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Energy flows in vibrated granular media
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We study vibrated granular media, investigating each of the three components of the energy flow: particle-
particle dissipation, energy input at the vibrating wall, and particle-wall dissipation. Energy dissipated by
interparticle collisions is well estimated by existing theories when the granular material is dilute, and these
theories are extended to include rotational kinetic energy. When the granular material is dense, the observed
particle-particle dissipation rate decreases to as little as 2/5 of the theoretical prediction. We observe that the
rate of energy input is the weight of the granular material times an average vibration velocity times a function
of the ratio of particle to vibration velocity. “Particle-wall” dissipation has been neglected in all theories up to
now, but can play an important role when the granular material is dilute. The ratio between gravitational
potential energy and kinetic energy can vary by as much as a factor of 3. Previous simulations and experiments
have shown thaEo«V?, with §=2 for dilute granular material, and~ 1.5 for dense granular material. We
relate this change in exponent to the departure of particle-particle dissipation from its theoretical value.
[S1063-651%98)13207-5
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[. INTRODUCTION Finally, in Sec. V, we assemble the best theories and inves-
tigate the dependence of the energy on vibration velocity.
In this paper, we study granular materials where energy is

provided by a vibrating platesee Fig. 1a)]. In this system, Il. DESCRIPTION OF THE SYSTEM
two general classes of motion can be imagined, which we
will name “coherent” and “incoherent.” In the first case,
the particles move together in a coherent layer, bouncing at A sketch of the system is shown in Figlal A granular
some frequency related to the vibration frequency. This stat’€dium, modeled by a gas of inelastic disks, is contained in
exhibits surface waves, and has been the subject of muchPox of widthL and infinite height. The medium is pushed
recent work[1—3]. Another possibility is that the motion is against the bottom by a gravitational field with acceleration

incoherent. The particles remain suspended above the vibrad: EN€rgy is added to the system by the bottom of the box,
ing plate, with a density profile that—excluding which vibrates with period and typical velocityV. (In Sec.

fluctuations—remains constant throughout the vibration pelv C, we relateV to the maximum VeloCityVmay.) The

riod. This second state has also been the subject of receﬁhfancué?]rvgig'rlljtmng?]g?r'ﬁtesngopn&gr'difa?;;?ggﬁdzggrgg%ss the
experiments, simulations, and theorjds-10]. : P 9

In this paper, we study this second type of motion, Wesystem are the length measured in particle radii, the number

hf basi derstandi f the phvsical of layers of particles at rest=2aN/L, and the number of
search for a basic understanding ot the physical Processeg, ioie radii a particle, initially at rest, falls during one cycle
that govern the input and dissipation of energy. This is

. S _ . f a wall vibration,g7%/(2a). The description of the system
question of theoretical interest, because it provides a googd completed by specifying the particle-particle and the

test of kinetic theories of granular media. These theoriesy,ticle-wall collisions, and the wave form of the vibrating
modeled after the kinetic theory of gagdd—13 have been 4|, we use the three wave forms shown in Figh)1Wave
shown to have quantitative success only for unforced granuyrms A and B are convenient for theoretical analysis
lar media in the absence of gravi#2,14-16. However, [7 9 17, and wave formC is a computational convenient
incoherent vibrated granular materials may be an experimerhumerical approximation to a sine wave, constructed by
tally accessible system well described by these theoriegatching together parabolas. In Sec. IV C, we will estimate
[7,8,13. the effect of this approximation on the energy input at the
The paper is organized as follows. In Sec. I, we describeibrating wall.
the studied system in detail and set forth our notation. In Sec. We consider collisions with constant normal and tangen-
I, we review the literature. In Sec. IV, we check the previ- tial restitution coefficients. This collision model has been
ous results against our simulations, and construct some newidely studied and is relatively easy to analyze theoretically.
theories. In particular, we examine five topi¢s) the rate of The normal(tangential restitution coefficient for collisions
energy dissipation in particle-particle collisior®) the ef-  between particles is denoteg (8,), and for collisions be-
fect of particle rotationg3) the energy input by the vibrating tween the particles and the side walls(8,,). The vibrating
floor, (4) the energy dissipated by particle-wall collisions, floor is elastic ( =1) and smooth 8= —1). More details on
and (5) the ratio of kinetic to gravitational potential energy. the collision rule are presented in Appendix A.

A. Definitions
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B. General approach

'y
—
v

The ultimate goal of this paper is to find expressions for

the energieg, I%, andEgg in terms of the parametets g, V,

a, 7, m,ry,, ry, Bp andp,, together with a physical un-
derstanding of the system. The starting point of the quest is
the equation for the energy flow at steady state:

O
O
O

Pb=Dppt Dpw, (2

O

wherePy, is the power input by the bottorl ,, is the power
dissipated by particle-particle collisions, arl,, is the
power dissipated by particle-wall collisions. We will try to
express each of these quantities in termE @fnd the system
parameters. Then EQ2) will give an expression foE, and

(@) we will also understand what processes deternkine
In simulations, it is possible to monitor each of the three

(A) /\/\/\/\ quantities in Eq(2) or set each of them either to zero or to a

known constantD, can be set to 0 by using elastic par-
ticles, just as using elastic walls permits one toBgt=0.

