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Energy flows in vibrated granular media
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We study vibrated granular media, investigating each of the three components of the energy flow: particle-
particle dissipation, energy input at the vibrating wall, and particle-wall dissipation. Energy dissipated by
interparticle collisions is well estimated by existing theories when the granular material is dilute, and these
theories are extended to include rotational kinetic energy. When the granular material is dense, the observed
particle-particle dissipation rate decreases to as little as 2/5 of the theoretical prediction. We observe that the
rate of energy input is the weight of the granular material times an average vibration velocity times a function
of the ratio of particle to vibration velocity. ‘‘Particle-wall’’ dissipation has been neglected in all theories up to
now, but can play an important role when the granular material is dilute. The ratio between gravitational
potential energy and kinetic energy can vary by as much as a factor of 3. Previous simulations and experiments
have shown thatE}Vd, with d52 for dilute granular material, andd'1.5 for dense granular material. We
relate this change in exponent to the departure of particle-particle dissipation from its theoretical value.
@S1063-651X~98!13207-5#

PACS number~s!: 81.05.Rm, 46.10.1z, 05.60.1w,
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I. INTRODUCTION

In this paper, we study granular materials where energ
provided by a vibrating plate@see Fig. 1~a!#. In this system,
two general classes of motion can be imagined, which
will name ‘‘coherent’’ and ‘‘incoherent.’’ In the first case
the particles move together in a coherent layer, bouncin
some frequency related to the vibration frequency. This s
exhibits surface waves, and has been the subject of m
recent work@1–3#. Another possibility is that the motion i
incoherent. The particles remain suspended above the vi
ing plate, with a density profile that—excludin
fluctuations—remains constant throughout the vibration
riod. This second state has also been the subject of re
experiments, simulations, and theories@4–10#.

In this paper, we study this second type of motion. W
search for a basic understanding of the physical proce
that govern the input and dissipation of energy. This is
question of theoretical interest, because it provides a g
test of kinetic theories of granular media. These theor
modeled after the kinetic theory of gases@11–13# have been
shown to have quantitative success only for unforced gra
lar media in the absence of gravity@12,14–16#. However,
incoherent vibrated granular materials may be an experim
tally accessible system well described by these theo
@7,8,13#.

The paper is organized as follows. In Sec. II, we descr
the studied system in detail and set forth our notation. In S
III, we review the literature. In Sec. IV, we check the prev
ous results against our simulations, and construct some
theories. In particular, we examine five topics:~1! the rate of
energy dissipation in particle-particle collisions,~2! the ef-
fect of particle rotations,~3! the energy input by the vibrating
floor, ~4! the energy dissipated by particle-wall collision
and ~5! the ratio of kinetic to gravitational potential energ
PRE 581063-651X/98/58~1!/813~10!/$15.00
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Finally, in Sec. V, we assemble the best theories and inv
tigate the dependence of the energy on vibration velocity

II. DESCRIPTION OF THE SYSTEM

A. Definitions

A sketch of the system is shown in Fig. 1~a!. A granular
medium, modeled by a gas of inelastic disks, is contained
a box of widthL and infinite height. The medium is pushe
against the bottom by a gravitational field with accelerat
g. Energy is added to the system by the bottom of the b
which vibrates with periodt and typical velocityV. ~In Sec.
IV C, we relate V to the maximum velocityVmax.) The
granular medium consists ofN particles of radiusa and mass
m. Convenient nondimensional parameters describing
system are the length measured in particle radii, the num
of layers of particles at restH[2aN/L, and the number of
particle radii a particle, initially at rest, falls during one cyc
of a wall vibration,gt2/(2a). The description of the system
is completed by specifying the particle-particle and t
particle-wall collisions, and the wave form of the vibratin
wall. We use the three wave forms shown in Fig. 1~b!. Wave
forms A and B are convenient for theoretical analys
@7,9,17#, and wave formC is a computational convenien
numerical approximation to a sine wave, constructed
patching together parabolas. In Sec. IV C, we will estim
the effect of this approximation on the energy input at t
vibrating wall.

