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Numerical evidence of stationary and breathing concentration patterns in the Oregonator
with equal diffusivities
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The set of three reaction-diffusion equations describing the time-space behavior of the intermediate chemical
species in the Oregonator model of the Belousov-Zhabotinsky reaction is investigated in an open, gel-disk
reactor in one and two spatial dimensions. Numerical simulations using equal values of the three diffusion
coefficients indicate the presence of solutions corresponding to large-amplitude, apparently stable, stationary
concentration patterns. The requirement of differential transport rates of chemical activator and inhibitor
species for the development of stable patterns is apparently met in this system by differential exchange rates
with the reservolits) rather than by differential diffusion rates within the gel-reactor. The characteristics of
these patterns as well as their stability and bifurcation properties are investigated and suggest that their
appearance is dependent upon the existence of bistability in the homogeneous reaction kinetics. The patterns
have an intrinsic wavelength, and one of a particular wave-number destabilizes via a Hopf bifurcation as the
length of the gel-reactor is varied, giving rise to oscillatory breather-solutions past the bifurcation but before
decomposition into a spatially homogeneous state occurs. The relationship of these results to experimental
systems, as well as an analogy to the behavior of biological membranes, is discussed.
[S1063-651%98)13407-4

PACS numbegps): 82.70-y

I. INTRODUCTION system are dependent upon CFUR flow rates and other pa-
rameters, e.g., the physical dimensions of the open reactor.
A. M. Turing [1,2] suggested in 1952 that the interaction ~ The activator specief2,5,6] is one that is formed in an
of reaction and diffusion of intermediate species in spatially2utocatalytic process, and the inhibitor species is one that is
distributed, convection-free, reacting chemical systems ma/erived from the activator but has the effect of inhibiting the
lead under appropriate conditions to spontaneous destabiliz Litacatalytic formation of the aciivator. Such systems nor-

tion of the spatially homogeneous steady state and formatioﬂ1ally will be bistable for at least some values of the chemi-

A . _cal concentrations and rate constants; one state features high
of temporally stable, spatially inhomogeneous patterns in th%‘mtivator and low inhibitor concentrations, while the other

concentrations of these species. The resulting patterns aggayres jow activator and high inhibitor concentrations. Os-
characterized by an intrinsic spatial wavelength that is deters;jations often may occur between these two states.

mined by the reaction-diffusion dynamics of the system Tne gtabilizing effect on concentration patterns of the
rather than by its geometry. higher transport-ratée.g., diffusion coefficient or exchange-
The required condition§3] are (i) the system is main- rate with a reservojrof the inhibitor relative to the activator
tained far from chemical equilibriurpd], (ii) the chemical may be understood in the following way. Consider a local-
kinetics is of the activator-inhibitor typle?,5,6], and(iii) the  ized area in which the activator is being autocatalytically
diffusion coefficient of the inhibitor species is larger thanformed and is subsequently leading to formation of the in-
that of the activator species by an amount related to théibitor species. Autocatalytic formation of the activator is
chemical parameters of the syst¢3]. This difference in  not occurring in the surrounding area. If the transport rate of
diffusion coefficients is difficult to achieve in simple chemi- the inhibitor out of this local area is sufficiently low, then its
cal systems in which most species diffuse at similar rates. concentration will eventually rise to the point where it stops
Stationary concentration patterns in principle can be staautocatalytic formation of the activator. However, if the rate
bilized indefinitely in an opeficontinuous-flow, unstirred re- of transport of the inhibitor out of the activated area is suf-
actor (CFUR)] system where the distance from chemicalficiently high relative to that of the activator, then activator
equilibrium is maintained by the exchange of reactants angroduction continues indefinitely. Furthermore, rapid trans-
products with reservois) while the overall chemical reac- port of inhibitor into the surrounding area keeps it inactive.
tion occurs[7]. The chemical reaction occurs in a gelled The combination of these two effects stabilizes the localized
medium to avoid convective effects. Both the existence ofrea of activation as well as its surrounding inhibited area.
stable patterns and the bifurcation structure of the dynamical Nearly 40 years elapsed between Turing’s suggestidon
and its first experimental verification by Castetsal.[8] and
shortly afterward by Ouyang and Swinnggj because of the
*Electronic address: umsfidoc@math.montana.edu necessary development of both appropriate chemical reac-
TElectronic address: chijf@selway.umt.edu tions[10,1] and suitable CFUR experimental arrangements
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terns, and its mechanism is well understood, making the con-
nection between experiment and the governing dynamic law
clear.