B
(B) /l/‘/l/l P, can be set to a known value by driving the bottom wall

with waveformB [17]. We will discuss each of the three

S
O3
O
O

)
/A,

NI

L

terms in Eq.(2) and exploit this separability to construct and

©) /\/\/\/\ verify our theories piece by piece.

(b) C. Simulational approach
FIG. 1. (a) A sketch of the system studieth) Wave forms used We use the standard event-driven method, which has been
to drive the vibrating plate. previously used to study vibrated granular materials

[3,5,18,19. Its main approximation is to consider that colli-
We describe the state of the system with three types ofions are instantaneous, i.e., the time of contact during a

energy, each defined per degree of freedom, per parfige: ~ collision is 0. The main disadvantage of event-driven simu-

the translational kinetic energy of the particl&stheir rota- lations for granular materials is the occurrence of inelastic

: : o : collapse—an infinite number of collisions occurring in a fi-
tional energy, andgy their gravitational potential energy. ~. "= : : LY
These energies are calculated as follows: nite time[20,21]. To circumvent this problem, dissipation is

turned off when the inelastic collapse singularity is ap-
proached. A similar method has been used in other recent
work [3,19]. The fraction of dissipationless collisions is al-
ways less than 10* for the simulations shown here. In ad-
dition, we repeated the three simulations that had the most
maqéa N ) dissipationless collisions, approaching more closely the in-
= oN Z’l i 1) elastic collapse singularity, and found no measurable change.
In the simulations presented here, we use the particle ra-
dius to define the unit of distance, and the particle mass to
E =mg£ S (yi—ho) define the unit of mass. The unit of time is arbitrary. To
9 = apply our results to experimental systems, it is necessary to
introduce conversion factors based on the particle mass and
Here,v; is the translational velocity of thigh particle,w; is  the particle radius, and to chooseandg so thatgr?/a has
its angular velocity, andy; is its height above the time- the same value as the experimental system.
averaged position of the vibrating floor. The center of mass In order to vary the system parameters in a consistent and
of the particles at rest isy. We calculatéh, from Eq.(14) of ~ organized way, the following procedure was used. First,
Ref.[5]. The number of translationdtotationa) degrees of ‘“central” values were selected for all the parameters except
L0 ; ; V. ThenV is swept from small values to very large values,
freedom per particle isi (). In this paper, we con5|°der care being takenahat all simulations fall With¥n thge incoher-
exclusivelyo two-dimensional systems, wheme=2 andn  ent category discussed above. The central values used in this
=1.E andE are often called “granular temperatures.” This paper areN= 160, L=50, r,=0.95,r,,=1, g=1.0, andr
terminology is not meant to imply that a thermal equilibrium =1.0. Then for each parameter, two series of simulations are
exists in granular flows, but simply to draw an analogy be-run, one where the parameter is increased by a factor of 5,
tween these guantities and the temperature of an ideal gagnd another where it is decreased by a factor of 5. There are

which is proportional to the average energy per degree ofwo exceptions: t-r, (notr) is increased or decreased by a
freedom. factor of 5, andy is increased or decreased by a factor of 25.

E
™ =
=,

I
[u

3|

2N

Mo

>5°

N



PRE 58 ENERGY FLOWS IN VIBRATED GRANULAR MEDIA 815

Most of the quantities measured during the simulationsassumed that all particles possess the mean velocity. Thus,
must be averaged over long periods of time to obtain stabl&umaran obtained the same results as Warr, Huntley, and
results. To obtain a suitable averaging time, an “energy turndacques, except for the constant prefactor. Kumaran also in-
over time” 7g=E/P, was estimated. The averaging time Vestigated both wave forms andB. He obtained
was taken to be 2£ . It was verified that the actuag was —

. L. . — 2 1/2
always close to the estimated one. Initial transients were de- Dpp=Vmr/2(1-r)NmgHE/m) (73

termined by running each simulation over several averagin%nd
periods, and verifying that averages were not changing sig-
nificantly with time. m
<v>+2\/—_<v2>+0(mv3)), (7b)
7E
A. Experiments and theory of Warr, Huntley, and Jacques where the angle brackets indicate an average taken over one
Warr, Huntley, and Jacqué®] modeled vibrated granular P€"i0d- If a wave form is symmetr|c_,l|lll<2e wave formsand
media as an isothermal “atmosphere.” By integrating overC: then(V)=0, andP,~Nmg\¥(m/E)*?, as in Eq.(4), but

Pr,=Nmg

Ill. REVIEW OF PREVIOUS WORK

the “atmosphere,” one obtains when the wave form is asymmetriwave formB), then the
o first term of the series is honzero and dominant, so Ehat
Dpp=2(1—r5)NmgHE/m)*2, (3 ~NmgV.

