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Statistical mechanics approach to early stopping and weight decay
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Overtraining as a result of the difference between the empirical loss and the expected loss is a serious
problem in neural network learning. It is known that methods such as early stopping, weight decay, or input
noise can reduce overtraining. Here, these methods are studied in detail. We use a model that allows an
analytical treatment. The treatment is based on an equilibrium statistical mechanics approach that is extended
to its finite temperature solution. An unrealizable task that shows strong overtraining is examined. We find that
overtraining can be completely avoided with each of the three methods if the parameters are optimally chosen.
It is also shown that overtraining can appear in a realizable task, if the task is highly nonlinear. Also there
overtraining can be avoided with each of the three methods.@S1063-651X~98!14206-X#

PACS number~s!: 87.10.1e, 07.05.Mh, 05.20.2y
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I. INTRODUCTION

A. Batch training

The ability to learn functional relationsF between an in-
put x and an outputz,

F:xPI→zPO, ~1!

from a finite number of examples is the major advantage
neural networks. Learning from examples becomes ne
sary in all applications, if no model exists, how the indepe
dent variablex determines the value of the dependent va
able z. If furthermore many observations are available
easily accessible, then neural networks become the
choice.

Supervised batch training using gradient descent is p
ably the most common training algorithm for neural n
works.Supervisedmeans that a set of examplesSP is avail-
able, consisting ofP inputsxm and the corresponding targe
output zm* , i.e., SP5$(xm ,zm* ),m51, . . . ,P%. It is then pos-
sible to define aloss function, i.e., l @z* ,z#, which measures
the difference between the target outputzm* and the actual
outputzm . The average of this loss function over the who
set of examples is minimized by supervised training.Batch
training or off-line training uses all examples simultaneou
in each update step and repeats the updates until a ce
termination condition is reached. The update, fro
hDW(t)5W(t11)2W(t), is then

DW~ t !52 (
m51

P

¹Wl @zm* ,zm~xm ,W!#, ~2!

whereW denotes the adjustable parameters~weights! of the
network,t counts the number of updates, andh is the learn-
ing rate. The actual outputz is determined by the inputsxm
and the weightsW(t). Another very popular training metho
is on-line learning, where only one example is used in ea
update, see@1#.

Learning from examples has also some character
problems. Supervised training attempts to minimize the
eraged error over the set of examplesSP , which is called
empirical lossor training error. How well the whole func-
PRE 581063-651X/98/58~1!/833~12!/$15.00
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tional relationF is learned, is measured by the average of
loss function over the whole input spaceI, which is called
expected lossor generalization error.

If the number of examples in the training set becom
large, then the empirical loss will of course converge aga
the expected loss. However, for small example sets, pr
lems commonly known as overtraining or overfitting can o
cur. Overfitting is used to denote that the network has mo
degrees of freedom than necessary for a specific task.
surplus in degrees of freedom results in an overadaptatio
the data and a reduced generalization ability. Here, we
not deal with overfitting, for which model selection metho
such as the Akaike Information Criterion@2#, Network Infor-
mation Criterion@3#, or Bayes@4# have been proposed. How
ever, even after an appropriate model selection has been
plied, it can still happen that the variables accept wro
values due to misguidance, which is denoted asovertraining.

B. Avoidance of overtraining

Effective methods to avoid overtraining are early sto
ping, weight decay, or input noise.Early stoppingmakes use
of the observation that the training algorithm specializ
more and more on the specific examples of the example
It can therefore be advantageous to terminate training be
the specialization becomes too high.Weight decayis based
on the fact that overtraining is accompanied by very la
weights. The additional weight decay term reduces the s
of the weights in each iteration.Input noiseor jitter, which is
random noise added to the inputsx, can also prevent a too
high specialization.

All the above procedures have one free parameter
must be optimized. These are the optimal stopping timetopt,
the optimal weight decay strengthlopt, and the optimal level
of the input noisedopt, respectively. In order to choose th
parameters optimally, additional knowledge about the
pected loss must be facilitated, since the empirical loss c
not provide this information.

Validation schemes, such as test-set validation or cr
validation, attempt to provide this information about the e
pected loss.Test-set validationuses an additional empirica
loss measured on a set of examples that are not used
833 © 1998 The American Physical Society



th
t
e
i

u

th
te
gi

un

T
no

o

t
h
e

rk
e

ep
r o

th
t

l

or
ce
o
in

t,

n-

ea-
the

to
uch
-
o
hted
rs,
o

f
this
ged

the

the

-

er

e

834 PRE 58SIEGFRIED BÖS
training. Since these examples are not used for training,
algorithm cannot adapt to them and the averaged loss on
test set can be used as a suitable approximation for the
pected loss. The quality of the approximation increases w
the size of the test set. That these examples cannot be
for training is an obvious disadvantage of this method.Cross
validation seeks to overcome this problem at the expense
computing time. Although it uses only a small test set,
same procedure is repeated several times with different
sets. The optimal parameter is then determined by avera
over the results achieved with the different test sets.

We also want to discriminate between realizable and
realizable tasks. In arealizable task, not only the training
error but also the generalization error can become zero.
student is able to learn the whole task exactly. This is
possible in anunrealizable task, where the generalization
error can only be decreased to a finite residual errorE` . It is
important to note that unrealizable tasks are more comm
than realizable tasks.

In the literature@5–7#, it was already pointed out tha
several methods can improve the generalization ability. T
paper follows a similar direction in that we discuss the em
gence of overtraining in two models and show strategies
avoid it. We will study these questions within the framewo
of statistical mechanics. A detailed outline will follow at th
end of the next section.

