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Statistical mechanics approach to early stopping and weight decay
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Overtraining as a result of the difference between the empirical loss and the expected loss is a serious
problem in neural network learning. It is known that methods such as early stopping, weight decay, or input
noise can reduce overtraining. Here, these methods are studied in detail. We use a model that allows an
analytical treatment. The treatment is based on an equilibrium statistical mechanics approach that is extended
to its finite temperature solution. An unrealizable task that shows strong overtraining is examined. We find that
overtraining can be completely avoided with each of the three methods if the parameters are optimally chosen.
It is also shown that overtraining can appear in a realizable task, if the task is highly nonlinear. Also there
overtraining can be avoided with each of the three meth@E63-651X98)14206-X

PACS numbdrs): 87.10+€, 07.05.Mh, 05.26-y

. INTRODUCTION tional relation is learned, is measured by the average of the
A. Batch training loss function over the yvhqle input spagewhich is called
. . _ . expected lossr generalization error
The ability to learn functional relationg between an in- If the number of examples in the training set becomes
putx and an outpu, large, then the empirical loss will of course converge against

1) the expected loss. However, for small example sets, prob-
lems commonly known as overtraining or overfitting can oc-
from a finite number of examples is the major advantage of!"" Overfittingis used to denote that the network has more

neural networks. Learning from examples becomes necedegrees of freedom than necessary for a specific task. The

sary in all applications, if no model exists, how the indepen-surplus in degrees of freedom results in an overadaptation to

dent variablex determines the value of the dependent vari-the data and a reduced generalization ability. Here, we will
able z. If furthermore many observations are available orhot deal with overfitting, for which model selection methods

easily accessible, then neural networks become the fir§tCh as the Akaike Information Criteri¢8], Network Infor-
choice. mation Criterion 3], or Bayeq4] have been proposed. How-

Supervised batch training using gradient descent is probe\(er’ even aftef an appropriate model g;election has been ap-
ably the most common training algorithm for neural net-pl'ed’ It can St'!l hqppen that.the. variables accept wrong
works. Supervisedneans that a set of exampl&s is avail- values due to misguidance, which is denotedweartraining
able, consisting oP inputsx, and the corresponding target
Outputzz , e, Sp={(X, ,Z:),,u,z 1,...,P}. Itis then pos- B. Avoidance of overtraining
sible to define doss functioni.e., |[z* ,z], which measures
the difference between the target out;zgt and the actual

outputz, . The average of this loss function over the wholeut the ohservation that the training algorithm specializes
set of examples is minimized by supervised trainiBgich  5re and more on the specific examples of the example set.
training or off-line training uses all examples simultaneously}; .an, therefore be advantageous to terminate training before
in each update step and repeats the updates until a certgify, gpecialization becomes too higheight decayis based
termination condition is reached. The update, fromy, the fact that overtraining is accompanied by very large
nAW(t) =W(t+1)—-W(t), is then weights. The additional weight decay term reduces the size

Fxel—zeO,

Effective methods to avoid overtraining are early stop-
ping, weight decay, or input noisarly stoppingmakes use

P of the weights in each iteratioimput noiseor jitter, which is
__ * random noise added to the inputscan also prevent a too
AWE ,Zl Vwllz, 2. W], @ high specialization.

All the above procedures have one free parameter that
whereW denotes the adjustable paramet@veights of the ~ must be optimized. These are the optimal stopping tigge
network,t counts the number of updates, ands the learn-  the optimal weight decay strengih,;, and the optimal level
ing rate. The actual outputis determined by the inputs, of the input noised,, respectively. In order to choose the
and the weight$V(t). Another very popular training method parameters optimally, additional knowledge about the ex-
is on-line learning, where only one example is used in eaclpected loss must be facilitated, since the empirical loss can-
update, se¢l]. not provide this information.

Learning from examples has also some characteristic Validation schemes, such as test-set validation or cross
problems. Supervised training attempts to minimize the avvalidation, attempt to provide this information about the ex-
eraged error over the set of exampl&s, which is called pected lossTest-set validatioruses an additional empirical
empirical lossor training error. How well the whole func- loss measured on a set of examples that are not used for
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training. Since these examples are not used for training, the 1P

algorithm cannot adapt to them and the averaged loss on the Er:= EE (X, ,W*,W). 5)
test set can be used as a suitable approximation for the ex- n=1

pected loss. The quality of the approximation increases witq_
the size of the test set. That these examples cannot be usg
for training is an obvious disadvantage of this methorbss
validation seeks to overcome this problem at the expense of
computing time. Although it uses only_ a smqll test set, the Eg:=(106W* W)Yy (6)
same procedure is repeated several times with different test

sets. The optimal parameter is then determined by averaging Minimizing the training error will in turn minimize the
over the results achieved with the different test sets. generalization error, if the number of exampless large.

We also want to discriminate between realizable and unHow this procedure works for sma is the subject of the
realizable tasks. In aealizable task not only the training next sections.

error but also the generalization error can become zero. The
student is able to learn the whole task exactly. This is not
possible in anunrealizable taskwhere the generalization

Iae performance of the network on the whole task is mea-
ured by averaging over all possible inputs. This defines the
eneralization error g,

B. The generalization error

error can only be decreased to a finite residual eror It is A main idea of the statistical mechanics approach is to
important to note that unrealizable tasks are more commof@ke an assumption about the distribution of the inputs, such
than realizable tasks. that the generalization err@6) can be calculated. For ran-