Next, one can estimate the energy added by considering the D. Theory and simulations of McNamara and Barrat
density at the bottom of the “atmosphere.” The result for

wave formA is McNamara and Barrgtl7] studied the input of energy at

a vibrating wall in the absence of gravity. They also found a

P.=(1/2Nma\A(m/E) Y2 4 difference between wave fori@ and wave formsA andC.
b= (1/2NMGV(m/E) @ For wave formB, the power input by the vibration wall is
SettingPy=D,, yields Pp=pVL, wherep is the average pressure on the vibrating
wall. This equation can be derived by considering the en-
— m\? counter of a single particle with a moving wall at tirhge.
= 4H(1- rlzj) : ®  The particle’s change in ener@hE is related to its change in

momentumAp by AE=V(t,)Ap, whereV(t,) is the wall
This result was calculated for smooth particlgg, € —1),  Vvelocity at timet, . For wave formB, V(t, )=V always, so
with the system being driven by wave forf The authors it is easy to average over time and find that the energy input

also present experimental results suggesting is pVL. For wave formsA andC, the velocity of the plate is
- - not always the same when the particles hit the plate. How-
E~H "V° Eg~mgH~ g\/ %, (6)  ever, the probability of a particle hitting the plate at a given

phase is governed only by the quantityV, whereU is the
with »=0.6+0.03, §=1.41+0.03, v4=0.27x0.11, ands, velocity of the incoming particle. Therefore, for wave forms
=1.3+0.04. In contrast, the theory assumes that the gravited and C, P,=pVLf(U/V), where the functionf is un-
tional potential energy is always proportional to the kineticknown. To adapt these results to a system under gravity, one
energy with y= vg=1 and 6= 8,=2. Explaining the dis- setspL=Nmg, the weight of the granular material. The re-
crepancy between E@5) and Eq.(6) was one of the major Sult for wave formB,
motivations for our study. P,=NmgV, ®)
B. Simulations of Luding agrees with Eq(7b) for asymmetric wave forms. For wave
hformsA and C, P,=NmgV1{U/V), which coincides with

Luding and co-workers have studied this problem wit Eqs. (4) and (7) if f(U/V)=V/U.

numerical simulations. Simulations without rotatiga8]
give vg=~1, §43~1.5. Simulations including rotation, care-

fully planned to duplicate the experimenf§] give v, IV. RESULTS

=0.76+0.11 and5,=1.60=0.10. WhenV is made very A. Particle-particle dissipation of smooth particles
large and dissipation at the walls is suppresggd(], & _ _

—2. Lee[6] obtained results that are qualitatively similar. 1. Simulations

Luding [18] used a slightly different collision model which The two expressions fdD,, in Egs. (3) and (7a) differ

accounts for Coulomb friction. In the limit of infinitely only by a constant. We measure this constant by calculating
strong friction, it reduces to the model used in this paper.

C. Theory of Kumaran Cpp= Der = : 9
' (1—r,)NmgHE/m)*2
Kumaran[9] followed the same approach as Warr, Hunt-
ley, and Jacque¥’], except that he assumed that the particleEquation (3) predicts C,,=4 and Eq.(7a predicts C,,
velocities are distributed according to a Maxwellian velocity = y27~2.5. [The factor of 2 difference between the pre-

distribution. On the other hand, Warr, Huntley, and Jacqueslicted values o€, and Egs(3) and(7d) arises from replac-
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3 . . about one and a half orders of magnitude, so it is difficult to
say whether it is really logarithmic, or whether the logarithm
______________________ IR 24 b C X TTTY is only a convenient approximation.
Sl Ao
Fauk 2. A physical argument
2 f tcegt‘;g ] We now derive the scaling relation from physical argu-
’;9:0:99 ments. This not only permits us to understand whyr}, is
g ON=32 better than 1—r,23, but also enables us to extend the theories
© ® N=800 to account for particle rotations and dissipation at the side
oo walls.
r Vg=0.04 | From general kinetic theory arguments in the style of Haff
¥ g=25 [22], we argue that the dissipation due to collisions between
At=0.2 particles will be
At=5
D N(AE)( U) (10
O L 1 L L pp"\’ —_ |,
107 10° 10' 10° 10° 10° S
(h-hy)/a where(AE) is the average energy lost per collisidh,is a

typical particle velocity, and is a typical particle separation.
FIG. 2. A test of the scalings in Eq63) and(7a). Here,C,,is ~ Multiplying (AE) by the collision frequency/s gives the
plotted against the height of the center of massN~'Sy; above  energy dissipation per particle per unit of time. Then multi-
its position at zero energyh,. Both equations predict that,,  plying by the number of particles gives the total energy dis-
should be a constant, which is indeed true for large heiftilste ~ sipation in the system.
granular media The central simulation ha=160, r,=0.95, L Next, we must relaté AE), U, ands to E and the inde-