We consider collisions with constant normal and tang
tial restitution coefficients. This collision model has be
widely studied and is relatively easy to analyze theoretica
The normal~tangential! restitution coefficient for collisions
between particles is denotedr p (bp), and for collisions be-
tween the particles and the side wallsr w (bw). The vibrating
floor is elastic (r 51) and smooth (b521). More details on
the collision rule are presented in Appendix A.
813 © 1998 The American Physical Society
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814 PRE 58SEAN McNAMARA AND STEFAN LUDING
We describe the state of the system with three types
energy, each defined per degree of freedom, per particle:Ē is

the translational kinetic energy of the particles,E° their rota-
tional energy, andEg their gravitational potential energy
These energies are calculated as follows:

Ē5
m

2Nn̄
(
i 51

N

v i
2 ,

E° 5
mqa2

2Nn°
(
i 51

N

v i
2 , ~1!

Eg5mg
1

N (
i 51

N

~yi2h0!.

Here,v i is the translational velocity of thei th particle,v i is
its angular velocity, andyi is its height above the time
averaged position of the vibrating floor. The center of m
of the particles at rest ish0. We calculateh0 from Eq.~14! of
Ref. @5#. The number of translational~rotational! degrees of

freedom per particle isn̄ (n° ). In this paper, we conside

exclusively two-dimensional systems, wheren̄52 and n°

51. Ē andE° are often called ‘‘granular temperatures.’’ Th
terminology is not meant to imply that a thermal equilibriu
exists in granular flows, but simply to draw an analogy b
tween these quantities and the temperature of an ideal
which is proportional to the average energy per degree
freedom.

FIG. 1. ~a! A sketch of the system studied.~b! Wave forms used
to drive the vibrating plate.
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B. General approach

The ultimate goal of this paper is to find expressions

the energiesĒ, E° , andEg in terms of the parametersL, g, V,
a, t, m, r p , r w , bp and bw , together with a physical un
derstanding of the system. The starting point of the ques
the equation for the energy flow at steady state:

Pb5Dpp1Dpw , ~2!

wherePb is the power input by the bottom,Dpp is the power
dissipated by particle-particle collisions, andDpw is the
power dissipated by particle-wall collisions. We will try t
express each of these quantities in terms ofĒ and the system
parameters. Then Eq.~2! will give an expression forĒ, and
we will also understand what processes determineĒ.

In simulations, it is possible to monitor each of the thr
quantities in Eq.~2! or set each of them either to zero or to
known constant.Dpp can be set to 0 by using elastic pa
ticles, just as using elastic walls permits one to setDpw50.
Pb can be set to a known value by driving the bottom w
with waveform B @17#. We will discuss each of the thre
terms in Eq.~2! and exploit this separability to construct an
verify our theories piece by piece.

C. Simulational approach

We use the standard event-driven method, which has b
previously used to study vibrated granular materi
@3,5,18,19#. Its main approximation is to consider that coll
sions are instantaneous, i.e., the time of contact durin
collision is 0. The main disadvantage of event-driven sim
lations for granular materials is the occurrence of inelas
collapse—an infinite number of collisions occurring in a
nite time@20,21#. To circumvent this problem, dissipation
turned off when the inelastic collapse singularity is a
proached. A similar method has been used in other rec
work @3,19#. The fraction of dissipationless collisions is a
ways less than 1024 for the simulations shown here. In ad
dition, we repeated the three simulations that had the m
dissipationless collisions, approaching more closely the
elastic collapse singularity, and found no measurable cha

In the simulations presented here, we use the particle
dius to define the unit of distance, and the particle mas
define the unit of mass. The unit of time is arbitrary. T
apply our results to experimental systems, it is necessar
introduce conversion factors based on the particle mass
the particle radius, and to chooset andg so thatgt2/a has
the same value as the experimental system.

In order to vary the system parameters in a consistent
organized way, the following procedure was used. Fi
‘‘central’’ values were selected for all the parameters exc
V. ThenV is swept from small values to very large value
care being taken that all simulations fall within the incohe
ent category discussed above. The central values used in
paper areN5160, L550, r p50.95, r w51, g51.0, andt
51.0. Then for each parameter, two series of simulations
run, one where the parameter is increased by a factor o
and another where it is decreased by a factor of 5. There
two exceptions: 12r p ~not r p) is increased or decreased by
factor of 5, andg is increased or decreased by a factor of 2
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PRE 58 815ENERGY FLOWS IN VIBRATED GRANULAR MEDIA
Most of the quantities measured during the simulatio
must be averaged over long periods of time to obtain sta
results. To obtain a suitable averaging time, an ‘‘energy tu
over time’’ tE5Ē/Pb was estimated. The averaging tim
was taken to be 20tE . It was verified that the actualtE was
always close to the estimated one. Initial transients were
termined by running each simulation over several averag
periods, and verifying that averages were not changing
nificantly with time.