The present work suggests that it may be possible in a
gel-disk reactor to adjust the BZ reaction exchange rates be-
tween the CFUR-gel and its reservoirs so as to achieve, even
with equal diffusion coefficients, the differential transport
rate of activator and inhibitor required for stationary concen-
tration pattern formation. The results obtained imply that
stable patterns can be obtained only if concentrations and
flow rates are adjusted such that the homogeneous kinetics,

FIG. 1. Schematic diagram of a gel-disc reactor showing the

thin-layer reaction medium in contact with two reservoirs and asso!nCIUdIng the flow, are bistable. Furthermore, the stable pat-

ciated transport parameteks,, k! , Z, andzj. Only one reservoir terns located do not bifurcate directly frqm the spatially ho-
is considered in this work. mogeneous state and thus can be realized only through an

appropriate perturbation, perhaps photochemical, of that

[7,12,13,13 The chlorite-iodide-malonic aci€CIMA) sys- state. Experimental verification of the predicted stable but
tem[15,16 is used in these experiments in which a ge”ed_oscnlatory(breath(-;) patterns, apparently relgted to.the pres-
CFUR is fed the appropriate chemicals from reservoirs. Th&Nce (?f a Hopf bifurcation in the partial differential equa-

required difference in diffusion rates is obtaindd] by us- tions, is to hoped for.

ing a gel containing immobilized starch in order to decrease

the effective diffusion-rate of the chemically coupled activa- Il. MODEL EQUATIONS

tor specied "/I,/13~ by complexingl;~. The Belousov-Zhabotinsk{BZ) reaction[25—27 in the
Several gel-CFUR/reservoir configurations have beeRym used in spatial-pattern work usually is composed of

used in the CIMA system, including the thin-strip reactor y.omate ion{BrO;}, malonic acid{CH,(COOH),}, and a
[8,17,18, the gel-disc reactd9,19,2(, and the beveled-gel metal-ion catalysst{Fe(pher)33+/Fe(pher)22+} inan ~1M

reactor[21]. The analysis and calculations reported here aps,ifuric acid{H,SO,} medium. The overall chemical reac-

ply to a gel-disk reactor, shown schematically in Fig. 1.ijo ig the metal-ion catalyzed oxidation of malonic acid by

which .consists of a very thin_circle of ge] of diameter bromate ion. The chemical mechanism of the BZ reaction
sandwiched between reservgjrin contact with one or both was elucidated by Field, Kos, and Noyeg22] in 1972.

faces. The transport processes involving chemical species is very complex mechanism involving in one fof@4] 26

diffusion within the approximately two-dimensional gel it- -nemical species and 80 chemical reactions can be reduced

self and exchange between the gel-CFUR and the resefs ihe five-reaction, three-variable model referred to as the
voir(s). All points within the gel are in contact with the res- Oregonatof 34,35 given below:

ervoir(s), and there are no concentration gradients within the
gel-reactor imposed by reservoir configuration, assuming the ks
gel to have no thickness. Concentration patterns develop A+Y—X+P, (1)
within the plane of the gel.