=50,9=1, an.d7-=1;\./ is vqried over sgvgral orders of magnitude. pendent parameters. First of all, E@\9) in the Appendix
The other series of simulations, each indicated by a different sym- hows that(AE)~(1— rS)E for smooth (8p= ~1) par-

bol, have the same parameters as the central one, except for tﬁeI N . . ical veloci ke the id
parameter shown in the legend. The bottom is driven with wavdicles. Next, sincdJ is a typical velocity, we make the iden-

form B, and the side walls are replaced by periodic boundary contification U~ (E/m)*2 Finally, to estimate the particle sepa-
ditions. The dashed line shows the constant predicted by7y.  rations, we turn to a one-dimensional model. We imagine a
column ofn particles, suspended in a gravitational field by
ing 1—r,23 with 2(1-rp). Forr,~1, 1—r§~2(1—rp), so the vibrating plate at the bottom of the column. The column
one might think that these two quantities would be equivaiS in a steady state, so the net force due to collisions on each
lent. However, the difference ag=0.75 is sufficiently great ~ Particle, averaged over time, must balance the gravitational
to show that t-r, collapses the data better than- 12 .] forcem.g. Con5|derg particle somewhere in the colur_nn, with
Figure 2 shows that the scaling successfully collapses thM particles above it (XM <n). In a steady state, this par-
simulation data onto a single curve. The figure can be dilicle must receive a momentum fluM(+1)mg from the
vided into two regions: the dilute regioh,—h,>50a, and particle below it and transfdvimg to_the partlcle above it.
the dense regiorh —hy<50a. In the dilute regionC,, is a The momentum transferred per collision is¥i,)mU, and
constant, and quite close to the value predicted by(Eg.  the collision frequency idJ/s, hence the momentum flux
The points collapse into families determined by the particuWill be proportional tom(1+r;)U%/s. Equating the two ex-
lar value of H=2aN/L of each simulation. However, the Pressions for the momentum flux
scaling captures the dependencehm ,, g, and to within >
the noise in the simulations. In thg dense regibr; hg Mmg=(1+rp)mU/s, (1)

<50a, all simulations collapse tlghtly onto a cun€p, gnd solving fors givess~(1+rp)U2/(Mg). M will scale as
~log[(h—hg)/a]. The reason for this dependence@f, on and in two dimensions can be approximated by the
(h—hbo)/a IS unhkntl)wn. ('t IS gst dl:je tozthée increasing den- numper of layers of particlesl =2Na/L. Again usingU?
sity, because the lowd (N=32 andL =250 curves in Fig. _ =

2), as well as additional simulatior(®ot shown, also col- I?é?erme hgxfsex(rlezgipczfs/(fgga?d U into Eq. (10), we
lapse onto the same curve. Nor is the deviation due to waves, o 9 P a- '
propagating upwards from the vibrating plate; the agreement

of the 7=0.2 curve with the rest of the simulations excludes

this. We also tried an alternate way of adding energy: the

bottom plate is held fixed, and when a particle hits the bot-rhjs agrees in order of magnitude with the scaling tested in
tom, it is given a velocity drawn from a Maxwellian distri- Fig. 2 and, in addition, explains why the- , of Eq. (9)

bution. But these simulations also reproduce the curve Show@ollapses the data better than the ﬂ% of Egs.(3) and(7a).
in Fig. 2. Replacing periodic boundaries with elastic walls

modifies Fig. 2 only slightly.

Fitting a straight line to the points with<<h—hy<50a
(and excluding theN=800 andL=10 pointg gives C, All the simulations and theories presented so far in this
~0.30 log (h—hg)/a]+1.35. This relation is valid over only paper consider “smooth” particless,= — 1), thus ignoring

D pp=Cpp(1—1 p)NmgHE/m) Y2, (12)

B. Particle-particle dissipation for rough particles
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rotation. But particles in granular flows rotate, and our theory 3

would not be complete without considering rotation. ' I
We now revise our argument for the scaling®yf, in Sec. * R x
IV A, to take into account rotation. The only place wherethe  [77777 777777 g *;{Xt'**f "‘§‘x$'>?
smoothness of the particles was a consideration was in esti
mating the change in energy per collisihE) in Eq. (10), oL *B =10 ,
so we use the more complicated expression given in the Ap- *% 05E=_o_5
pendix, Eq.(A9): f§ +8,=0.0
08 ¥ ©B,=0.5
_ q(l_,Bz) — o XB,=1.0
(1 2\E_ p
(AE)=—-2(1-rp)E 1+q (E+E/g). (13 . |
This involvesE as well asE, so we draw from a recent paper
[23] on the ratio of translational to rotational kinetic energy
in granular flows. One of the principle results of this paper is
that 0 g > S .
10 10 10 10 10
E 1420-5, (h-hy)/a
Ksg=—7"7", (14
E a(1+p8p) FIG. 3. Atest of the scaling in E¢17), which defineC,,. The

parameters for the simulations afe=160,L=50,g=1, r=1, and
in vibrated granular flows. This convenient fact enables us tép=0.95, with 3, given in the figure and/ varying between 100
and 0.35. The dotted line and tigg=—1 simulation also appear in
Fig. 2. Wave formB is used, and the side walls are replaced by
periodic boundaries.