II. THE MODEL

A. Single-layer perceptron

In this paper, we restrict ourselves to single-layer perc
trons. A single-layer perceptron consists of only one laye
weightsW between theN-dimensional inputx and one out-
put unit z. From the weighted sumh of the inputsxi , the
output is calculated by applying a transfer functiong(h), i.e.,

z5g~h!, with h5
1

AN
Wx5

1

AN
(
i 51

N

Wi xi . ~3!

The training set for supervised learning isSP5$(xm ,zm* ),m
51, . . . ,P%, providing the correct outputzm* for each input
xm . For theoretical purposes, it is very useful to assume
the correct outputs are computed by a second network,
so-called teacher network. By comparing the architectura
complexity of the teacher and the student network it becom
apparent whether a task is realizable or unrealizable. M
over, monitoring the training process becomes easier, sin
can be described by a comparison of the variables from b
networks. Variables denoting the teacher will always be
dicated by an asterisk.

Using the mean-squared error and the teacher concep
can write the loss function as

l ~x,W* ,W!:5
1

2Fg* S W* x

AN
D 2gS Wx

AN
D G 2

. ~4!

The training errorET is the averaged loss over the trai
ing set,
e
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ET :5
1

P (
m51

P

l ~xm ,W* ,W!. ~5!

The performance of the network on the whole task is m
sured by averaging over all possible inputs. This defines
generalization error EG ,

EG :5^ l ~x,W* ,W!&$xPI % . ~6!

Minimizing the training error will in turn minimize the
generalization error, if the number of examplesP is large.
How this procedure works for smallP is the subject of the
next sections.

B. The generalization error

A main idea of the statistical mechanics approach is
make an assumption about the distribution of the inputs, s
that the generalization error~6! can be calculated. For ran
dom inputsx from a nonpathological distribution with zer
mean and unit variance, it can be assumed that the weig
sumsh* andh ~3! are Gaussian distributed random numbe
if the dimensionN is large. The correlations of these tw
Gaussians are

^~h* !2&x51, ^h* h&x5R, ^~h!2&x5Q. ~7!

These define the two dynamicalorder parameters,

R:5
1

N (
i 51

N

Wi* Wi , Q:5
1

N (
i 51

N

~Wi !
2. ~8!

Here, we assume that the teacher weightsW* have norm one
and introduce a variable gaing for the transfer function
g* (h* ). In other papers@1#, the normT5N21W* W* is
used instead ofg. Whetherg or AT is used is a matter o
individual taste. However, it should be emphasized that
parameter is only task dependent and remains unchan
during the training process.

The statistical mechanics approach is exact only in
thermodynamic limit, i.e.,N→`. Therefore, the variable
a:5P/N is a more appropriate measure for the size of
example set. It can then be assumed thatN andP are infinite
with a remaining finite. The theory is under normal circum
stances valid for reasonable system sizes such asN>100.
See also@8#, where the author shows thatN.24 is already
large enough.

At times it is more convenient to use the normalized ord
parameters,q:5AQ and r :5R/q, since they have more
transparent interpretations. The normalized overlapr is the
cosine of the angle between the two vectorsW andW* . And
q is the Euclidean norm of the student’s weight vector.

The generalization error~6! becomes an average over th
correlated Gaussiansh* andh. After a decorrelation intoh̃*
and h̃, we have the form

EG~R,Q!5^ 1
2 @g* ~gh* !2g~h!#2& h̃* ,h̃ , ~9!

with

h* 5:h̃* , and h5:Rh̃* 1AQ2R2h̃. ~10!
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The average over the independent Gaussian variables i
noted by

^ & h̃ :5E
2`

` dh̃

A2p
expS 2

h̃2

2
D •••. ~11!

Especially in the case where the student has a linear tr
fer function g(h)5h, the expression for the generalizatio
error becomes very simple,

EG
lin~R,Q!5 1

2 ~G22HR1Q!. ~12!

The constantsG(g) andH(g),

G:5^@g* ~gh̃* !#2& h̃* , H:5^g* ~gh̃* !h̃* & h̃* , ~13!

summarize the dependence on the teacher. The results
for all teacher transfer functions, for which the constantsG
andH can be calculated.

As mentioned in the Introduction, we have special inter
in unrealizable tasks. The essential feature of unrealiza
tasks in our approach isGÞH2. Here, unrealizable task
emerge from selecting a teacher transfer function that is
ferent from the linear functiong(h)5h. Interesting choices
are nonlinear, sigmoid functions such as tanh(gh* ) or
erf(gh* ), or the addition of Gaussian noiseePN(0,s) to
the linear function, i.e.,gh* 1e. For this noisy linear
teacher, the constants can be computed algebraically,

G5g21s2, H5g. ~14!

It should be noted that every task with a linear student can
expressed by an equivalent task with a noisy linear teac
since each combination ofG and H can be realized by an
appropriate choice ofg ands. The noisy linear teacher wa
studied by Krogh and Hertz@9# in some detail using a
Greens-function approach. We will occasionally refer to th
results.

For the computation of the plots, we have to choose s
cific values forG andH. For historical reasons and to allo
a comparison with the task in Sec. VI, we have chosenG
50.84 and H50.78, which corresponds tog* (h* )
5tanh(5h* ). This is in no way a restriction.

Realizable tasks are the special case, whereG5H2 holds,
implying a noise-free linear teacher. This cancels all ter
proportional toG2H2 and the behavior becomes much mo
simplified, see also@10#.

C. Outline

In the next section we will provide the framework bas
on an equilibrium statistical mechanics approach neces
for the later sections. We will show how the evolution of t
order parameters can be determined from the free energy
important restriction will arise from this calculation; we wi
learn that analytical results can be achieved only for the
ear student.