III. REVIEW OF PREVIOUS WORK

A. Experiments and theory of Warr, Huntley, and Jacques

Warr, Huntley, and Jacques@7# modeled vibrated granula
media as an isothermal ‘‘atmosphere.’’ By integrating ov
the ‘‘atmosphere,’’ one obtains

Dpp52~12r p
2!NmgH~Ē/m!1/2. ~3!

Next, one can estimate the energy added by considering
density at the bottom of the ‘‘atmosphere.’’ The result f
wave formA is

Pb5~1/2!NmgV2~m/Ē!1/2. ~4!

SettingPb5Dpp yields

Ē5
mV2

4H~12r p
2!

. ~5!

This result was calculated for smooth particles (bp521),
with the system being driven by wave formA. The authors
also present experimental results suggesting

Ē;H2 n̄Vd̄ Eg;mgH2ngVdg, ~6!

with n̄50.660.03, d̄51.4160.03, ng50.2760.11, anddg
51.360.04. In contrast, the theory assumes that the grav
tional potential energy is always proportional to the kine
energy with n̄5ng51 and d̄5dg52. Explaining the dis-
crepancy between Eq.~5! and Eq.~6! was one of the major
motivations for our study.

B. Simulations of Luding

Luding and co-workers have studied this problem w
numerical simulations. Simulations without rotation@18#
give ng'1, dg'1.5. Simulations including rotation, care
fully planned to duplicate the experiments@5# give ng
50.7660.11 anddg51.6060.10. WhenV is made very
large and dissipation at the walls is suppressed@5,10#, d
→2. Lee @6# obtained results that are qualitatively simila
Luding @18# used a slightly different collision model whic
accounts for Coulomb friction. In the limit of infinitely
strong friction, it reduces to the model used in this paper

C. Theory of Kumaran

Kumaran@9# followed the same approach as Warr, Hun
ley, and Jacques@7#, except that he assumed that the parti
velocities are distributed according to a Maxwellian veloc
distribution. On the other hand, Warr, Huntley, and Jacq
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assumed that all particles possess the mean velocity. T
Kumaran obtained the same results as Warr, Huntley,
Jacques, except for the constant prefactor. Kumaran also
vestigated both wave formsA andB. He obtained

Dpp5Ap/2~12r p
2!NmgH~Ē/m!1/2 ~7a!

and

Pb5NmgS ^V&12A m

pĒ
^V2&1O~mV3!D , ~7b!

where the angle brackets indicate an average taken over
period. If a wave form is symmetric, like wave formsA and
C, then^V&50, andPb;NmgV2(m/Ē)1/2, as in Eq.~4!, but
when the wave form is asymmetric~wave formB), then the
first term of the series is nonzero and dominant, so thatPb
;NmgV.

D. Theory and simulations of McNamara and Barrat

McNamara and Barrat@17# studied the input of energy a
a vibrating wall in the absence of gravity. They also found
difference between wave formB and wave formsA andC.
For wave formB, the power input by the vibration wall is
Pb5pVL, wherep is the average pressure on the vibrati
wall. This equation can be derived by considering the
counter of a single particle with a moving wall at timet* .
The particle’s change in energyDE is related to its change in
momentumDp by DE5V(t* )Dp, whereV(t* ) is the wall
velocity at timet* . For wave formB, V(t* )5V always, so
it is easy to average over time and find that the energy in
is pVL. For wave formsA andC, the velocity of the plate is
not always the same when the particles hit the plate. Ho
ever, the probability of a particle hitting the plate at a giv
phase is governed only by the quantityU/V, whereU is the
velocity of the incoming particle. Therefore, for wave form
A and C, Pb5pVL f(U/V), where the functionf is un-
known. To adapt these results to a system under gravity,
setspL5Nmg, the weight of the granular material. The r
sult for wave formB,

Pb5NmgV, ~8!

agrees with Eq.~7b! for asymmetric wave forms. For wav
forms A and C, Pb5NmgV f(U/V), which coincides with
Eqs.~4! and ~7b! if f (U/V)5V/U.

IV. RESULTS

A. Particle-particle dissipation of smooth particles

1. Simulations

The two expressions forDpp in Eqs. ~3! and ~7a! differ
only by a constant. We measure this constant by calcula

Cpp[
Dpp

~12r p!NmgH~Ē/m!1/2
. ~9!