Unambiguous experimental evidence of reaction-
diffusion-supported stationary concentration patterns has X+Y—P+P, @)
been obtained to our knowledge only in the CIMA and the

ko

Fe(CN)g* —10;7—S0,%" [15,16 systems. In particular, no A+X+CEX+X+Z 3)
experimental evidence has been obtained in the chemically '

and mechanistically well-understoof22-24 Belousov- Ky

Zhabotinsky(BZ) reaction[25—27, whose kinetics are of an X+X—A+P, (4)
activator-inhibitor nature and in which traveling concentra-

tion pattern experimentdP8—31] and theoretical32] work ks

are well developed. The relationship between stationary and Z—fY. 5)

traveling concentration patterns has been investigated in the

CIMA system[33]. Traveling concentration patterns are the The chemical identities areA=BrO;~, P=HOBr, X
expected phenomenon when diffusion rates are nearly equat HBrO,, Y=Br~, C=Fe(phens®*, and Z=Fe(phen;**.

but no way has yet been found in the BZ system to achievd he higher concentrations of B§O and HOBr, assumed to
experimentally the required diffusion-rate difference be-be the principal reactant and product, respectively, are held
tween activator and inhibitor species for the appearance gfonstant in a CFUR by transfer from the reservoirs, leaving
stationary patterns. Such patterns, however, have been foutie lower-concentration, intermediate species: HBrBr ™,
numerically in the Oregonator mod¢B4,35 of the BZ and Féphens®", as the dynamic variables. These lower-
chemical dynamics in a closed system with constant reactaigoncentration species also exchange with the reservoirs, and
concentrations and unequal diffusion coefficief86—39.  the exchange rates of Brand Féphens*" may be affected
This state of affairs is unfortunate because the BZ reaction iby their reservoir concentrations. HBy@ not stable enough
well suited to experimental work with spatial concentrationto be present in a reservoir. The conservation of Fe atoms for
inhomogeneities. It is very robust and reproducible withthe two forms of the metal-ion catalyls37,4Q requires that
sharply autocatalytic kinetics leading to well-defined pat-C,=total concentration of metal ieaFe(phens>']
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+[Felphens?"]. The values ok,;—k, are experimentally
defined[ 34,35, while the values ok; and the stoichiometric
factor f are treated as parameters.
[ CH,(COOH),] is absorbed intds. The kinetic parameters
[37] used here arek;=25[H"PM3s! k,=3.0
X1P [HTIM2sl,  ky=40[H']M?s!  k,=3.0
x10* M71s! kg=0.10s1, [H']=0.8 M, [A]=0.06 M,
Cior=2.3x10"3 M, and f=0.43.

Using the scaled concentrations,y, z, andc defined by

x=(kiATk)/[X],  y=(ksAlko)/[Y],

z={k1k3A%/(k, ks)}/[Z],
and
c={k1k3A% (koks)}/[ Cyof,
and the dimensionless parameterg], w, andt defined by
s=(kg/ky) Y2 q=2kiks/koks, w=Kks/(A{kiks}¥?)

and

t=Time{A(k;ks) "%},

the mass-action, well-mixed, spatially homogeneous[

chemical-kinetics equations become
dx/dt=f(x,y,z2)=s[y—xy+x(1—z/c)—qx?],

dy/dt=g(x,y,z)=(—y—xy+fz)/s, (6)

dy/dt=h(x,z)=w[x(1—2z/c)—2z].

Addition of Fick’'s Law diffusion terms within the gel and
the scaled flow termk;, for the transfer ofX, Y, andZ
between the gel-CFUR and the reser@®ifFig. 1) leads to
Eq. (7).

&X_D 9°x . .

i (9—rz+ (X,¥,2) — ks,
ay—D 2y k 7
i a—rz‘*‘g(x.y,z)— £y, (7)
&Z_D 9%z A .
i WJr (X,2) +Kki(z,—2).

The additional scalings D=D"/[A(k{ks)2L?]  with

'=1.0x10"° cm?/s andr=r'/L are introduced in Eq(7)
with the spatial coordinate’ and the reactor length in cm.
The scaled spatial coordinateguns between 0 and 1 in these
calculations with Neumanrno-flux) boundary conditions
imposed at the endpoints. The parameteis the reservoir
concentration ofZ. It is assumed that,=y,=0.

NUMERICAL EVIDENCE OF STATIONARY AND. ..

The value of

825
%X
D el +f(x,y,2) —kix=0,
5%y
D —2+9(xy,2)~ky=0, ®

9z
D W+h(x,z)+kf(zr—z)=0.