The linear unrealizable task is then discussed in Sec.
It is shown that overfitting occurs and how it can be avoid
by early stopping, weight decay, or input noise.

In Sec. V, an alternative approach is presented. It is ba
on the dynamics of training and therefore is well suited
de-
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describe training processes. After a brief discussion, we
compare it to the equilibrium approach.

In Sec. VI, we will apply our knowledge to a nonlinea
student learning a realizable nonlinear teacher; i.e., tea
and student use both a ‘‘tanh’’ transfer function. Also in th
task, while realizable, overfitting appears due to the non
earity in the task. Nonlinearity is an essential requiremen
turn a multilayer net into a general function approximat
This case cannot be solved exactly; however, we can ded
an approximation from what we have learned from previo
sections.

The paper is concluded with a summary in Sec. VII. T
characteristic features of learning unrealizable tasks are s
marized in a figure showing the different regimes of lea
ing.

III. EQUILIBRIUM APPROACH

Here, the technical framework for the later sections,
and VI, is provided. We briefly discuss how batch traini
can be described by an equilibrium statistical mechanics
proach. In Sec. V an alternative approach to the same p
lem is discussed.

A. Free energy

It can be shown that the equilibrium distribution of th
noisy gradient descent training, given by

Wi~ t11!2Wi~ t !52¹Wi
~PET!1e i~ t !, ~15!

wheree denotes Gaussian white noise, is a Gibbs-Boltzma
distribution Prob(W);e2bPET. With b51/T, we denote the
inverse of the temperatureT (kB51). This was shown in
@11#, for a dynamics in continuous time with noise, which
uncorrelated in the sitesi and in timet and has a noise leve
2T.

The partition function counts the fraction of all the state
which fulfill the spherical normalization condition with thea
priori norm of the weightsQ0,

Z5

E
2`

`

)
i 51

N

dWi e2bPETdF(
i 51

N

~Wi !
22NQ0G

E
2`

`

)
i 51

N

dWidF(
i 51

N

~Wi !
22NQ0G , ~16!

whered denotes the delta function. Thea priori norm Q0 is
somewhat similar to a target norm that we want to rea
Later we will see that it is sometimes better not to reach t
target.

The free energy fcontains all relevant information, in
cluding the values of the order parametersR and Q. It is
defined as the logarithm of the sum of states averaged
the distribution of the examplesxm ,

2b f :5
1

N
^ ln Z&$xm :m51, . . . ,P% . ~17!

To average the logarithm ofZ over the examplesxm in
Eq. ~17!, the currently commonly usedreplica trick is ap-
plied. Details about such a calculation can be found in@12#.
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The solution of the continuous perceptron problem was
ready discussed in@13#. Here, we briefly recapitulate the re
sults necessary for further discussion. Preliminary res
were presented in@14#.

In @13# the following free energy was found, with Gaus
ian averages~11! over h1, h2, andh3,

2b f 5
1

2

~Q2R2!

Q02Q
1

1

2
ln~Q02Q!

1aK lnF K expS 2
b~g12g2!2

2 D L
h3

G L
h1 ,h2

.

~18!

The functionsg1 andg2 are

g15g* ~gh1!,
~19!

g25g~Rh11AQ2R2h21AQ02Qh3!.

Further analytical evaluations of this integral are unfor
nately only possible if the student is linear,g(h)5h.

B. Results for the linear student

If the student has a linear output function, the express
for the free energy~18! simplifies considerably,

2b f 5
1

2

~Q2R2!

Q02Q
1

1

2
ln~Q02Q!2

a

2
ln@11b~Q02Q!#

2
ab

2

G22RH1Q

11b~Q02Q!
, ~20!

using the two constantsG andH from Eq. ~13! again.
The values of the order parametersR andQ are taken at

extreme values of the free energy. From] f /]R50 and
] f /]Q50 it follows that

R~a,a!5
a

a
H,

~21!

Q~a,a!5
a

a22a
S G2

22a

a
aH2D .

Generalization error~9! and training error~5! given by
(1/a)](b f )/]b5ET , are

ET~a,a!5A~a,a!S a21

a D 2

1
1

2ba
,

~22!

EG~a,a!5A~a,a!1
1

2b~a21!
,

using the abbreviation

A~a,a!:5
1

2~a22a!
@a2G2~2a2a!aH2#. ~23!
l-

ts

-

n

All of these depend on the normalized number of examp
a5P/N and on the temperature-dependent parametera, de-
fined as

1

a21
:5x:5

1

T
~Q02Q!, ~24!

with b51/T.

C. The parameter a

The physical parameterx measures the fluctuations of th
weights, i.e.,

x5
b

N
S (

i 51

N

^Wi
2&2(

i 51

N

^Wi&
2D , ~25!

where the angular brackets denote the thermal average,
the average over the Gibbs distribution, and the overba
the average over the examples. The parameterx is a measure
for the thermal fluctuations of the weights. A similarx can
be found in spin-glass theory, where it is called local susc
tibility ~see@15#, p. 35!. The parametera, which is closely
related tox, plays an important role in our further discu
sion.

In the literature, usually the solution at temperature zer
considered as it implies that the training errorET accepts its
absolute minimum for any number of presented examplesP.
At temperature zero, two cases need to be distinguished
underdetermined case with fewer examples than variab
i.e., P,N, and the overdetermined case with a surplus
examplesP.N. The storage capacity of the continuous pe
ceptron isac5Pc /N51 and lies between these two regime

For P,N many solutions exist, and the limitb→` must
be applied first, leading toa51. Then a specific solution ca
be chosen. This might be the one with the minimal no
q25Q5Q0, which is identical to thepseudoinverse solution,
see Sec. V.