In the literature[5-7], it was already pointed out that dom inputsx from a nonpathological distribution with zero
several methods can improve the generalization ability. Thign€an and unit variance, it can be assumed that the weighted
paper follows a similar direction in that we discuss the emersumsh* andh (3) are Gaussian distributed random numbers,
gence of overtraining in two models and show strategies td the dimensionN is large. The correlations of these two
avoid it. We will study these questions within the framework Gaussians are

of statistical mechanics. A detailed outline will follow at the
end of the next section. ((h*)%,=1, (h*h),=R, ((h)*,=Q. (7)

These define the two dynamicatder parameters
Il. THE MODEL

N
A. Single-layer perceptron R: = iz Wi*Wi . Q=
In this paper, we restrict ourselves to single-layer percep- Ni=1
trons. A single-layer perceptron consists of only one layer o
weightsW between theN-dimensional inpuk and one out-
put unit z. From the weighted surh of the inputsx;, the
output is calculated by applying a transfer functgi), i.e.,

N
El (W))2. (8)

Z| -

§-|ere, we assume that the teacher weilits have norm one
and introduce a variable gaiyp for the transfer function
g*(h*). In other paperg1], the normT=N"W*W* is
used instead ofy. Whethery or T is used is a matter of
1 1 N individual taste. However, it should be emphasized that this
z=g(h), with h=—Wx=-—=>, W. x,. (3) parameter is only task dependent and remains unchanged
VN Ni=1 during the training process.

The statistical mechanics approach is exact only in the

thermodynamic limit, i.e.,N—o. Therefore, the variable

- . . B "
The training set for supervised learmningds=1(x,.,Z,).u a:=P/N is a more appropriate measure for the size of the

=1,... P}, providing the correct outputy for each input

. . S Isd 8], where th thor sh thit>24 is alread
complexity of the teacher and the student network it become, ee alsd8], where the author shows IS already

; . . rge enough.
apparent whether a task is realizable or unrealizable. More- At times it is more convenient to use the normalized order
over, monitoring the training process becomes easier, since jt L L .
can be described by a comparison of the variables from bot arametersg: = Q and r:=R/gq, since they have more

networks. Variables denoting the teacher will always be in-crggiigac:??rfér:ﬁrﬁ)éegzmg;mg tcvc;”\?:éﬁ;ﬁg\iﬂapigg
dicated by an asterisk. g '

Using the mean-squared error and the teacher concept, v%'iktlze Ezglrlglei:;arlcigr?r;nrrgg;htfeigun?ggt;nvggrh; \/eegt/o; the
can write the loss function as 9 g

correlated Gaussiag andh. After a decorrelation intd*

) andh, we have the form

1
2

W*x

W~

* - *
W W):=3) 9 @ Es(RQ=(}g* (") g i, (@
with
The training erroiE+ is the averaged loss over the train- _ _
ing set, h*=:h*, and h=:Rh*+Q—R%. (10

Wx
_g —_—

VN
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The average over the independent Gaussian variables is daescribe training processes. After a brief discussion, we will

noted by compare it to the equilibrium approach.
_ _ In Sec. VI, we will apply our knowledge to a nonlinear
» dh h? student learning a realizable nonlinear teacher; i.e., teacher
Ori= me o T ) (1D and student use both a “tanh” transfer function. Also in this

task, while realizable, overfitting appears due to the nonlin-

Especially in the case where the student has a linear tran§2rity in the task. Nonlinearity is an essential requirement to
fer function g(h)=h, the expression for the generalization turn & multilayer net into a general function approximator.

error becomes very simple, This case cannot be solved exactly; however, we can deduce
. an approximation from what we have learned from previous
E¢(R,Q)=3(G-2HR+Q). (12  sections. , _
The paper is concluded with a summary in Sec. VII. The
The constant&(y) andH(y), characteristic features of learning unrealizable tasks are sum-

~ o marized in a figure showing the different regimes of learn-
G:=([g*(Yh*)P)fw, H:=(g*(yh*)h*)7+, (13  ing.

summarize the dependence_ on the teagher. The results hold IIl. EQUILIBRIUM APPROACH
for all teacher transfer functions, for which the constaats
andH can be calculated. Here, the technical framework for the later sections, IV

As mentioned in the Introduction, we have special interesand VI, is provided. We briefly discuss how batch training
in unrealizable tasks. The essential feature of unrealizablean be described by an equilibrium statistical mechanics ap-
tasks in our approach i&+H?2. Here, unrealizable tasks proach. In Sec. V an alternative approach to the same prob-
emerge from selecting a teacher transfer function that is diflem is discussed.
ferent from the linear functiog(h)=h. Interesting choices
are nonlinear, sigmoid functions such as taffi) or A. Free energy
erf(yh*), or the addition of Gaussian noise= N(0,0) to
the linear function, i.e.,yh* +e. For this noisy linear
teacher, the constants can be computed algebraically,

It can be shown that the equilibrium distribution of the
noisy gradient descent training, given by

6= to? M=y, 19 Wi(t+1)~Wi(t)=~Vw(PEn+ (D), (19

It should be noted that every task with a linear student can bé{hfrgetqengtei(;aiss'%r,lg hl\';\e/_trrl]0|sS,1|/sTa Glbgs-B?ltirr]nann
expressed by an equivalent task with a noisy linear teache istribution Fro W)~e - With 5= ', we denote the
since each combination @& andH can be realized by an Inverse of the te_mp_eratur'é_ (szl).' Th|s_ was shown_ in
appropriate choice of ande. The noisy linear teacher was [11], for a dynamics in continuous time with noise, which is
studied by Krogh and Hertf9] in some detail using a uncorrelated in the sitésand in timet and has a noise level
Greens-function approach. We will occasionally refer to their? - " . :
results. The partition function counts the fraction of all the states,

For the computation of the plots, we have to choose speWhiCh fulfill the spherical normalization condition with tlae

cific values forG andH. For historical reasons and to allow Prort norm of the weight<Qo,

a comparison with the task in Sec. VI, we have cho&en LN N
=0.84 and H_=_0.7_8, which corrgsponds tog* (h*) dw, e—gPETa{E (Wi)Z_NQO}
=tanh($*). This is in no way a restriction. —o0 {=1 i=1

Realizable tasks are the special case, wkereH? holds, Z= » N N . (16
implying a noise-free linear teacher. This cancels all terms IT aw 5{2 (W)2=NQ,
proportional toG —H? and the behavior becomes much more - i=1 i=1

simplified, see als§10]. . . ,
P 610] where § denotes the delta function. Tlaepriori norm Qg is

somewhat similar to a target norm that we want to reach.