The variablest, y, andz have been further scaled in the
numerical work presented below by multiplying by 1000,
100, and 1000, respectively. Letting y, andz also repre-
sent these rescaled variables, the reaction kinetics equations
become Eq(9).

f(x,y,z)=9[y/10— 10xy+ x(1— 100/ c) — 100 x?],

g(x,y,z)=(—y—100y+10fz)/s, (9)

h(x,z)=w[x(1—-100Q/c)—z].

Ill. NUMERICAL RESULTS

The major bifurcation parameters in the well-mixed reac-
tion kinetics given by Eq(6) areks and f. All results re-
ported here are for the chemical parameters specified above
with ks=0.10 s'* andf =0.43, for which Eq(6) is bistable,
here being two stable and one unstable steady states. Bista-
bility in the reaction kinetics seems to be necessary for ap-
pearance of the stable, spatially inhomogeneous concentra-
tion patterns described below in the spatially distributed,

2,=2.2k=0.049
10 T T T T T T T T

0 1 i s ! ' L 1 L
0.04 0.05 0.06 0.07 0.08 0.09
L{cm)

0.1

FIG. 2. L, norm of concentration for an unstable, spatially ho-
mogeneous solution and three stationary-pattern solutions #8Eq.
obtained by continuation methods far=2.2 andk;=0.049 as the
domain sizeL is varied. The lowest, solid line is the unstable,
spatially homogeneous state, and the dashed line is the branch of
unstable Turing patterns bifurcating from it. The two solid upper
lines show a fold bifurcation at which a single spatially inhomoge-
neous(pattern solution appears and immediately separates into two
others, a fold bifurcation. The stability of the two highest-norm

We seek stable, spatially inhomogeneous solutions to Egatterns is as indicated in Fig. 5. The vertical line indicates the

(7), i.e., solutions to Eq(8),

valueL=0.3 cm for which Fig. 3 is calculated.



826 JACK D. DOCKERY AND RICHARD J. FIELD PRE 58
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FIG. 3. Bifurcation structure of Eq8) in the k;—z, plane at FIG. 5. Dependence on domain site, of the stability of four

L=0.03 cm. The solid line is the locus of points for which the fold single and multilayer patterns fdt;=0.049 andz,=2.2. Each
bifurcation shown in Fig. 2 occurs. The dashed line is the locus oturve is the Fold bifurcation as in Fig. 2 for two patterns having
points for which the highx-low y steady state of Eq6) becomes  reflective symmetry, containing 1, 2, 3, or 4 layers, respectively,
unstable via a Hopf bifurcation. Equati@6) is bistable below and gnd growing from an instability of the form cosr with n equal to
monostable above this line. The star indicates the point for whichi, 2, 3, or 4. The lower pattern is unstatftéash-dot ling in all
Fig. 2 is calculated. cases. The upper pattern in each case is stabli line) only over
a certain range of domain length, which increases with the number

reaction-diffusion system, Eq7), as has been found in pre- of layers.
vious closed systemk¢=0) work with unequal diffusion
coefficients[36,37]. This fact must guide experiments in the
BZ system designed to verify the results obtained here.

Numerical investigation of Ed7) is begun using its time-
independent form, Eq8). The physically important bifurca-
tion parameters in the open system kyeandz, . Spatially
inhomogeneous solutions are found and characterized for E

(8) in two ways.(i) Numerical continuation methodé2,43

are used to determine the existence of and to characterize
spatially inhomogeneous steady state solutions td&q(ii)
Equation (8) is discretized using a second-order, central-
difference method41]. The resulting equations then are
Yolved using Newton’s method with a spatially inhomoge-
neous initial spatial distribution of, y, andz. Equation(8)

: ; may then be linearized about the patterns so obtained and
their stability as stationary solutions to E@) investigated.
The results thus obtained are verified by numerical solution
of Eq. (7) itself.