If P.N, there are more equations than variables. The
fore, also the value ofQ0 must be optimized simultaneousl
with the execution of the limitb→`. The differentiation of
the free energy according toQ0, i.e., ] f /]Q050, leads to

b~Q02Q!5
1

a21
~a.1!. ~26!

A comparison with Eq.~24! givesa5a. The value ofa in
the zero temperature limit is

a0~a!:5max~1,a!. ~27!

In the next section, we will examine the effect of oth
choices foraP@a0 ,`@ . We will observe that solutions cor
responding to higher values ofa have an interesting inter
pretation in the context of early stopping, weight decay,
input noise.

D. Weight decay

Another method used to prevent overtraining is weig
decay. The most common type of weight decay is the q
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dratic norm of the weights added to the training energy
order to penalize large weights, i.e.,

ẼT5
1

2PF (
m51

P

~zm* 2zm!21l(
i 51

N

~Wi !
2G . ~28!

The open parameter in this approach is the relative stre
of the weight decay terml. The weight update is then
DW(t)52¹W(PẼT), which is explicitly written in Eq.~43!
of Sec. V. There, it can be seen that the additional wei
decay term decreases the size of the weights in each up

The calculation of the free energy from above needs to
repeated with the additional weight decay term. The calcu
tion is very similar to the one without weight decay. As
result, we find that only one term is added to the free ene

2b f→2b f 2
blQ0

2
. ~29!

As the additional term is independent ofR and Q, the cor-
responding order parameter equations~21! remain unaf-
fected. Only the equation forQ0 changes.

This has a very important consequence. It directly impl
that a system with weight decay can be transformed into
equivalent system without weight decay, but at another va
of a, i.e., at another temperature.

The determination ofQ0, i.e., ] f /]Q050, leads to

2
1

2Fbl1
ab

11b~Q02Q!
2

1

Q02QG50, ~30!

which can be rewritten as the following relation betweena
andl,

b2l1b~l1a21!2150, ~31!

with

b:5b~Q02Q!5~a21!21. ~32!

The problem is now solved. The solution from above can
used witha determined byl.

E. Input noise

It is also known that noise on the inputs—also referred
asjitter @7#—can reduce overtraining. Here, we show that
the linear model, input noise and weight decay are ess
tially the same.

We only have to compute how the training error is a
fected, if an independent Gaussian noisee is added to the
inputs. If the noisee i has zero mean and varianced2, then
the training error becomes

ẼT5
1

2PF (
m51

P S zm* 2
1

AN
(
i 51

N

Wi~xi1e i !D 2G ,

.
1

2PF (
m51

P

~zm* 2zm
0 !21

1

NS (
i 51

N

Wie i D 2G , ~33!

with zm
0 denoting the student output of a noise free input.
n

th
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e
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The Wi and thee i can be averaged independently, sin
the noise is independent of the inputs and therefore als
the weights. The resulting effect on the free energy is

2b f→2b f 2
b

2
Q0d2. ~34!

A comparison with Eq.~29! immediately reveals that the
effect of input noise and weight decay are identical for t
linear model. We simply replacel by d2. The equivalence of
weight decay and input noise in the linear model was alre
found by @9# using a Green’s-function approach.

IV. LINEAR STUDENT LEARNING
AN UNREALIZABLE TASK

Here, we study how a linear student learns an unrealiza
task. As discussed in Sec. II, unrealizability impliesGÞH2.
The results for the realizable special case follow fromG
5H2.

A. Minimal training error

To calculate the order parameters in the zero tempera
limit, we inserta0(a) from Eq. ~27! into Eqs.~22!. Below
the storage capacity, that is fora,1 anda051, the min-
imum of the training error is always zero, i.e.,ET(a)50,
and the generalization error is

EG~a!5
G

2
1

a

2~12a!
@G2~22a!H2#. ~35!

For a.1 with a05a, we arrive at

ET~a!5
G2H2

2

a21

a
5

G2H2

2 S 12
1

a D ,

~36!

EG~a!5
G2H2

2

a

a21
5

G2H2

2 S 11
1

a21D .

The resulting curve for the generalization error for diffe
ent choices of the gaing is shown in Fig. 1. Around the
storage capacity of the perceptronac51 strongovertraining

FIG. 1. PerformanceEG(a). Generalization errorEG as a func-
tion of the normalized number of examplesa5P/N is shown. A
linear student is trained exhaustively, i.e.,a5a0, on an unrealizable
task. The teacher uses a ‘‘tanh’’ transfer function, i.e.,g(h* )
5tanh(gh* ). The results for different gainsg are shown.
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appears, which can be seen in the divergence of the ge
alization error. We call the zero temperature limitexhaustive
training, since the student net is trained until the minim
training errorET is reached.

Note that the result of the realizable case,G5H2, is sim-
ply EG(a)5(G/2)(12a) for a,1. The whole training pro-
cess is completed ata51. This is of course a highly ideal
ized case.

In the limit a@1, both errors approach the finiteresidual
error E` :5 1

2 (G2H2), with ET coming from below andEG
from above. Both errors converge likea21 against the re-
sidual error.

The two characteristic features of the unrealizable lea
ing task—overtraining and finite residual error—have diffe
ent causes. The residual error is a consequence of the u
alizability and cannot be avoided without transforming t
task into a realizable task. Overtraining, however, is a re
of exhaustive supervised training. The network attempts
learn all examples as well as possible, even if it implies t
the generalization ability is neglected.

B. The shape of the generalization error

The fact that the system can be described with only t
order parameters instead of theN dimensions of the weights
allows a good illustration. We can plot the generalizati
error EG over the whole range of possible values for t
order parameters. Here, the normalized order parameteq
5AQ and r 5R/q are used. Their asymptotical limits arer
51 and q5H, which indicate that the weight vectors o
student and teacher have the same direction, but are n
the same length.