Later we will see that it is sometimes better not to reach this
In the next section we will provide the framework basedtarget.

on an equilibrium statistical mechanics approach necessary The free energy fcontains all relevant information, in-

for the later sections. We will show how the evolution of the cluding the values of the order paramet®&sand Q. It is

order parameters can be determined from the free energy. Adefined as the logarithm of the sum of states averaged over

important restriction will arise from this calculation; we will the distribution of the examples, ,

learn that analytical results can be achieved only for the lin-

C. Outline

ear student. 1

The linear unrealizable task is then discussed in Sec. IV. —Bt= N(InZ>{XM;M:1,_ o PH (17
It is shown that overfitting occurs and how it can be avoided
by early stopping, weight decay, or input noise. To average the logarithm & over the exampleg,, in

In Sec. V, an alternative approach is presented. It is baselg. (17), the currently commonly userkplica trick is ap-
on the dynamics of training and therefore is well suited toplied. Details about such a calculation can be founfil@l.
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The solution of the continuous perceptron problem was alAll of these depend on the normalized number of examples
ready discussed ifL3]. Here, we briefly recapitulate the re- «=P/N and on the temperature-dependent paranmatee-
sults necessary for further discussion. Preliminary resultéined as

were presented ifil4].

In [13] the following free energy was found, with Gauss-

ian average$l11) overh, h,, andhs,

_1(Q-RY)
T2Q-Q

22527

The functionsg; andg, are

1
- Bt +5I(Q-Q)

hy.h,

(18

9:1=9%(vhy),
(19

92=9(Rh;+VQ—R?h,+ Qo — Qhy).

1

1
=X = Q- Q).

a—1 24

with 8= 1/T.

C. The parameter a

The physical parametgr measures the fluctuations of the
weights, i.e.,

ﬁ N N
X= N( 21 <Wi2>_i21 <Wi>2) : (25

where the angular brackets denote the thermal average, i.e.,
the average over the Gibbs distribution, and the overbar is
the average over the examples. The parameisra measure

for the thermal fluctuations of the weights. A similgrcan

Further analytical evaluations of this integral are unfortu-be found in spin-glass theory, where it is called local suscep-

nately only possible if the student is lineath) =h.

B. Results for the linear student

If the student has a linear output function, the expression

for the free energy18) simplifies considerably,

_1(Q-R) 1 o
—Bf=3 Q-0 " 5IN(Qo= Q)= 5IN[1+8(Qo~Q)]
aB G—2RH+Q
T2 THBQ-Q) (20

using the two constants andH from Eq. (13) again.

The values of the order paramet&sandQ are taken at
extreme values of the free energy. Froffi/JR=0 and
df19Q=0 it follows that

o7
R(a,a)= aH,
(21)
2—a

a
(G——aHZ).
a’—a a

Q(a,a)=

Generalization error(9) and training error(5) given by
(L/a)d(Bf)oB=E5, are

B a—1\2 1
Er(a,a)=A(a,a) a +%,
(22)
EG(a,a)=A(a,a)+ m,
using the abbreviation
A(a,a):= ;[azG—Qa— a)aH?) (23
T 2(a%-a) '

tibility (see[15], p. 35. The parametea, which is closely
related toy, plays an important role in our further discus-
sion.

In the literature, usually the solution at temperature zero is
considered as it implies that the training eror accepts its
absolute minimum for any number of presented examples

At temperature zero, two cases need to be distinguished, the
underdetermined case with fewer examples than variables,
i.e., P<N, and the overdetermined case with a surplus of
examplesP>N. The storage capacity of the continuous per-
ceptron isae;=P./N=1 and lies between these two regimes.

For P<N many solutions exist, and the limit— o must
be applied first, leading ta= 1. Then a specific solution can
be chosen. This might be the one with the minimal norm
q?=Q=Q,, which is identical to thg@seudoinverse solutipn
see Sec. V.

If P>N, there are more equations than variables. There-
fore, also the value o)y must be optimized simultaneously
with the execution of the limiB—oo. The differentiation of
the free energy according Q,, i.e., f/9Qy=0, leads to

1
BQ-Q=——7 (a>1). (26

A comparison with Eq(24) givesa= «a. The value ofa in

the zero temperature limit is
ag(a):=maxl,a). (27)

In the next section, we will examine the effect of other

choices forae[ag,°[. We will observe that solutions cor-

responding to higher values af have an interesting inter-

pretation in the context of early stopping, weight decay, or
input noise.