Figures 2 and 3 summarize the results of the continuation
calculations based on E(B). The existence and characteris-
tics of spatial concentration patterns depend upon the values
of L as well ask; andz, . There are three spatially uniform
steady states for all physically reasonable, positive values of
ki andz, . They correspond to the three steady states of Eq.
(6). Two of these spatially uniform states fef=0, those
corresponding to the bistable highlow y and the low
x-high y states in the reaction kinetics, E@), are stable.
The third state with intermediate values>ofndy is always
unstable. One, two, or three spatially inhomogeneous solu-
, tions also have been located. Figure 2 characterizes the ex-
Wk istence of these solutions to E) and their amplitude in

the L, norm [44] as L varies and withz,=2.2 and k;

FIG. 4. Stability diagram in the, —k; plane forL=0.03 cm =0._O_49. No spatially inhomogeneous solution is found_ for

resulting from linearization of Eq(8) about spatially inhomoge- sufficiently small values of . However, the steady state with

neous solutions obtained by Newton’s method. Stable, spatially initermediate values of andy (the lowest solid line in Fig.
homogeneous solutions are found only within the shaded regior) Undergoes a classic Turing bifurcatiih2] asL increases
whose boundary is a locus of points for which the linearized systen@it Which the homogeneous state becomes unstable relative to
has purely imaginary eigenvalues, indicating the possibility of aa cosinelike pattern that appears and grows in amplitude as
Hopf bifurcation in the full PDE system, Eq7). The Hopf and increases further. This is the dashed curve in Fig. 2. It can be
Fold bifurcation lines from Figs. 2 and 3 are reproduced. shown that this pattern is unstable locally near the bifurca-

1=0.03(cm)
T

5 ‘\ T T

45

35F

25K
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k=0.049 7=2.2 L=0.27(cm) (a) k;=0.049 z=2.21=0.27(cm) ()
T

--- Initial x
Ea— Steady x

-—- Initial y
——  Steadyy| |
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FIG. 6. Evolution of square-wave initial conditiofidashed lingto an eight-layer patterfsolid line) for k;=0.049,z,=2.2 andL
=0.27 cm.(a) The value ofx, (b) the value ofy, (c) the value ofz.

tion point because the spatially homogeneous solution it bi- The upper branch of the pair of spatially inhomogeneous
furcates from is unstable. We have found numerically thasolutions resulting from the fold bifurcation seems to tend to
this branch of solutions is indeed unstable for all valuels,of a heteroclinic orbit between the highlow y and the low
seeming to tend to an orbit homoclinic to the lowhighy, x-highy spatially uniform states ds— . The lower branch
spatially homogeneous state las> . seems to correspond to an orbit homoclinic to the higbw
The fold bifurcation illustrated in Fig. 2 occurs at a some-y spatially uniform state ag —o. Numerical results de-
what higher value of. =L.. A second spatially inhomoge- scribed below suggest that the lower solution is always un-
neous solution appears and immediately separates into a paitable, while the upper solution is stable for appropriate val-
of spatially inhomogeneous solutions lasncreases beyond ues ofL. The highx-low y and low x-high y, spatially
L.. These states apparently are not associated with any spaemogeneous states continue to exist for these valugs of
tially homogeneous state. Thus there are three pairs of spandz, but are only locally stable.
tially inhomogeneous solutions, each having reflective sym- Figure 3 illustrates the bifurcation structure of Ef) in
metry, at sufficiently large values &f, e.g., atL=0.03 cm, thek;—z plane withL=0.03 cm, the point indicated by the
as indicated by the vertical line in Fig. 2. All solutions for vertical line in Fig. 2. The star in Fig. 3 indicates the values
this value ofL are found in the Newton’s method calcula- of k; and z, for which Fig. 2 is constructed. The dashed
tions to be single-layer patterns containing one-half of a con¢Hopf) line in Fig. 2 is the locus of points for which the high
centration peak similar to one-half cosine wave. With Neu-x-low y spatially homogeneous solution to E§) loses its
mann boundary conditions, ¥(r), y(r), z(r) is a solution, stability via a Hopf bifurcation. Below this curve the well-
then so isx(L—r), y(L—r), z(L—r). These two patterns stirred chemical kinetics, Eq6), is bistable and there are
are counted as one. Similar symmetry is observed in multitwo solutions corresponding to locally stable, spatially uni-
layer patterns appearing at larger valued. of form states. Detailed investigations were not carried out
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. =0.049 7=2:2=0.27(cm) multilayer patterns with more than one concentration peak,
' ' ' ' ' ' ‘ St;adyx also has been investigated as a function of the domain length,
T Geadyy L. These results are displayed in Fig. 5 foxD<0.1 cm