In Fig. 2, EG(r ,q) is plotted in the interesting range,r
P@0,1# andqP@0,2H#. Instead of a three-dimensional plo
the contour linesEG(r ,q)5const are shown.

An important line is theEG(0) isoline, which remains on
the initial value of the generalization errorEG(0,0)5G/2 for
the initial conditionsq(0)50 andr (0)50. Only combina-

FIG. 2. The shape ofEG(r ,q). Contour plot of the generaliza
tion error EG(r ,q) as a function of the two normalized order p
rametersq and r . From the minimumEG

min5(G2H2)/2 at (r ,q)
5(1,H) the contour lines forEG5EG

min1(H2/10)i for i 51,2,3,4
~dashed lines! and for i 56,7,. . . , 24 ~dotted lines! are given. The
EG

0 line corresponds toEG(0,0)5G/2 or i 55 ~dash-dotted line!.
The two solid lines are learning curves~see Fig. 3!, the upper one
corresponds to exhaustive training and the lower one to opti
training.~Parameters areG50.84 andH50.78, corresponding tog
is 5!.
er-
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re-
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tions of (r ,q) below this line correspond to an improve
generalization ability. The absolute minimum ofEG is
reached at (r ,q)5(1,H).

C. Evolution of the order parameters

The values of the order parametersr andq are connected
by the training process. They are parametric curvesq(r )
with the parametersa anda; see Eq.~21!. Depending upon
whethera or a is varied, we refer to them as alearning
curveor a training curve, respectively. Some of these curve
are shown in Fig. 3.

A learning curve follows from the variation ofa with a
certain choice fora(a). The exhaustive learning curve use
the minimal value ofa, that is,a0(a), and is plotted as the
upper solid line in Fig. 3. Only the area below the exhaust
training curve is accessible by gradient descent batch tr
ing, if the initial conditions areq(0)50 andr (0)50.

A training curve, on the other hand, follows from a vari
tion of a for a fixed value ofa. Several training curves ar
shown in Fig. 3 as dashed lines. Along a training curve
parametera is reduced from infinity toa0.

Each path (r ,q) implies a certain evolution of the gene
alization error, which can be seen if we project Fig. 3 on t
of Fig. 2. If we move along a training curve, we can clea
observe when overtraining occurs. The points where the g
eralization error starts to increase are connected by ano
solid line. How this line can be interpreted is our next top

D. Finite training errors

An a value larger thana0 corresponds to a finite tempera
tureT.0. A finite temperature implies that the training err
does not accept its absolute minimum, i.e.,ET.ET

min .
On the other hand, the training error is decreased du

the training process. If it does not reach its minimal valu
we must assume that the training process is stopped ea
Through simulations of the training process, we have tes

al

FIG. 3. Evolution of the order parameters. Parametric cur
(r ,q) showing the evolution ofq and r as functions of the two
parametersa anda are shown. On a learning curve~solid lines! the
parametera is varied anda has a certain dependence ona. This
dependence is in the case of exhaustive traininga5a0(a) and in
the case of optimal traininga5aopt(a). On a training curve~dotted
lines! the parametera is decreased from infinity toa0 while a
remains fixed. Several training lines are shown for different val
of a50.1, 0.3, . . . , 1.5, 5.0, and 10.0. Ata50.5, the theoretical
curve is compared with a simulation of the training process~points
near third line!. ~Parameters as in Fig. 2.!
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that the evolution of the order parameters can really be
scribed by the variation ofa; see points near the trainin
curve for a50.5 in Fig. 3. The relevant parameter in th
training process is the number of batch updatest; see Eq.
~43!.

We have just found an important correspondence.
creasing temperatureT, which is equivalent to reducing th
value ofa from infinity to a0, can be seen an increase of t
number of parallel batch training steps from 1 totmax.

Immediately, the question after the optimal time arises
where the training should be stopped. Unfortunately, ther
no easy answer to this question, since the learning rateh @see
Eq. ~2!# determines the time scale. However, the optim
value of the parametera can easily be determined.

Minimizing EG with respect toa by ]EG /]a50, neglect-
ing the second term in Eq.~22!, leads to

aopt~a!:5c6Ac22a, c5
1

2S a1
G

H2D , ~37!

where the1 is the relevant solution. The corresponding ge
eralization error is

EG~a!5
1

2FG2
a

aopt~a!
H2G . ~38!

The resulting behavior is shown in Fig. 4. It exhibits n
overtraining at all.

Another indication of the optimality of this solutio
comes from the corresponding learning curve, which is
straight solid line shown in Fig. 2 and Fig. 3. Its analytic
expression,q(r )5Hr , can be deduced from Eq.~21! with a
few algebraic transformations.

FIG. 4. Optimized performance. Comparison is shown of
performanceEG(a5P/N) after exhaustive training and optima
training for an unrealizable task. The upper lines denote the ge
alization errorEG , the lower ones denote the training errorET .
Exhaustive training~dashed lines!, i.e., a5a0(a), leads to over-
training. With optimal training~solid lines!, i.e., a5aopt(a), over-
training can be completely avoided. Optimal training can be re
ized by three methods, early stopping, weight decay, or input no
see text. Optimal early stopping was simulated~error bars! using
the exact generalization error for validation. The finite residual e
E` is given by the dotted line.~Parameters as in Fig. 2.!
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E. Early stopping

We can confirm this result by a simulation of early sto
ping. Here, we do not want to bother with the limitations
an actual test-set validation or cross validation. Instead
exact generalization error is used for validation in order
receive the optimal result.