replaceE with E/K. The result is

q(1-8})

— _ 2
(AB)=—2|(1-r)+ Tmg

E=-2[1-r}?]E
(15 not captured by the scaling. An analogous plot for wave form
C is similar.
To find a better way to calculat, for wave formsA and

C, we try the scaling suggested by Refl7]: P,
=NmgV{U/V) with U= (E/m)¥2 Let us now consider the
) q(1—,3§) unknown functionf(U/V) in the limits U/V—~ and U/V
f§2=rp—m- (160  —0. In the first limit, the particles are moving infinitely
a7 Fe more quickly than the wall, and thus have an equal probabil-
ity of hitting the wall when it is ascending or descending. In
this case, the net energy input by the wall will be 0 because

with the “effective restitution coefficient,” governing the
loss of energy,

Inserting(AE)~(1—r 2)E into Eq. (10) gives

_e%x2
—_c° p =/m) 12 . . |
Dpp=Cpp 1+, NmgHE/m) (17 a4l |
as the analogy of Eq12). This equation also defines a con- 1.2 + oo .
o . . o . P OSUY 6) B 4 S, I N
stantcpp, in analogy withCp,,. We plotC,,in |°:|g. 3 .There (-b a0 g-)!!-g%g_ "9"s
remains a weak dependence @p, but C,,=C,, within the 1.0 ¢ @@;—! ,43.,0,0509090 ]
. . 0900,
accuracy of the simulations. v
-08m .
- o 7 aty
C. Energy input 0.6 | |
We now turn our attention to the energy added by the @ @+-——-—-----+--+-o " -
vibrating floor. We test first the simplest result: E®), 0.4 r 8
which applies only to wave formB. Reviewing all simula-
tions shown in Fig. 2, we find that the largest deviation from 0.2 | esssesenanes
Eq. (8) is 1.6%, with most others much 1e$80% of the

simulations deviate by 0.5% or lgs§his equation is accu- 0.0 = o 5 7 3 4
rate because it is independent of the velocity distribution of (h-h)/a
the particles, and can be derived from the conservation of o

momentun{17]. _ FIG. 4. A test of Egs.(4) and (7b): we plot C,

For wave form A, Refs' _[7’9] _predlct _Pb =P, /[Nmg\®(m/E)'?] for the symmetric wave form. The sym-
~NmgV¥(m/E)"% We test this scaling against the simula- pols and parameters of the simulations are the same as in Fig. 2,
tions in Fig. 4. We see that the scaling is only partially suc-except that the bottom plate is driven by wave fofrinstead of
cessful. The rescaled power input varies by as much as wave formB. The dashed lines show the constants predicted by
factor of 5, and there is a strong dependenceHda —r ) Egs.(4) and(7b).
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T T T 3

* Center 10 ' ' ‘
<&r1,=0.75 1 %* Center
*r,=0.99 < e_w=0.75
ON=32 *e_w=0.99
® N=800 1 ON=32
DL=10 > | ®N=800
= mL-250 100 & graro 1
= v g=0.04 | m =250 o A
£ V¥ g=25 VvV g=0.04 o i
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0 04t \ 7 101 L ATS5 i
O
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0 1 2 3 4 5 107 107 10° 10’ 10° 10°
unv v
FIG. 5. A graph off(U/V)=P,/(NmgV), with U= (E/m)Y2 FIG. 6. A test of the scaling in Eq(19), where Cp,
The parameters and symbols of the simulations are the same as #(D /D) (L/a)(E/E,)*? is linear in v=(h—h,)/(aH)=L(h
Fig. 2, except that wave forrA is used. —hg)/(2Na?). The dotted line i€ pw=1.45+0.90%. These values

were obtained by fitting all the points on the graph except those of
the energy gained by particles during the ascending phase 8¢ 1argeH simulations [ =10 andN=800). These simulations

lost during the descending phase. Bsecomes smaller, the have thg sgme param_eter values as those in Figs. 2, 4, ahd 5, except
particles have a higher probability of hitting the wall during tat periodic boundaries have been replaced by walls wgthr,
its ascending phase, and herigebecomes positive. Finally, andgy,=—1.
in the limit U—0 the particles can hit the wall only during
the ascending phase, so wave fofnbecomes equivalent to
wave formB, sof(U/V)—1. This limiting value off is also
attained for wave fornC if V=2V,,,,/3. In all casesy is
equal to a space average of the velocity of the plate during its
ascending phasey=A"1f5V(y)dy, where y=A is the Finally, we consider dissipation of energy through colli-
maximum height attained by the plate. When the platesions between the particles and the side walls. There is no
sweeps through a motionless gas of particiéss the aver- theory for D, in the literature. Nevertheless, we find that
wave form, a similar calculation giveg= 7V /4.