D. Weight decay

Another method used to prevent overtraining is weight
decay. The most common type of weight decay is the qua-
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dratic norm of the weights added to the training energy, in Lo
order to penalize large weights, i.e.,
08t
i }P) (zX—z )2+>\§N‘, (W;)? (28) :
T 2P pn=1 [ w =1 ! ' § 06 1
<
The open parameter in this approach is the relative strength?; 04 p-
of the weight decay term\. The weight update is then & .
AW(t)= -V (PEy), which is explicitly written in Eq(43) 02 P
of Sec. V. There, it can be seen that the additional weight 00 . ] ) i .
decay term decreases the size of the weights in each update 00 05 10 15 20 25 30 35 40
The calculation of the free energy from above needs to be normalized number of examples P/N

repeated with the additional weight decay term. The calcula-
tion is very similar to the one without weight decay. As a

result, we find that only one term is added to the free eI inear student is trained exhaustively, i&= ap, on an unrealizable

B\Q task. The teacher uses a “tanh” transfer function, ig(h*)
—Bf——pf— > 0_ (29 =tanh(h*). The results for different gaing are shown.

FIG. 1. Performanc&g(«). Generalization erroEg as a func-
tion of the normalized number of examplas=P/N is shown. A

. o The W, and thee; can be averaged independently, since
As the additional term is independent Bfand Q, the cor-  the noise is independent of the inputs and therefore also of
responding order parameter equatiof®l) remain unaf-  the weights. The resulting effect on the free energy is
fected. Only the equation fa@, changes.
This has a very important consequence. It directly implies

that a system with weight decay can be transformed into an —pf——-pBf- §Q052- (34)
equivalent system without weight decay, but at another value
of a, i.e., at another temperature. A comparison with Eq.(29) immediately reveals that the
The determination o), i.e., df/9Qy=0, leads to effect of input noise and weight decay are identical for the
linear model. We simply replace by 62. The equivalence of
1 - af 1 o (30 weight decay and input noise in the linear model was already
2 A 1+8(Qp—Q) Qy—Q ' found by[9] using a Green’s-function approach.
which can be rewritten as the following relation between IV. LINEAR STUDENT LEARNING
and\, AN UNREALIZABLE TASK
b2A+b(A+a—1)—1=0, (31 Here, we study how a linear student learns an unrealizable
. task. As discussed in Sec. Il, unrealizability impli@s: H2.
with The results for the realizable special case follow fr@n
—H2
b:=B(Q—Q)=(a—-1)"". (32
The problem is now solved. The solution from above can be A. Minimal training error
used witha determined by\. To calculate the order parameters in the zero temperature
limit, we insertag(a) from Eq. (27) into Egs.(22). Below
E. Input noise the storage capacity, that is far<l anday=1, the min-

. . . imum of the training error is always zero, i.€; =0,
It is also known that noise on the inputs—also referred to g 4 (@)

- . and the generalization error is

asjitter [7]—can reduce overtraining. Here, we show that for

the linear model, input noise and weight decay are essen- G a

tially the same. Ee(a)=§+m[G—(2—a)H2]- (35
We only have to compute how the training error is af-

fected, if an independent Gaussian noeses added to the  For o>1 with ag=a, we arrive at

inputs. If the noises; has zero mean and variané@, then

the training error becomes G-H?’a-1 G-H? 1
Er(a)= > =2 \17%)
1 P 1 N 2 a o
f 3, B3 v | @
w=t Ni=1 N el A il PR
P N 2 o= 173 & a1/
L > (z*—zo)2+i > We (33
2P| = M O NLEL T The resulting curve for the generalization error for differ-

ent choices of the gairy is shown in Fig. 1. Around the
with zg denoting the student output of a noise free input. storage capacity of the perceptrap=1 strongovertraining
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FIG. 2. The shape dEg(r,q). Contour plot of the generaliza- FIG. 3. Evolution of the order parameters. Parametric curves

tion errorEg(r,q) as a function of the two normalized order pa- (r,q) showing the evolution ofy andr as functions of the two
rametersg andr. From the minimumEg"‘:(G— H?)/2 at (r,q) parametergr anda are shown. On a learning curysolid lines the
=(1H) the contour lines forEG=E8i”+(H2/10)i for i=1,2,3,4 parameter is varied anda has a certain dependence an This
(dashed lingsand fori=6,7,. .., 24(dotted line$ are given. The dependence is in the case of exhaustive trairirgy(a) and in

E°G line corresponds tdg(0,0)=G/2 or i=5 (dash-dotted ling the case of optimal training=a,,{ ). On a training curvedotted
The two solid lines are learning curvésee Fig. 3, the upper one lines) the parameten is decreased from infinity ta, while «
corresponds to exhaustive training and the lower one to optimatemains fixed. Several training lines are shown for different values
training. (Parameters ar®=0.84 andH =0.78, corresponding ty of «=0.1,0.3, ... , 1.5, 5.0, and 10.0. at=0.5, the theoretical

is 5). curve is compared with a simulation of the training proogesnts

near third ling. (Parameters as in Fig.)2.

appears, which can be seen in the divergence of the gener- o i
alization error. We call the zero temperature limihaustive tions of (r,q) below this line correspond to an improved
training, since the student net is trained until the minimal 9eneralization ability. The absolute minimum &g is

training errorEy is reached. reached atr(,q) =(1H).
Note that the result of the realizable caGes H?, is sim-
ply Eg(a)=(G/2)(1- a) for a<1. The whole training pro- C. Evolution of the order parameters
cess is completed at=1. This is of course a highly ideal-  The values of the order parameterandq are connected
ized case. by the training process. They are parametric curgés)

In the Iimlit a>1,2both. errors approach the fintesidual  \yith the parameters anda; see Eq(21). Depending upon
error E.,:=3(G—H*), with E coming fr_olm be!ow antg whethera or a is varied, we refer to them as laarning
from above. Both errors converge like ~ against the re-  cyryeor atraining curve respectively. Some of these curves
sidual error. o . are shown in Fig. 3.