The results of the simulation using optimal validation a
also shown in Fig. 4 by error bars. The error bars indicate
standard deviation in a simulation withN5100 averaged
over 50 trials. The theoretical solution usingaopt is within
the range of the error bars. Therefore, we can take the va
tion of the parametera as a useful description of early stop
ping.

F. Weight decay and input noise

Next we want to discuss briefly the effect of weight dec
on this problem. First we assume that the weight de
strengthl is fixed. This resembles a situation where no fu
ther knowledge about the system is available and a gu
concerning the best weight decay strength must be mad

We can resolve Eq.~31! to receivea as a function ofl,
i.e.,

a~l!5
1

b1/2~l!
11, ~39!

with l.0,

b1/2~l!5
12a2l6A~12a2l!214l

2l
. ~40!

Only the solution with the1 sign is a relevant solution. We
insert a(l) into the equations of the order parameters~21!
and the errors~22!. The results clearly indicate that ove
training can be reduced using weight decay, for figures
@13#.

Now we want to determine the optimal value for th
weight decay strength for eacha. The relation~31! between
a andl can be resolved to expressl as a function ofa,

l~a!5
11~12a!b

b~b11!
5

a21

a
~a2a!. ~41!

We insertaopt(a) from Eq. ~37! into this function to receive
lopt(a). The result is remarkably simple,

lopt~a!5S G

H2
21D . ~42!

The fact that the optimal weight decay strength is indep
dent of a makes it suitable for applications. The optim
weight decay strength could be determined on a sma
sample, i.e.,a8,a, using the rest of the examples for tes
set validation or cross validation. Alternatively, we cou
fully exploit our theoretical equations and determineG from
ET(0)5G/2. ThenH could be determined from the exhau
tive training errorET

exh, see Eq.~36!.
As pointed out above, input noise can lead to the sa

effect with a noise leveld25l. Of particular interest is the
optimal weight decay strength for the case where the tea

e

r-

l-
e,

r
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is a noisy linear perceptron, see@9#. Then the constants ar
G5g21s2 and H5g, thus lopt(a) becomess2/g2. The
optimal input noise level for this case isg2dopt

2 5s2. This
makes sense because for the linear student, the varian
the weights multiplied by the variance of the inputs is t
variance of the outputs.

G. Summary

In this section, we have shown how overtraining—a co
mon, but unwanted feature of unrealizable learning task
can be reduced. Technically speaking, overtraining can
reduced by increasing the temperature-dependent param
a from a0, which corresponds to a finite temperatureT.0.
This implies a simultaneous increase of the training errorET

from its minimal valueET
min .

The following three practical methods can have such
effect: ~i! Training is stopped before the training err
reaches its absolute minimum, i.e., at a timet,tmax, or ~ii !
weight decay with a certain strengthl.0 is applied, or~iii !
random noise with mean zero and varianced.0 is added to
the inputs.

The three methods, early stopping, weight decay, and
put noise, have similar positive effects in avoiding overtra
ing. Optimized by validation, they are able to avoid ove
training altogether. In the equilibrium statistical mechan
approach, we have found that they are equivalent, if the
dent is linear.

V. DYNAMICAL APPROACH

The same problem can also be addressed by an appr
that is closely related to the dynamics of the training proce
This approach provides the correct description of early st
ping. A comparison with the above results can give furth
support for the equilibrium approach. Here, we briefly ske
the results, details can be found in@16#.

The update,W(t11)5W(t)1hDW(t), using gradient
descent has the following form,DW(t):52¹W(PẼT), with
h denoting thelearning rateand t counting the batch train
ing steps. If the functiong(h) is linear, then the derivative
g8(h) vanishes and we get the so-called adaptive linea
adalinerule @17#. The update including weight decay has t
form

DWi~ t !5
1

AN
(
m51

P

@zm* 2zm~ t !#xim2lWi~ t !. ~43!

It is possible to find an explicit solution for the weights. F
P,N, this is

Wi~ t !5
h

AN
(

m,n51

P

zm* H 12@~12hl!12hC# t

12@~12hl!12hC# J
mn

xin ,

where1 is the identity matrix, and

Cmn5
1

N (
i 51

N

ximxin . ~44!

The solution is consistent with the initial conditions,Wi(0)
50 andWi(1)5hN21/2(m51

P zm* xim , which corresponds to
of

-

e
ter

n

n-
-
-
s
u-

ch
s.
-
r
h

r

Hebbian learning. Asymptotically, after an infinite numbe
of time steps, it yields thepseudoinverseweights including
weight decay,

Wi~ t→`!5
1

AN
(

m,n51

P

zm* @~l11C!21#mn xin . ~45!

The solution forP.N is very similar, see@16#.
The explicit solution for the weight vector~44! can be

inserted into the definition of the order parameters. The ty
cal dynamics of the order parameters can then be determ
by averaging over the input distribution.

A. Results

Here, we cannot go into detail about this approach. O
the results necessary for the comparison to the results o
equilibrium approach are presented.

The dynamical equations ofR(t) andQ(t) can be written
in a compact form if we define a constantc5min(a,1),

R~a,l,h,t !5cHI111,
~46!

Q~a,l,h,t !5c~G2H2!I 2211cH2I 222.

The integralsI lmn(a,l,h,t) are

I lmn5E
jmin

jmax
djr~j!

@12~12hl2hj! t# l

@l1j#m
jn, ~47!

with l ,m,nP$1,2,3%. The density of the eigenvaluesr(j) of
the matrixC is

r~j!5
1

2pjc
A~jmax2j!~j2jmin!. ~48!

Finally, the maximal and the minimal eigenvalues a
jmax, min:5(16Aa)2. The time-dependent integrals con
verge only if the learning rate is smaller than the maxim
learning rate,

hmax5
2

l1jmax
5

2

l1112Aa1a
. ~49!