The unknown functiorf is shown in Fig. 5 for wave form
bunched together depending on the value of-(})H. The  to the specific volume or inverse densi,,(v) is a linear
function f is well approximated by an exponential, so that fynction, andE, is the kinetic energy per degree of freedom

state, the relevant parameter describing the forcing is no
longerV, but the acceleratioN/ 7.

D. Effect of side walls

a

D pw= Cpw(v)Dpp L

age plate velocity seen by the particle@ssuming all par- Dy, can be estimated by

Ex 3/2

= 19
A. An analogous plot for wave forr@ is similar. For wave

ticles collide only once with the plateFor the sinusoidal
forms A and C, points fall on a single curve, but they are wherev=(h—h,)/(aH)=L(h—h)/(2Na?) is proportional

P,=Nmg\Vexg — aU/V]. (18 in the x component of the particle veIocitiesEX
=m(2N) " '2vZ. In a gas at thermal equilibriung,/E
Least-squares fits giver,=0.353+0.002, andac=0.475 = 1, but in these simulationg,, /E can attain values as high

+0.003.(Of courseag=0.) We note thaw,/ac~3/4. Fig- &S 0.2. The functiol€,(v) is shown with the data from the

ure 5 does not prove thdtis an exponential, because we simulations in Fig. 6. The simulations agree well_with Eq.
have calculated over less than one order of magnitude. &?])S except for the largd (L=10 andN=800) simula-
S%Vg\?v\/e(erriae\l/\r/] srx gosrl[(raer:it\c;iltlﬁnae.better approximationffeian The result Eq:(19) can be_ gnderstood as a gontinuation
Note that in all scalingsP,, depends on the plate motion PEWeen two limits. In the limit o<1 (dense limi}, Eq.
only throughV and not throughr. This differs from previous (19 becomes Dy, ~D(a/L)(E,/E)*% The factor of
simulations, which suggest thBt, drops dramatically when (E,/E)%? appears because thevelocities alone determine
7 is below a critical valug4]. However, Ref[4] used a the frequency of collisions with the wall and the amount of
soft-sphere simulation method, where particles remain irenergy lost. The factor cd/L appears because in this limit
contact during a finite time while colliding. H approaches the particles remain tightly packed and rarely change places.
this contact time, the efficiency of the forcing will drop. On The ratio betwee,, and D, will be proportional to the
the other hand, it is made very large, the granular material ratio between the number of particle-particle contacts and the
dissipates most of its energy during one vibration cycle, anchumber of particle-wall contacts. Geometrical considerations
the transition to the coherent state occurs. In the coherershow that these ratios are of ordsiL.
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FIG. 8. The ratio of translational kinetic enerﬁ/to gravita-
tional kinetic energyEy scaled by I, and plotted against=(h
—hg)/(aH)=L(h—hg)/(2Na?), for the simulations in Fig. 2.

sions is(E,)~(1—r2)E, (note thatr,=r,), and that the
typical x velocity will be U,=(E,/m)¥?, Eq.(19) becomes

DpW~N<EW>(Ux/L)- (20

The similarity between this equation and E40) for D,
permits the following interpretation: in the dilute limit, the
particles are bouncing back and forth between the two side
walls. The factotJ, /L gives the frequency of collisions with
the wall, so thatE,)(U,/L) gives the rate of energy loss
per particle. There ald particles, so a factor dfl appears in

Eq. (20).

The deviation of the largel simulations from Eq(19) is
probably due to their different mass distribution. These simu-
lations differ from the others because they form a dense plug
of particles suspended by a dilute “hot” region. In contrast,
the others have a density maximum near the bottom, similar
to a normal atmosphere. An additional curiosity is convec-
tion, which appears in the larde simulations(solid circles
in Fig. 6). Figure 7 shows the motion of all the particles
during one cycle for & =800 simulation, revealing a circu-
lation of particles within the plug. WheX is decreased be-
low a critical value, the circulation ceases, and this critical
value of V corresponds to the break in tié=800 curve
(solid circles in Fig. 6. We have not studied this convection
in detail.