The two characteristic features of the unrealizable learn- learning curve follows from the variation of with a
ing task—overtraining and finite residual error—have differ-certain choice fom(a). The exhaustive learning curve uses
ent causes. The residual error is a consequence of the Unigw minimal value ofa. that is ao(a), and is plotted as the
alizability and cannot be avoided without transforming theuploer solid line in Fig. 3. Only the area below the exhaustive

task into a_realizable .task. O\_/e_rtraining, however, is a resu aining curve is accessible by gradient descent batch train-
of exhaustive supervised training. The network attempts t9ng, if the initial conditions are&(0)=0 andr(0)=0.

learn all examples as well as possible, even if it implies that 5 training curve, on the other hand, follows from a varia-

the generalization ability is neglected. tion of a for a fixed value ofa. Several training curves are
shown in Fig. 3 as dashed lines. Along a training curve the
B. The shape of the generalization error parametem is reduced from infinity ta,.

The fact that the system can be described with only twa_,. Ea_ch path (,q) _|mpI|es a certain evoluthn of t_he gener-
. . ; : alization error, which can be seen if we project Fig. 3 on top
order parameters instead of tNedimensions of the weights

allows a good illustration. We can plot the eneralizationmc Fig. 2. If we move along a training curve, we can clearly
9 : plot 9 observe when overtraining occurs. The points where the gen-
error Eg over the whole range of possible values for the

order parameters. Here. the normalized order paramaters eralization error starts to increase are connected by another
P ) ’ . Cer paramaters ¢4 jine. How this line can be interpreted is our next topic.
=4/Q andr=R/q are used. Their asymptotical limits are

=1 and g=H, which indicate that the weight vectors of

student and teacher have the same direction, but are not of D. Finite training errors

the same length. An a value larger tham, corresponds to a finite tempera-
In Fig. 2, Eg(r,q) is plotted in the interesting range, tureT>0. A finite temperature implies that the training error

€[0,1] andqe[0,2H]. Instead of a three-dimensional plot, does not accept its absolute minimum, iE;>ET"

the contour line€(r,q) = const are shown. On the other hand, the training error is decreased during

An important line is theE(0) isoline, which remains on the training process. If it does not reach its minimal value,
the initial value of the generalization errBg(0,0)=G/2 for ~ we must assume that the training process is stopped earlier.
the initial conditionsq(0)=0 andr(0)=0. Only combina- Through simulations of the training process, we have tested
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— T T T T E. Early stoppin
sl o ] y stopping

opt. — We can confirm this result by a simulation of early stop-
ping. Here, we do not want to bother with the limitations of
an actual test-set validation or cross validation. Instead the
exact generalization error is used for validation in order to
receive the optimal result.

The results of the simulation using optimal validation are
also shown in Fig. 4 by error bars. The error bars indicate the
standard deviation in a simulation with=100 averaged
0.0 . e . . . . over 50 trials. The theoretical solution usiagy, is within
00 05 10 15 20 25 30 35 40 the range of the error bars. Therefore, we can take the varia-
normalized number of examples PN tion of the parametea as a useful description of early stop-

FIG. 4. Optimized performance. Comparison is shown of thePINg.
performanceEg(a=P/N) after exhaustive training and optimal
training for an unrealizable task. The upper lines denote the gener- F. Weight decay and input noise

aE"Zhatior:. err?rEG.’ tze 'ﬁ"\:jerl.or;;s. denote the trlain;ngterﬁf' Next we want to discuss briefly the effect of weight decay
xhaustive trainingdashed lines .., a=ao(a), leads to over- . "yis nroplem. First we assume that the weight decay
training. With optimal trainingsolid lineg, i.e.,a=ay,(«), over- g - . .
- : . oP strength is fixed. This resembles a situation where no fur-
training can be completely avoided. Optimal training can be real-h K led bout th t . ilabl d
ized by three methods, early stopping, weight decay, or input noise, er nqwe ge abou . € system IS avarablé and a guess
concerning the best weight decay strength must be made.

see text. Optimal early stopping was simulatedror bar$ using / -
the exact generalization error for validation. The finite residual error W€ can resolve Eq31) to receivea as a function of,

E.. is given by the dotted linglParameters as in Fig.)2. 1.,

0.4 P

03 r

02

01

training and generalization error

that the evolution of the order parameters can really be de- a(h)= b—(7\)+ 1, (39
. .. . . 1/2!

scribed by the variation o&; see points near the training

curve for«=0.5 in Fig. 3. The relevant parameter in the with A >0,

training process is the number of batch upddtesee Eq.

(43). 1-a— A+ J(1—a—\)Z+4\
We have just found an important correspondence. De- b1a(N)= N . (40

creasing temperaturg, which is equivalent to reducing the

value ofa from infinity to a,, can be seen an increase of the Only the solution with thet+ sign is a relevant solution. We

number of parallel batch training steps from 1tfQ. inserta(\) into the equations of the order parameté&$)
Immediately, the question after the optimal time arises ofand the errorg22). The results clearly indicate that over-

where the training should be stopped. Unfortunately, there igraining can be reduced using weight decay, for figures see

no easy answer to this question, since the learningyasee [13].