The results of the dynamical approach are the correct
scription for early stopping and also for weight decay.
comparison of the results of the two approaches can pro
interesting further insight into the validity of the equilibrium
approach.

B. Comparison

As in Fig. 3, we can plot the evolution of the order p
rameters by parametric curves (r ,q). In the dynamical ap-
proach, the parameters aret, h, and a for early stopping
and additionallyl for weight decay. For the learning rateh,
we have to assume that it is smaller than the maximumhmax.
The solution will then converge and the value ofh deter-
mines the scaling oft.

In Fig. 5, we compare how the two approaches, equi
rium and dynamical, describe early stopping. The evolut
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of the order parameters is shown for differenta. The results
of the dynamical approach will change slightly with differe
choices of the learning rateh. However, they will never
exactly coincide with the result of the equilibrium approac
The description of early stopping by the equilibrium a
proach is therefore not exact, but nevertheless a good
useful approximation. In the case of weight decay, which
not shown in Fig. 5, both approaches yield exactly the sa
results.

VI. NONLINEAR STUDENT LEARNS REALIZABLE TASK

The knowledge acquired above is now applied to a st
of a realizable task, where a nonlinear student must lear
identical nonlinear teacher, i.e.,g(h)5tanh(h) and g* (h* )
5tanh(gh* ).

A. Minimal training error

The minimal training error below the storage capaci
ac51, is always zero. This implies that for every examp
the outputs of teacher and student are identical, i.e.,zm*
5zm . If the transfer function of the student is invertible, th
analternative loss functioncan be used, which has the sam
minimum,

l̂ :5
1

2
@g21

„g* ~hm* !…2hm#25
1

2
@hm* 2hm#2. ~50!

The second equality in Eq.~50! holds only if the transfer
functions of teacher and student are identical. By using
alternative loss function, training becomes independen
the transfer function.

The order parameters for the nonlinear realizable task
correspond to the minimal training errorET50 are the same
as the ones for the simplest realizable learning task, whe
linear student learns a noise-free linear teacher. They fol
from Eq. ~21! if we insertG5H25g2 anda0,

R5ga, Q5g2a. ~51!

FIG. 5. Comparison of dynamical and equilibrium approa
The evolution of the order parameters (r ,q), as it is described by
the two approaches, is shown in a similar way to Fig. 3. The res
of the equilibrium approach are given by dotted lines fora50.1,
0.3, . . . , 0.9, 1.5, 5.0, and 10.0. The solid lines are the corresp
ing results of the dynamical approach withh50.01. The optimal
evolution slightly deviates from the equilibrium result, however, t
effect on the performance ofEG

opt is minimal. The dots near
a50.5 are results of a simulation.~Parameters as in Fig. 2.!
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However, the generalization error still depends on
nonlinear functions; see Eq.~9!. The resulting behavior of
EG(a) is shown in Fig. 6 for different values of the gaing.

It is surprising to see that some of the curves actua
increase for small values ofa5P/N. If the gaing, which is
the level of nonlinearity, is higher than somegc , then ex-
haustive training shows overtraining for smalla.

The critical gain gc can be determined by a linear ap
proximation of the nonlinear student. For smalla, both order
parametersR and Q of Eq. ~51! are small, such that tanh
function of the student in Eq.~9! can be approximated by
linear function, i.e., tanh(e)→e for small e. The behavior of
the generalization error~9! for small arguments becomes

EG~e!5EG~0!2
e

2
@2H~g!2g#, ~52!

with H(g) from Eq. ~13!.
The slope ofEG at a50 is positive instead of negative i

g becomes larger than 2H(g). Since the upper limit ofH(g)
is A2/p50.7979, the critical gain will be smaller then 1.
The numerical solution givesgc51.3371.

B. The reason for overtraining

Again we evaluate the generalization error as a funct
of the two normalized order parameters, i.e.,r :5R/q and
q:5AQ. Figure 7 showsEG(r ,q) for r P@0,1# and q
P@0,1.2g#. We have chosen the gaing55, because it is an
intermediate level of nonlinearity and shows the overtrain
effect well enough.

As in the unrealizable case, we can project the evolut
of the order parameters onto Fig. 7. The learning curve
exhaustive training, see Eqs.~35! and ~36!, is a straight line
with q(r )5gr . If the gaing is higher thangc , the isoline
EG(0,0) starts with a lower slope thanq(r )5gr . The result
is overtraining, if exhaustive training is applied. In oth
words, the network increases the norm of the weights a
the task were a linear one, and this is much too fast fo
highly nonlinear task.

.

ts

d-

FIG. 6. PerformanceEG(a). The generalization errorEG as a
function of a5P/N, for the problem, tanh perceptron learns ta
perceptron, after exhaustive training. The results for different ga
g of the teacher transfer function tanh(gh* ) are shown. In this re-
alizable task, exhaustive training can lead to overtraining, if
gain g is higher than a critical gaingc .
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C. Training with errors and early stopping

Now we apply the same method as in Sec. IV. The ex
solution for nonlinear training at finite temperatures is n
available. Therefore, we assume that the linear order par
eters for finite temperatures or nonminimala can be a usefu
approximation. These are

R~a,a!5ga
1

a
, Q~a,a!5g2a

a1aa22a

a~a22a!
, ~53!

with a defined in Eq.~24!. The corresponding training curve
are plotted in Fig. 8.

The optimal value ofa that minimizesEG can be calcu-
lated numerically. The resulting generalization error is pl
ted in Fig. 9; it shows no overtraining.