A further complication arises when the walls are rough
(Bw#* —1). One must decide whether the walls move with
the vibrating bottom or not; i.e., whether the bottom is a
piston moving vertically between the stationary walls, or

FIG. 7. Streaklines showing the motion of each particle duringWhether the particles are contained in a box which is shaken.
one cycle of the wall vibration. The solid dot shows the position ofIf the side walls also move, then energy can be input at the
the particle at the beginning of the wall vibration, and the line Side walls as well as at the botta(ire., D, can be negative
shows its motion during the cycle. The simulation s 800,r,  [5]. In this paper, we always consider the side walls to be
=r,=0.95,8,=B,=—1,L=50,9=1, 7=1, andV=15.5 with  stationary.

wave formB.
In the limit of v>1 (dilute limit), Eq.(19) becomegafter E. Gravitational potential energy
using Eq.(7a) for Dyl DpW~(1—r§)NE3X’2/(m1’2L). Then, As shown in Sec. IVAD,, is a known function of the

realizing that the average energy lost in particle-wall colli-system parameters, the energy, éindhy. We would like to



820 SEAN McNAMARA AND STEFAN LUDING PRE 58

10 , cients. To close Eq21), expressions fori(—hg)/a andEX

35;’32 \ n_eed_to be supplied. We assunte-(h,)/a= ZE/(mga) and

;Zﬁpfg'g' :wig'g 605 E,=E, which are true in a gas of elastic hard spheres under
P T B gravity (rp,=1, B,=*1, V=0). These assumptions hold
approximately for granular media, except in some extreme

cases.

We test this equation against simulations in Fig. 9. The
parameters of the central simulations &e-50, a=0.05
cm,L=20a, r,=0.9,g=981 cm/€, 7=0.01sr,=1.0, and
Bp=Bw=—1, with wave formC. These parameters were
chosen to mimic the simulations in Fig. 11 of Rigg]. There
remain three differences between these simulations and those
of Ref.[5]. First, Ref.[5] uses a more complicated collision
rule, where the tangential restitution coefficient varies be-
10" 162 10° tween—1 and an upper limiB,, depending on the impact

V.. (cm/s) parameter. In our simulations, the tangential restitution coef-
ficient is the same for all collisions. Second, Rigf] used
slightly polydisperse spheres, whereas we use monodisperse
spheres. Finally, we replace the sinusoidal wave form of Ref.
[5] by wave formC. In spite of these differences, the simu-
mlations presented here show the same behavior as those of

2 /82)

E/m (cm

FIG. 9. A test of the theoretical results from E@1). The cen-
tral simulations haveN=50, a=0.05 cm, L=20a, r,=0.9, ¢
=981 cm/$, 7=0.01 s,r,=1.0, andB,=B,=—1, with wave
form C. The other simulations are the same, except for the paral

eters given in the figure legend. The solid lines give the results oRef' [5]. . . .
the theory presented in E1). The dotted lines give the theory W€ show two versions of the theory, one which takes into

without taking into account the logarithmic dependencecgfon  account the logarithmic dependence@y, (the solid lineg
h—ho, i.e., with Cpp=\27. and the other which does néthe dotted lines The solid

lines reproduce the observed dependeBeeV®? for V.

eliminate this dependence dn-h, before combining our <100 cm/s, whereas the dotted lines shBw V2. Thus, the
results forDp,, Py, andDy,,. In order to do this, we plotin  puzzling scaling observed in previous wdi, 7] is due to
Fig. 8 the ratioE/(r,Eg) [where E;=mg(h—ho) is the the logarithmic dependence @, on h—h,. This depen-
gravitational potential energy per parti¢l@his scaling suc- dence does not yet have a theoretical explanation.
cessfully collapses the data onto a single curve reminiscent For V5,100 cm/s, there is a significant disagreement
of Fig. 2. We note thah must be carefully calculated;fifis  for the simulations with dissipative walls (# 1), which can
taken to be the height above the lowest position of the floope traced back to the failure of the assumptig E.
instead of the height above the average position of the floor,
the simulations witlg72= 25 fall off the curve. VI. CONCLUSIONS

Gravitational energy and kinetic energy are often assumed
to be equivalent. Figure 8 should be a cautionary note. The This paper has studied the two-dimensional vibrated

variation of E/E with v has not been theoretically investi- 9ranular media, using the energy balance @yto organize
gated. our investigation. Reviewing existing theories, we find the

particle-particle dissipation is well understood in the dilute

limit. We were able to show that E¢7a) is very accurate in

the absence of side walls. This result was extended to deal
To summarize and test the formulas My, P,, and  with rough rotating particles with a constant tangential resti-