. with k;=0.049 andz,=2.2. The fold bifurcation is again
apparent, but the lower-amplitude, spatially inhomogeneous
solution is always unstable. Patterns with one to four layers
are found forL=<0.1 cm, but it appears that any number of
layers can be obtained for large enough valuek.ofhel,
. norm of these patterns increases with the number of layers,
, indicating larger spatial concentration inhomogeneities. Each
) pattern is stable only in a randeg,<L<L; with the ex-
. | change of stability again seeming to be via a Hopf bifurca-
v tion and to be very regular in that if a single-layer pattern is
AN stable in the rangé,<L<Lq, then then-layer pattern is
\ stable in the rangalLy<L<nL;.
These results from continuation and stability analyses of

5 06 YRR the time-independent Ed8) are verified and extended by
' numerical solution of the PDE system, Ed@). The second-
FIG. 7. Combined concentration profiles from Fig. 6. order spatial derivatives are discretized using second-order

differences on a grid of points. This results in a large

above the Hopf curve where Em) has 0n|y one stable SyStem of & Ordil’lal’y differential equations which are
steady state. The Foltsolid) curve indicates the locus of solved numerically using the stiffly stable numerical integra-
points at which the turning point in Fig. 2 occurs. Two spa-tors ODE15348,49 and LSODE50]. A spatial grid of 250
tially inhomogeneous solutions, including the Turing solu-SPatial points is normally used, but many calculations with
tion, are present at this point. The region with three spatiallyp00 or 1000 points over the same spatial domain yield es-
inhomogeneous  solutiongcorresponding to Fig. 2 at sentially identical results. It is assumed that a stable, un-
greater tharl, where the fold bifurcation occurdies be- ~ changing solution has been achieved when the time deriva-
tween the Hopf and the Fold curves. Only the Turing solulives are less than 16° The stability of spatially
tion exists below the Fold line. Spatially inhomogeneous patinthomogeneous solutions to E@) obtained by Newton's
terns exist throughout the region bounded by the Hopf andnethod is verified by perturbing them by addition of 1%
the Fold lines. However, stable patterns are found 0n|y in éandom noise before use as the initial condition for numeri-
portion of this region. cal ;olution of Eq(7). All solutions for which the linearized
The spatially inhomogeneous solutions located by conversion of the ODE Eq(8) has a stable spectrum of eigen-
tinuation methods can be computed by solution of the Spavalues are found to be numerically stable solutions to the
tially discretized version of Eq8) using Newton’s method PDE, Eq.(7). .
with iteration stopped when the residual is of the order of We also have investigated numerically the evolution of
101° The stability of these solutions is investigated bylmtlal square-wave initial concentration profiles given by Eq.
computing the eigenvalues of the linearization of E8). (9) to apparently stable spatially inhomogeneous patterns,
about them. The EISPACK routin¢45] as well as iterative i
techniqueg46] are used to do this. The numerical results X(F+0)=%r1 maxcog wmr),0)+x;o maxsin(zmr),0),
obtained indicate that the Fold lines in Figs. 2 and 3 result
from a saddle-node bifurcation in which an eigenvalue of the Y(r.0)=Yr1 maxcog wmr),0)+Xx,o max(sin(zmr),0),
linearization of Eq(8) about the appropriate pattern is iden-
tically zero. These results are represented in Fig. 4, where the 2(r,0)=2z,; max(cog mmr),0)+ z,, max(sin(zmr),0).
Hopf and Fold lines from Fig. 3 also are reproduced. Stable,
spatially inhomogeneous solutions are found only within theThe parameters;, andx,, are the respective values xfor
shaded region between the Hopf and Fold curves. Thé#he two steady states of the bistable reaction kinetics(@g.
boundary of this region is a curve of Hopf points for the and similarly fory andz. Integration of Eq(7) leads to a
linearization of the discretized version of E@) where the stable spatial pattern if the spatial intervial, can support a
eigenvalues are purely imaginary. This indicates the possiattern of wave numbem. Figure 6 shows the initial and
bility of a Hopf bifurcation for the PDE system, Ef), such  final concentration profiles for such a calculation for4
as occurs in analogous, closed-system activator-inhibitoand with L=0.27 cm, k{=0.049, andz,=2.2. Figure 7
models if the diffusion coefficient of the inhibitor is larger shows the complete eight-layer pattern, which is very similar
than that of the activatdi7]. Temporally oscillatory, spa- to one found using the same model in a closed system (
tially inhomogeneous solutions referred to as breather pat=0), but withD,/(D,=D,)>2. Thus it appears that differ-
terns[47] may occur in this case close to the Hopf bifurca- ential transport of the inhibitor compared to the activator via
tion. We describe below numerical breather solutions that arexchange with the reservoir can substitute for differential
strong evidence for the existence of such a Hopf bifurcatioriransport via diffusion within the gel.
in Eq. (7). The previous indication of the existence of a Hopf bifur-
The existence and stability of spatially inhomogeneousation for the PDE system also can be investigated by nu-
solutions more complex than only a single-layer, i.e.,merical integration. Figure 8 shows the numerical evolution
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L=0.15(cm) kf=0.049 Zr=2.2