Eq. (2)] determines the time scale. However, the optimal Now we want to determine the optimal value for the

value of the parametex can easily be determined. weight decay strength for eaeh The relation(31) between
Minimizing Eg with respect ta by JEg/da=0, neglect- a and\ can be resolved to expreasas a function ofa,

ing the second term in E§22), leads to

1+(1-a)b a-1

b(b+1)  a

Na)= (a—a). (41

1

agpla)i=ct\c’—a, c= >

G

e

. @37

We inserta,p{ ) from Eq.(37) into this function to receive
Nopd @). The result is remarkably simple,

where the+ is the relevant solution. The corresponding gen-

izati - G
eralization error is )\Opt(a):(_z_ 1)_ 42)
H
1 @ 2 The fact that the optimal weight decay strength is indepen-
Ee(a)= 2 G- aopl @) H=. (38 dent of @ makes it suitable for applications. The optimal

weight decay strength could be determined on a smaller

sample, i.e.a’' <ea, using the rest of the examples for test-
The resulting behavior is shown in Fig. 4. It exhibits no Set validation or cross validation. Alternatively, we could
overtraining at all. fully exploit our theoretical equations and determ@®&drom

Another indication of the optimality of this solution E1(0)=G/2. ThenH could be determined from the exhaus-

comes from the corresponding learning curve, which is thdive training errorES", see Eq(36).
straight solid line shown in Fig. 2 and Fig. 3. Its analytical ~As pointed out above, input noise can lead to the same
expressiong(r)=Hr, can be deduced from E(1) with a  effect with a noise leveb?=\. Of particular interest is the
few algebraic transformations. optimal weight decay strength for the case where the teacher
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is a noisy linear perceptron, s€@]. Then the constants are Hebbianlearning. Asymptotically, after an infinite number
G=17y?+0% and H=1y, thus \op(a) becomeso?/y%. The  of time steps, it yields th@seudoinverseveights including
optimal input noise level for this case ig85,=oc?. This  weight decay,
makes sense because for the linear student, the variance of

the weights multiplied by the variance of the inputs is the _ 1
variance of the outputs. Wi(t—ee)= \/_ﬁﬂgzl Z,L(NIHC) 7] %0, (45)

P

G. Summary The solution forP>N is very similar, se¢16].
In this section, we have shown how overtraining—a com-, The e_pr|C|t solut_pn for the weight vectds4) can be .
inserted into the definition of the order parameters. The typi-

mon, but unwanted feature of unrealizable learning tasks— ) !
can be reduced. Technically speaking, overtraining can b al dynamics of the order parameters can then be determined
averaging over the input distribution.

reduced by increasing the temperature-dependent parame
a from ag, which corresponds to a finite temperatdiz 0.

This implies a simultaneous increase of the training erpr A. Results
from its minimal valueET". Here, we cannot go into detail about this approach. Only

The following three practical methods can have such anhe results necessary for the comparison to the results of the
effect: (i) Training is stopped before the training error equilibrium approach are presented.
reaches its absolute minimum, i.e., at a titet 5y, or (i) The dynamical equations &(t) andQ(t) can be written
weight decay with a certain strength>0 is applied, oriii)  in a compact form if we define a constas¥: min(a,1),
random noise with mean zero and variadce0 is added to
the inputs. R(a,\,7,t)=cHIlyy,

The three methods, early stopping, weight decay, and in- (46)
put noise, have similar positive effects in avoiding overtrain-
ing. Optimized by validation, they are able to avoid over- Q(a\,7,0)=c(G—H Izt CH? 5.
training altogether. In the equilibrium statistical mechanics.r
approach, we have found that they are equivalent, if the stu-
dent is linear.

he integrald |,n(@,\, 7,t) are

€max 1-(1— pr— 784
= [ aeper T e a

m
V. DYNAMICAL APPROACH &min [A+£]

The same problem can also be addressed by an approadffh I.m,ne{1,2,3. The density of the eigenvalugg¢) of
that is closely related to the dynamics of the training procesghe matrixC is
This approach provides the correct description of early stop- 1
ping. A comparison with the above results can give further -__ — —&
support for the equilibrium approach. Here, we briefly sketch pLe) 27750\/( Smax— £)(£= Emn)- 49
the results, details can be found[ibg]. . ) . .

The update\W(t+1)=W(t)+ 7AW(t), using gradient Finally, the maxw;al and 'the minimal e|.genvalues are
descent has the following form\W(t): = — V\y(PE;), with Emax, min' = (1% Va)?. The  time-dependent integrals con-

. . . . verge only if the learning rate is smaller than the maximal

7 denoting thdearning rateandt counting the batch train- learning rate
ing steps. If the functiory(h) is linear, then the derivative '
g’ (h) vanishes and we get the so-called adaptive linear or > 2
adalinerule [17]. The update including weight decay has the Dina= = )
form Mémax A+1+2Va+a

(49

1 F The results of the dynamical approach are the correct de-
AW;(t)= N 21 [z, —z,()]x,—AWi(t). (43)  scription for early stopping and also for weight decay. A
r comparison of the results of the two approaches can provide

It is possible to find an explicit solution for the weights. For interesting further insight into the validity of the equilibrium

P<N, this is approach.
Wi(t) = K2 g > 1-[(1—y\)1—CT N B. Comparison
' INe7=1 # 1=[(1=7N\)1-7C] . v As in Fig. 3, we can plot the evolution of the order pa-
. _ . _ rameters by parametric curves,q). In the dynamical ap-
wherel is the identity matrix, and proach, the parameters arge 7, and « for early stopping

and additionallyn for weight decay. For the learning ratg

we have to assume that it is smaller than the maxim.

The solution will then converge and the value pfdeter-
mines the scaling of.

