the jump
probabilities according to Eq.~22!, and following the basic
steps~i! and ~ii ! @Eqs. ~11! and ~12!# up to reaching the
asymptotic regime@typically, when^(1/N)(( i 51

N DrW i)
2&}t #.
e
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IV. RESULTS AND CONCLUSIONS

In order to check the dependability of nFWMC at ve
low temperature, comparisons with exact analytical res
and previous SMC simulations have been carried out. Fu
ermore, simulation of diffusion in two dimensions at e
tremely low subcritical temperatures is performed. The
sults can be sorted out in three categories.

A. Interacting lattice gas in one dimension

Calculations ofD @collective diffusion coefficient in Eq.
~16!# were carried out by following the nFWMC outlined i
Sec. II. Strongly attractive as well as repulsive NN partic
were considered. In Fig. 1 the coverage dependence ofD is
compared with exact results from Ref.@22# for weakly
(JNN /kT521) and strongly (JNN /kT524) attractive in-
teractions. The agreement is absolute for all coverages.
sults for repulsive interactions are shown in Fig. 2. F
agreement between the exact solution and simulation is
found. Much larger ratiosJNN /kT ~JNN /kT55 and 8! were
used in this case compared with those of Fig. 1. The
pected pronounced increase@22# of D with a maximun atu
50.5, as well as the slow monotonic decrease foru.0.5 are
clearly reproduced. A detailed discussion of the covera
dependence ofD was given in Ref.@22#. A common charac-
teristic of the curves in Fig. 1 and 2 is that no qualitati
changes are observed in each set as the interaction incre
This is because of the absence of phase transition in a
dimensional lattice gas.

FIG. 1. Collective diffusion coefficient vs coverage for a on
dimensional lattice gas with attractive interactionJNN between NN
particles@the dimensionless ratioD/D0 is represented, whereD0

5 limu→0 D(u)#. The solid lines represent the exact solutions forD
from Ref. @22#. The symbols are results from nFWMC; square
JNN /kT521; circles,JNN /kT522; triangles,JNN /kT524.
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B. Interacting lattice gas in two dimensions

Calculations ofD* by using the nFWMC for a lattice ga
on a square lattice were compared with previous simulati
applying SMC~Metropolis scheme! done by Uebinget al. in
Ref. @10#. The cases of both attractive and repulsive N
interactions are thoroughly reproduced for various values
the ratioJNN /kT. In Fig. 3, the variation ofD* on JNN /kT
for different surface coverages is shown. All data have b
obtained by averaging over 53103 runs. A particularly in-
teresting result is shown in Fig. 4 whereD* versusu is
plotted for repulsive interactions at supercritical and subc
cal temperatures~kTc /uJNNu50.567 atu50.5!. The behavior
changes from a smooth variation, showing a broad maxim
at u'0.5 for temperatures well aboveTc , to a completely
distinct coverage dependence for temperatures slightly be
Tc . The sharp minima atu50.5, due to the presence of
c(232) ordered phase, is plainly reproduced by t
nFWMC simulation.

C. Interacting lattice gases
at extremely subcritical temperatures

One of the main advantages of the nFWMC is to allow
the calculation of dynamical quantities at very low subcr
cal temperatures. An illustrating example is shown in Fig
where the coverage dependence ofD* in two dimensions
has been calculated atT/Tc50.3. Although D* behaves
similarly to the case shown in Fig. 4, it varies over almo
ten orders of magnitude. It is worth mentioning that, as w
be discussed below, SMC would have taken aboute22 to e24

MC steps to reach the asymptotic diffusion regime atu'0.5
~see, for example, Fig. 6!. No SMC simulation has bee
carried out at such a low temperature. The case displaye
Fig. 5 provides a clarifying example for the reliability o
nFWMC at very low temperatures. It should be noticed t

FIG. 2. Same as Fig. 1 for repulsive interaction between
particles; circles,JNN /kT55; triangles,JNN /kT58.
s
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the linear regime of diffusion is very well attained for a
coverages, as shown in Fig. 6.