250

200

150
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r

FIG. 8. Value ofx vsr as dimensionless time, evolves for a two-layer breather solution wih=0.049,z,=2.2, andL=0.150 cm.
The value ofL used is considerably above the bifurcation point indicated in Fig. 5 for Mode 2 in order to make the movement more apparent.

of Eq. (7) for a value ofL past that where Hopf bifurcation trapolated to suggest the presence of a stable pattern in two
occurs,L,, as the domain length is increased. The two-layerspatial dimensions fok;=0.049,z,=2.2 on a square do-
initial concentration profile computed from E@) by New-  main with L=0.07 cm. This pattern has been found using
ton’s method is unstable but does not decompose to a spalewton’s method and the two-dimensional version of Eq.
tially homogeneous state. The profile instead behaves as tw@). It is displayed in Fig. 10. The eigenvalue spectrum of
traveling waves that approach and move away from eacthis pattern computed via the iterative methods described
other with a period of about 153 in dimensionless time unitsabove is stable.
This period agrees well with that computed from the eigen-
values obtained by linearization of E@), even though the
value ofL used in this calculation is considerably larger than
Ly . This type of phenomenon has been investigated in Solutions corresponding to stable, stationary, spatial con-
another activator-inhibitor system witl; ninior/ Dactivator ~ CENtration patterns exist to a set of reaction-diffusion equa-
>1 where the connection to the Hopf bifurcation can betions arising from the Oregonator model of the BZ reaction.
shown precisely. This phenomenon may be related to smallFhe physical configuration of the system modeled is an open,
amplitude, sinusoidal oscillations observed in a very similarithin-layer, gelled reaction mediurfFig. 1) in contact with
well-mixed, CSTR mod€l35] near a Hopf bifurcation and to reservoirs over its two large surfaces, with which it ex-
the formation of a stationary pattern in this mo@&¥] with changes various chemical species. These patterns are stable
ki=0 via the interaction and eventual stopping of travelingeven when the diffusion coefficients of all reactive interme-
waves. diates are equal. They are not a Turing strucfdrebecause
Stability analysis of the linearized version of B§) in-  they do not bifurcate from the spatially homogeneous state,
dicates that there likely is also a Hopf bifurcation lass  they instead are isolated and must be reached via an appro-
decreased. However, if there are periodic solutions near thigriate perturbation of the spatially homogeneous state. So-
change of stability such as occyfig. 8 for values ofL called breather solutions also are found in which a spatial
beyond the high end of the range of pattern stability, therpattern persists indefinitely, but the size of the concentration
they must occur only over a very narrow rangelof Thus  inhomogeneities oscillates. They occur just outside the re-
the stable, two-layer pattern that occurs fqre=0.049, z, gion of stability of the stationary patterns. Breathing patterns
=2.2, andL=0.05 cm becomes unstable far=0.04 cm, have been observed previouglyl] in an enzyme-kinetics
evolving into two traveling waves that collide and eventuallymodel and referred to there as pulsars. A breathing concen-
coalesce into the highk-low y, spatially homogeneous tration inhomogeneity has been observed experimentally
steady state, as is shown in Fig. 9. [52] in a gel-disc reactor with the pH-driven
The above results in one spatial dimension can be exFe(CN)g* -10;7-SO?~ (FIS) chemical oscillator{53-55,