The solution is consistent with the initial conditiond/;(0) In Fig. 5, we compare how the two approaches, equilib-
=0 andW,;(1)= nN‘l’ZE;’:lz;xi”, which corresponds to rium and dynamical, describe early stopping. The evolution

N
C,U-V: Z:l Xi/.LXiV' (44)

Z| P~
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1.0

08 | 0 o ]

06

04 1

generalization error

0.2

0.0 . , i )
0.0 0.2 0.4 0.6 0.8 1.0
normalized number of examples P/N

FIG. 5. Comparison of dynamical and equilibrium approach. FIG. 6. Performanc&g(a). The generalization errdg as a

The evolution of the order parametersd), as it is described by function of «=P/N, for the problem, tanh perceptron learns tanh

the two approaches, is shown in a similar way to Fig. 3. The results . - . .
of the equilibrium approach are given by dotted lines dor 0.1 perceptron, after exhaustive training. The results for different gains

. of the teacher transfer function tanht) are shown. In this re-
?rl.s’rééﬁlt,sog" t%ll:’ d?gé;?ga}(;p?b;giﬁo\x/?t;: gsoire_rtss gg;irriiﬁondglizable task, exhaustive training can lead to overtraining, if the
evolution slightly deviates from the equilibrium result, however, the 92N 7 1S higher than a critical gaity. .

effect on the performance oEY"' is minimal. The dots near o )
a=0.5 are results of a simulatiofParameters as in Fig.)2. However, the generalization error still depends on the

nonlinear functions; see E@9). The resulting behavior of
of the order parameters is shown for differentThe results Ec(«) is shown in Fig. 6 for different values of the gajn
of the dynamical approach will change slightly with different It is surprising to see that some of the curves actually
choices of the learning rate. However, they will never increase for small values af=P/N. If the gainy, which is
exactly coincide with the result of the equilibrium approach.the level of nonlinearity, is higher than somg, then ex-
The description of early stopping by the equilibrium ap- haustive training shows overtraining for small
proach is therefore not exact, but nevertheless a good and The critical gain y. can be determined by a linear ap-
useful approximation. In the case of weight decay, which igoroximation of the nonlinear student. For smajlboth order
not shown in Fig. 5, both approaches yield exactly the sam@arameterR and Q of Eq. (51) are small, such that tanh

results. function of the student in Eq9) can be approximated by a
linear function, i.e., tantg—e for small e. The behavior of
VI. NONLINEAR STUDENT LEARNS REALIZABLE TASK the generalization errd®) for small arguments becomes
The knowledge acquired above is now applied to a study .
pf a reallzablg task, where a nonlinear student mlist If:arn an Ec(€)=Eg(0)— =[2H(y)— 7], (52)
identical nonlinear teacher, i.eg(h)=tanhf) and g* (h*) 2
=tanh@h*).

with H(y) from Eq. (13).
A. Minimal training error The slope ofEg at =0 is positive instead of negative if
The minimal training error below the storage capacity,¥ Pecomes larger thant®y). Since the upper limit of ()
a.=1, is always zero. This implies that for every example,iS V2/7=0.7979, the critical gain will be smaller then 1.6.
the outputs of teacher and student are identical, gf., The numerical solution gives,=1.3371.
=z, . If the transfer function of the student is invertible, then
analternative loss functioran be used, which has the same

a B. The reason for overtraining
minimum,

Again we evaluate the generalization error as a function
N S , 1, 5 of the two normalized order parameters, ie=R/g and
=509 @" () —h)*=5[hu—h,]% GO .= Q. Figure 7 showsEg(r,q) for re[0,1] and g
€[0,1.2y]. We have chosen the gaip=>5, because it is an
The second equality in Eq50) holds only if the transfer intermediate level of nonlinearity and shows the overtraining
functions of teacher and student are identical. By using th&ffect well enough.
alternative loss function, training becomes independent of As in the unrealizable case, we can project the evolution
the transfer function. of the order parameters onto Fig. 7. The learning curve for
The order parameters for the nonlinear realizable task thaxhaustive training, see Eg85) and(36), is a straight line
correspond to the minimal training errBr=0 are the same With q(r)=yr. If the gainy is higher thany,, the isoline
as the ones for the simplest realizable learning task, where Bg(0,0) starts with a lower slope thay(r)=yr. The result
linear student learns a noise-free linear teacher. They follows overtraining, if exhaustive training is applied. In other
from Eq. (21) if we insertG=H?=+? anda,, words, the network increases the norm of the weights as if
the task were a linear one, and this is much too fast for a
R=ya, Q=7a. (51)  highly nonlinear task.
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FIG. 7. Shape of generalization errigg(r,q). Contour plot of FIG. 8. Evolution of the order parameters. Parametric curves
the generalization errdg(r,q) as a function of andg, similar to (r,q) as functions of the parametas#sanda. Two learning curves,
that in Fig. 2. From the minimunEZ"=0 at (r,q)=(1,y), the  resulting from a variation of, are shown, which correspond to

contour lines forEg=0.1 for i=1,2,3,4(dashed lingsand fori exhaustive training.=1 (straight solid ling¢ and optimal traininga
=6,7,8,9 (dotted line$ are given. The dashed-dotted line corre- numerically optimized(lower solid ling. Marks on the learning
sponds toEg=Eg(0,0)=G/2. Two learning curves for exhaustive curves indicate the values ef=0.1, 0.2, ... , 0.9, 0.99. Training
training (upper solid ling and optimal traininglower solid lines curves are computed by reducing the paramatéom « to 1 for
are also shown(Parameter: gaiy=5.) fixed @. Examples fore=0.1,0.2,0.3,0.4,0.9,0.9@otted line$ are
shown. On the training curves between=0.5 and 0.7, there are
C. Training with errors and early stopping two minima for the generalization errés. The resulting hyster-

N v th thod ins V. Th sis is shown by the double-dashed and dash-dotted lines. They
ow we apply th€ same Method as in Sec. 1V. The eXac, icate that the solution stays longer in the first minimum before it