An interesting side effect is the hysteresis that appear
the neighborhood of the local minima ofEG(a). Simple
early stopping will become stuck in this local minimum, e
pecially since the global minimum jumps quite a distance

To test the validity of the approximation, we simula
early stopping for this problem, shown in Fig. 9. For valid
tion, the actual generalization error is used. The theoret
approximation is within the range of the error bars of t
early stopping simulation.

VII. DISCUSSION

In this work we have developed a model that prese
some of the characteristic features of feedforward learn
The approach provides interesting insights, especially in
realizable tasks, where overtraining and a finite residual e
appear. Yet, it is simple enough to allow an analytical d
scription.

We have shown that overtraining can be avoided co
pletely, if an optimal training strategy is applied. Seve
strategies have been discussed, each of which can obtai
same optimal effect. Either training is stopped at a fin
training error before the system overspecializes on the
amples, or the weights are reduced in each training step

FIG. 7. Shape of generalization errorEG(r ,q). Contour plot of
the generalization errorEG(r ,q) as a function ofr andq, similar to
that in Fig. 2. From the minimumEG

min50 at (r ,q)5(1,g), the
contour lines forEG50.1i for i 51,2,3,4~dashed lines! and for i
56,7,8,9 ~dotted lines! are given. The dashed-dotted line corr
sponds toEG5EG(0,0)5G/2. Two learning curves for exhaustiv
training ~upper solid line! and optimal training~lower solid lines!
are also shown.~Parameter: gaing55.!
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alternatively input noise is added to the examples. If
respective parameter of the these methods, stopping timt,
weight decay strengthl, or noise leveld, is optimally cho-
sen, then overtraining can be avoided and the system
creases monotonously to the residual error.

The occurrence of overtraining in the realizable, nonline
task ~see Sec. VI! was a counterexample to the widespre
belief that overtraining appears only in unrealizable tas
We have shown that overtraining can also be caused b
high level of nonlinearity.

The new interpretation of the finite temperature soluti
of the equilibrium statistical mechanics approach is also
teresting, from a technical point of view. It should be po
sible to apply it to other problems.

FIG. 8. Evolution of the order parameters. Parametric cur
(r ,q) as functions of the parametersa anda. Two learning curves,
resulting from a variation ofa, are shown, which correspond t
exhaustive traininga51 ~straight solid line! and optimal training,a
numerically optimized~lower solid line!. Marks on the learning
curves indicate the values ofa50.1, 0.2, . . . , 0.9, 0.99. Training
curves are computed by reducing the parametera from ` to 1 for
fixed a. Examples fora50.1,0.2,0.3,0.4,0.9,0.99~dotted lines! are
shown. On the training curves betweena.0.5 and 0.7, there are
two minima for the generalization errorEG . The resulting hyster-
esis is shown by the double-dashed and dash-dotted lines. T
indicate that the solution stays longer in the first minimum befor
jumps to the other one, depending on the initialization. The so
line is the location of the absolute minimum. Results of a simulat
of early stopping are given by error bars.~Parameter as in Fig. 7.!

FIG. 9. Optimized performance. Comparison of the performa
EG(a) after exhaustive training~dashed line! and after optimized
training ~solid line!. The marks show the values ofa50.1, 0.2,
. . . , 1.0. Simulation results of early stopping are indicated by er
bars.~Parameters as in Fig. 7.!
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We also believe that the results provide some insight i
early stopping, weight decay, and input noise. While
characteristics of these methods are correctly describe
should be noted that the finer details such as the equival
of early stopping, weight decay, and input noise, are con
quences of the linearity in the model and will not hold
general.

We believe that the results achieved on the rather sim
linear perceptron display some characteristic features
learning in feedforward networks. As an example, we w
discuss the regimes in the learning curves, see Fig. 10.

The learning curves split at the storage capacityac51
into two regimes, storage regime and generalization regi
In thestorage regime, belowac51, all examples are learne
by heart, resulting in a zero training error. However, t
generalization ability is neglected in this regime, resulting
overtraining. In thegeneralization regimeaboveac , a sur-

FIG. 10. Different regimes of learning. The performance of
rest generalization errorEG2E` ~upper two lines! and the rest
training errorE`2ET ~lower lines! is split into characteristic re-
gimes. Exhaustive training~dashed lines! and optimal training
~solid lines! are shown. The dotted diagonal line is the asymptoti
scaling E` /a. Three regimes, storage regime, generalization
gime, and asymptotical regime are divided by dotted vertical lin
they are discussed in the text.~Parameters as in Fig. 2.!
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plus of examples makes perfect learning impossible. The
work is forced to generalize in order to minimize the traini
error. Information on the whole task is extracted from t
examples and the generalization error decreases.

It is useful to define an additional subregime, which w
call asymptotical regimestretching fromaasy to infinity. In
the asymptotical regime, the number of examples is su
ciently large to make some simplifying assumptions val
For example, it can be assumed thatET approximatesEG
well enough, such that the difference between exhaus
training and optimal training becomes negligible. Furth
more, both rest errors possess the same asymptotical co
gence rate, which isa21 in this model. In our example,aasy
is of the order 10, as shown in Fig 10.

These regimes are characteristic for learning in neural
works. For more general models only a few results are w
studied, such as the asymptotical behavior@18#. Also the
negligible effect of early stopping in the asymptotical ran
was found for general learning scenarios@19#. It should be
emphasized that a much richer behavior is located below
asymptotical regime, which can already be seen in our ra
simple single-layer model.

While detailed analytical studies for the more comp
cated, nonlinear, multilayer networks may not be possib
extensive simulations should always be accessible. For a
step in this direction, see@20#. A more thorough understand
ing of the whole training process, including the effects
early stopping and weight decay would be desirable, if n
ral networks shall become a useful and reliable tool for lea
ing functional relations.
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