IV. CONCLUSION
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L=0.04(cm) k=0.049 z=2.2

r

FIG. 9. Collapse in dimensionless time,of an unstable, two-layer pattefr vs r) by collision of two traveling waves leading to a
spatially homogeneous solution fky=0.049,z,=2.2, andL=0.040 cm. The value df used is just below the bifurcation point indicated
for Mode 2 in Fig. 5.

L=0.07(cm) k=0.049 z=2.2

FIG. 10. Value ofx for a stable two-dimensional pattern on a square domain litl®.07 cm,k;=0.049, andz, =2.2.
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again apparently involving bistability63] and near a bifur- simple approach to look for bistability in a well-mixed CSTR
cation[52,56,57. The high diffusivity of H" may allow for  as the concentrations of the principal reactants in the CSTR
substantial differences of diffusion coefficients in the FISand the concentrations of @e) and bromomalonic acid in
system. The precise relationship of these observations to tHge feed streams are varied. The calculations reported here
present result is not yet establishgx6,57], especially con- Would be reproduced with this model in a more complex
cerning the exact bifurcation structure associated with th@Pproach to determining accurate experimental parameters. It
appearance of patterns, but there likely is a close relationill be necessary to reach the patterns described here by

ship. There is an interesting interaction of traveling wavedP€rturbation because of their isolation from the spatially ho-
and stationary patterns in the FIS systg&7,52,58, and mogeneous state. This most likely can be done photochemi-

; cally [65].
some patterns are approached via a perturbg&6h . . . -
We believe that the patterns located here will appear in. F!r?a”-‘/’ this model, as pictured in F.'g' 1, may have some
the BZ reaction under suitable experimental conditions. The ignificance o the process of channeling or other cooperative

are robust in our calculations and depend mainly upon th n:reunitk:rgr:;h:r;%ifalcnt a.fﬁllerzgpgrras[r?:‘l'el.tthcgrn:.'éf OL?ha S
existence of bistability in the chemical kinetics, a phenom- : Wi Vol : \ae, p P

enon that is well-known in the BZ reactigss]. Hale et al representing the inside and outside of the cell. The patterning

[59] recently have reported very similar pattern—formationCould correspond to the appearance of channels thr(_)ugh the
with all-equal diffusion coefficients for the cubic- membrane or to some other structural change, mediated by

autocatalator moddR7,60 also dependent upon bistability f[he_ dconcentrf\tllgn 0; ;ﬁ)me ﬁpe;'?f’ anc?logc()jui, toeither
and in the same open physical configuration, suggesting th4ffS!c€ or outside ot he cell. Fatlerned and homogeneous

the phenomenon is related to the existence of bistability ir‘?patlal states coexist for suitable valuezgfand the system
activator-inhibitor kinetics[52,53,56,5T in this physical can be perturbed from one state to the other .by a spatially
configuration rather than to the exact form of the kineticInhomogeneous perturbatlon, perhaps the binding to the
equations. We suggest that it will be necessary to carry o embrane of an agonist, e.g., a ligand-gated chaj6#l

these experiments with bromomalonic acid as well ag\Qe nly the spatially homogeneous state vyill exist for other
in the reservolis) in order to control the effective value 6f values ofz, an(_j the.membrane th_en will not respond to
assumed to be 0.43 in the present calculations. A more con'?‘—uch a perturbation with a cooperative structural change.
plex, eleven-variable model of the BZ reaction due to Gyo ACKNOWLEDGMENTS
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