SOlu_flobr: fo_lr_hnon:clnear training at tfrllnlit-:;hterlljperaturdes IS notjumps to the other one, depending on the initialization. The solid
avallable. Ihereiore, we assume that the linear order parafjpe js the location of the absolute minimum. Results of a simulation
eters fo_r fln_lte temperatures or nonmininaatan be a useful ¢ early stopping are given by error bat®arameter as in Fig. 7.
approximation. These are

1 at+aa—2a alternatively input noise is added to the examples. If the
R(a,a)=ya—, Q(a,a)=7ya 5 , (53 respective parameter of the these methods, stoppingttime
a a(a®—a) weight decay strength, or noise levels, is optimally cho-

sen, then overtraining can be avoided and the system de-
with a defined in Eq(24). The corresponding training curves creases monotonously to the residual error.
are plotted in Fig. 8. The occurrence of overtraining in the realizable, nonlinear
The optimal value of that minimizesEg can be calcu- task (see Sec. Jlwas a counterexample to the widespread
lated numerically. The resulting generalization error is plot-pelief that overtraining appears only in unrealizable tasks.

ted in Fig. 9; it shows no overtraining. We have shown that overtraining can also be caused by a
An interesting side effect is the hysteresis that appears ifigh level of nonlinearity.
the neighborhood of the local minima &g(a). Simple The new interpretation of the finite temperature solution

early stopping will become stuck in this local minimum, es-of the equilibrium statistical mechanics approach is also in-

pecially since the global minimum jumps quite a distance. teresting, from a technical point of view. It should be pos-
To test the validity of the approximation, we simulate sible to apply it to other problems.

early stopping for this problem, shown in Fig. 9. For valida-

tion, the actual generalization error is used. The theoretical

approximation is within the range of the error bars of the o5t

early stopping simulation. {

VIl. DISCUSSION

ization error

In this work we have developed a model that presents
some of the characteristic features of feedforward learning.
The approach provides interesting insights, especially in un-
realizable tasks, where overtraining and a finite residual error
appear. Yet, it is simple enough to allow an analytical de- 0.0 : - : -
scription. 0.0 0.2 . 04 0.6 0.8 1.0

We have shown that overtraining can be avoided com- normzlized number of examples PIN
pletely, if an optimal training strategy is applied. Several F|G. 9. Optimized performance. Comparison of the performance
strategies have been discussed, each of which can obtain thg(a) after exhaustive trainingdashed ling and after optimized
same optimal effect. Either training is stopped at a finitetraining (solid line). The marks show the values af=0.1, 0.2,
training error before the system overspecializes on the ex-..,1.0. Simulation results of early stopping are indicated by error
amples, or the weights are reduced in each training step, dfars.(Parameters as in Fig.)7.

general;
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1T 7T plus of examples makes perfect learning impossible. The net-
Sk work is forced to generalize in order to minimize the training
error. Information on the whole task is extracted from the
examples and the generalization error decreases.
It is useful to define an additional subregime, which we
call asymptotical regimestretching fromas, to infinity. In
the asymptotical regime, the number of examples is suffi-
ciently large to make some simplifying assumptions valid.
For example, it can be assumed tltat approximatesEg
well enough, such that the difference between exhaustive
0.00101 . 0 100 training and optimal training becomes negligible. Further-
’ normalized number of examples PN more, both rest errors possess the same asymptotical conver-
gence rate, which is~ in this model. In our exampley,,
FIG. 10. Different regimes of learning. The performance of thejs of the order 10, as shown in Fig 10.
rest generalization erroEg—E.. (upper two lineg and the rest These regimes are characteristic for learning in neural net-
training errorE,.—Ey (lower lines is split into characteristic re- \yorks. For more general models only a few results are well
gimes. Exhaustive traininddashed lines and optimal training studied, such as the asymptotical behaVibg]. Also the

(solli_d Iirllzes/are_?:own. The dotted diagonal _Iine is the as]ymptoticalneg”gible effect of early stopping in the asymptotical range
scaling E../a. Three regimes, storage regime, generalization ey, 55 fonq for general learning scenar[d$]. It should be
gime, and asymptotical regime are divided by dotted vertical lines

. : o emphasized that a much richer behavior is located below the
they are discussed in the texParameters as in Fig.)2. . . - .
asymptotical regime, which can already be seen in our rather

We also believe that the results provide some insight int¢MPIe single-layer model. _ _
early stopping, weight decay, and input noise. While the While dgtalled ana_lytlcal studies for the more compll—
characteristics of these methods are correctly described, $@t€d, nonlinear, multilayer networks may not be possible,
should be noted that the finer details such as the equivalen&t€nsive simulations should always be accessible. For a first
of early stopping, weight decay, and input noise, are consetep in this direction, s€0]. A more thorough understand-

quences of the linearity in the model and will not hold in N9 Of the whole training process, including the effects of
general. early stopping and weight decay would be desirable, if neu-

We believe that the results achieved on the rather simpléal networks shall become a useful and reliable tool for learn-

linear perceptron display some characteristic features dgnd functional relations.
learning in feedforward networks. As an example, we will
discuss the regimes in the learning curves, see Fig. 10.
The learning curves split at the storage capaeity= 1
into two regimes, storage regime and generalization regime. | would like to thank S. Amari, D. BolleW. Kinzel, R.
In the storage regimgbelowa.=1, all examples are learned Kihn, J. van Mourik, K. R. Mller, and especially M. Opper
by heart, resulting in a zero training error. However, thefor useful discussions at different stages of this work. | want
generalization ability is neglected in this regime, resulting into thank E. Helle and P. Pedroso for support concerning the
overtraining. In thegeneralization regimebovea., a sur-  presentation.

TeSt errors
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