D. Method efficiency

Finally we present results concerning the relative e
ciency of both methods. Figure 7 shows the temperature

FIG. 3. Tracer diffusion coefficientD* vs JNN /kT for various
surface coverages; squares,u50.1; circles,u50.4; triangles,u
50.6. @The dimensional ratioD* /D0* is represented, whereD0*
5 limu→0 D* (u)#. All the results correspond to a lattice gas on
square lattice. Full symbols were obtained by simulation us
nFWMC; open symbols correspond to SMC from Ref.@10#.

FIG. 4. D* /D0* vs u for supercritical temperature,T52.2Tc

~squares! and subcritical temperature,T50.73Tc ~circles!. Full and
open symbols have the same meaning as they do in Fig. 3.
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pendence of the relative time taken by nFWMC and SM
simulation runs. We define the ratioRx(T)5tx(T)/tx(Tc)
where x[nFW holds for the nFWMC method andx[S
holds for the standard Metropolis method;tx(T) denotes the

FIG. 5. Same as Fig. 4 forT50.3Tc Only the result from
nFWMC simulation is shown~no SMC have been reported at th
temperature!.

FIG. 6. Log-log plot of the mean square displacement vs ti
for tracer diffusion at finite coverage on a square lattice. The sl
of all curves equals unity.D* is obtained from the ordinate throug
the Einstein relation ln̂R2&5ln(D* /2d)1 ln(t) with d52. Time t is
given in units of MC steps and mean square displacement^R2&, in
units of the lattice constant.
computer time~in seconds for instance! taken by a simula-
tion run to perform a fixed number of successful jumpsN0
~as many as neccesary to reach the asymptotic reg!
through thex-labeled method.Rx basically shows how the
efficiency of the algorithmx varies with temperature. The
data in Fig. 7 apply to the two-dimensional lattice gas d
cussed in subsections B and C. It is seen that nFWM

FIG. 8. Same as Fig. 7 forf x* (T).

e
e

FIG. 7. Rx ~as defined in Sec. V! vs the relative temperature
T/Tc for a lattice gas on a square lattice with repulsive interactio
Circles represent the nFWMC method; squares do for SMC.
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efficiency is approximately temperature independent. C
versely, SMC’s efficiency decreases exponentially with te
perature as expected.

Since both methods are implemented by means of s
stantially different codes~for instance, nFWMC requires on
to update transition probabilities at every step! Rx(T) is still
highly code dependent and does not allow one to comp
the efficiency of one scheme with respect to the other. I
worth comparing the computer time taken in either case
der identical conditions. Accordingly, we define the me
computer time per successful jump,f x5tx(N)/N where
tx(N) is the time elapsed to performN transitions by using
the x-labeled method. Sincetx(N) depends, in general, o
the temperature at which diffusion is simulated, it follow
that f x[ f x(T). It is better to expressf x relative to a unit of
time. Thus,f x* (T)5tx(N)/ts(N) is a useful unitless measur
of the relative efficiency of nFWMC with respect to SMC
This is shown in Fig. 8.

E. Conclusions

We conclude that the nFWMC presented here makes
sible the simulation of kinetics of surface diffusion at ve
low temperatures in a very dependable manner. All simu
ce

th

on

h

ur

V

-
-

b-

re
is
-

s-

-

tions agreed remarkably well with exact analytical resu
and standard MC results reported before@10#. In addition
surface diffusion has been simulated at much lower temp
tures and higher coverages than those of previous studie

It is worth mentioning that all calculations have been c
ried out in a personal computer~133 MHz Intel-based proc-
cessor!.

In general, this methodology allows one to simulate kin
ics processes, involving many particles at subcritical te
peratures, with the use of very modest computational
sources. In such conditions standard MC algorithms beco
useless or require expensive computational supply.
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