D, presented in the previous sections, we calculate the prdution coefficient. More work is needed to account for the

dicted value ofE for a set of simulations from a previous More realistic situation of variable tangential restitution. In

paper[5]. Using Eqs.(17), (18), and(19) to rewrite the en- the dilute limit, particle-particle dissipation is well accounted

parameters antd = (E/m)¥2 gives unexplained dependence on the height of the center of mass

above the vibrating bottorh—h,, well approximated by a

V. SUMMARY AND TEST

%2 logarithm. It is this departure from the dilute theory which
gVexp —aU/V)= CppH—pg HU accounts for th&~ V32 scaling observed in previous work.
Tp The cause of this departure is not yet known: it is not due to
%2 =\ 32 a change in density, since it depends only on the height of
w a\ [ Eyx . .
+Cpp—gHUCpW(v)<_) (:) , the center of mass. Nor can it be explained by waves propa-
141y LI\ E gating upwards from the bottom. Furthermore, the ratio be-

(21  tween potential and kinetic energl/Egy, can vary by al-
most a factor of 3. This variation is not understood, and
where C,,=min(0.30logh—hy]+1.35y27), and C,, hampers the ability of our theory to predict-hy.
=1.45+0.90%. In writing down Eq.(21), we have assumed The energy input by the vibrating plate is also well known
that Eqg. (16) holds for the particle-wall restitution coeffi- for the special driving wave formB in Fig. 1(b). For more
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conventional wave forms, the energy input is well approxi-where the equation for particle(2) takes the— (+) sign in
mated by the exponentially decaying functionld®/ shown  the top line above. To derive E¢A2) we used momentum

in Eq. (18). conservation and the definitions
To our knowledge, this is the first paper to treat particle- L
wall dissipation in detail. Our theory accurately predicts en- v,=[(vyi—v,)-n]-n,
ergy losses at the wall, but requires knowing the difference
between the horizontal and vertical kinetic energies. A more V=U1—V, Uy, (A3)
complete theory would have to estimate this difference from
the system parameters. v,=—a(w;+ wy) XN,
ACKNOWLEDGMENTS Here,v, is the normal component af., v, is the tangential

component due to translation, ang is the tangential com-
We acknowledge the generous support of the Alexandeponent due to rotation. Note that=v,+v,+v, .
von Humboldt Stiftung and the DFG, SFB 3826). The change in translational energy is

APPENDIX: THE COLLISION RULE AE=—Qu2—S[Cyv2+Cp(vi-v,)—Cipv?], (A4)

Consider a collision between two particles of radaus it the positive prefactorsQ=m(1—r2)/4, S=mq(1

Let v, be the translational velocity of the first particte, its + B[ A(1+ q)2], and the constant€,, =2+ q(1— Bp)

angular velocity, and, its position at the time of contact. C,=2-2q8,, andCz=q(1+ 8,). Likewise, the change
The quantitiew ,, w,, andr, are the analogous quantities for ;,“otational gnergy is P

the second particle. Then the relative velocity at the point of

contact is AE=—§ - C 02+ Cpo(vy-v,)+Crv?],  (AB)

v.=v,-v,—alw+ wz)xﬁ_ (A1) where the constants a@,=(1+8;), C;,=2(q— 8,), and
A Cr3=20q+1—B,. Note that theC are positivelonly C,, can

Here, the unit vecton=(r,—r,)/|r,—r,| points along the also be negativeso that the signs in EqgA4) and (A5)
line connecting the centers of the colliding particles, fromindicate the direction of energy transfer between the degrees
particle 2 towards particle 1. The change in the normal comef freedom.
ponent ofv is parametrized by the “coefficient of normal  Equations(A4) and (A5) can be added together to give
restitution” r ,, so thatv/-n=—r,(v.-n), where the prime _ 2 2
denotes the ?/elocity after the collision. Whep=1, energy AE=—-Quy—S(1+q)(1-Bp)(vit+v)e.  (A6)

is conserved, and energy dissipation requires p<1. The In this paper, we need to know the average energy lost per

coeff|C|e.nt of taAngennaI restAltunoer IS ] defined analo- collision. Using angle brackets to denote averages over col-
gously, i.e.,vgXn=—By(vXn). Energy is conserved for |isions, we have

Bp=—1 (perfectly smooth surfacgsand for 8,=1 (per-

fectly rough surfaces In the first case they; have no effect (AE)=—Q(va—S(1+q)(1-Bp){(vi+v,)?). (A7)

on the outcome of the collision and do not change during the

collision. Energy is dissipated whesy, lies between these Assuming that the particles’ velocities are distributed accord-

two extremes. ing to a Maxwellian velocity distribution and that their posi-
From the definitions of , and 8, and the assumption that tions and velocities are uncorrelated gives

the interaction takes place only at the point of contact, it is

possible to derive the collision rules (v3y=8E/m, ((vi+v,)?)=4(E+ E)/m,  (A8)
, _l4r,  _a(l+8p) in two dimension$23]. Thus the total energy lost during one
V127012775 "onT 2q+2p (vitvy), collision is 23 ¥ °
, 1+Bp - o= Q(l—ﬂg) — o
aw; ,=am; ,+ 2q—+2[n><(vt+vr)], (A2) <AE):—2(1—rp)E——1+q (E+E/g). (A9)
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