Equation ~3! predicts Cpp54 and Eq. ~7a! predicts Cpp

5A2p'2.5. @The factor of 2 difference between the pr
dicted values ofCpp and Eqs.~3! and~7a! arises from replac-
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816 PRE 58SEAN McNAMARA AND STEFAN LUDING
ing 12r p
2 with 2(12r p). For r p'1, 12r p

2'2(12r p), so
one might think that these two quantities would be equi
lent. However, the difference atr p50.75 is sufficiently great
to show that 12r p collapses the data better than 12r p

2 .#
Figure 2 shows that the scaling successfully collapses
simulation data onto a single curve. The figure can be
vided into two regions: the dilute region,h2h0.50a, and
the dense region,h2h0,50a. In the dilute region,Cpp is a
constant, and quite close to the value predicted by Eq.~7a!.
The points collapse into families determined by the parti
lar value of H52aN/L of each simulation. However, th
scaling captures the dependence onV, r p , g, andt to within
the noise in the simulations. In the dense region,h2h0
,50a, all simulations collapse tightly onto a curveCpp
; log@(h2h0)/a#. The reason for this dependence ofCpp on
(h2h0)/a is unknown. It is not due to the increasing de
sity, because the lowH (N532 andL5250 curves in Fig.
2!, as well as additional simulations~not shown!, also col-
lapse onto the same curve. Nor is the deviation due to wa
propagating upwards from the vibrating plate; the agreem
of the t50.2 curve with the rest of the simulations exclud
this. We also tried an alternate way of adding energy:
bottom plate is held fixed, and when a particle hits the b
tom, it is given a velocity drawn from a Maxwellian distr
bution. But these simulations also reproduce the curve sh
in Fig. 2. Replacing periodic boundaries with elastic wa
modifies Fig. 2 only slightly.

Fitting a straight line to the points witha,h2h0,50a
~and excluding theN5800 andL510 points! gives Cpp
'0.30 log@(h2h0)/a#11.35. This relation is valid over only

FIG. 2. A test of the scalings in Eqs.~3! and ~7a!. Here,Cpp is
plotted against the height of the center of massh[N21(yi above
its position at zero energy,h0. Both equations predict thatCpp

should be a constant, which is indeed true for large heights~dilute
granular media!. The central simulation hasN5160, r p50.95, L
550,g51, andt51; V is varied over several orders of magnitud
The other series of simulations, each indicated by a different s
bol, have the same parameters as the central one, except fo
parameter shown in the legend. The bottom is driven with w
form B, and the side walls are replaced by periodic boundary c
ditions. The dashed line shows the constant predicted by Eq.~7a!.
-

e
i-

-

es
nt

e
t-

n

about one and a half orders of magnitude, so it is difficult
say whether it is really logarithmic, or whether the logarith
is only a convenient approximation.

2. A physical argument

We now derive the scaling relation from physical arg
ments. This not only permits us to understand why 12r p is
better than 12r p

2 , but also enables us to extend the theor
to account for particle rotations and dissipation at the s
walls.

From general kinetic theory arguments in the style of H
@22#, we argue that the dissipation due to collisions betwe
particles will be

Dpp;N^DE&S U

s D , ~10!

where^DE& is the average energy lost per collision,U is a
typical particle velocity, ands is a typical particle separation
Multiplying ^DE& by the collision frequencyU/s gives the
energy dissipation per particle per unit of time. Then mu
plying by the number of particles gives the total energy d
sipation in the system.

Next, we must relatêDE&, U, ands to Ē and the inde-
pendent parameters. First of all, Eq.~A9! in the Appendix
shows that^DE&;(12r p

2)Ē for smooth (bp521) par-
ticles. Next, sinceU is a typical velocity, we make the iden
tification U;(Ē/m)1/2. Finally, to estimate the particle sepa
ration s, we turn to a one-dimensional model. We imagine
column of n particles, suspended in a gravitational field
the vibrating plate at the bottom of the column. The colum
is in a steady state, so the net force due to collisions on e
particle, averaged over time, must balance the gravitatio
forcemg. Consider a particle somewhere in the column, w
M particles above it (1,M,n). In a steady state, this par
ticle must receive a momentum flux (M11)mg from the
particle below it and transferMmg to the particle above it.
The momentum transferred per collision is (11r p)mU, and
the collision frequency isU/s, hence the momentum flux
will be proportional tom(11r p)U2/s. Equating the two ex-
pressions for the momentum flux

Mmg;~11r p!mU2/s, ~11!

and solving fors givess;(11r p)U2/(Mg). M will scale as
n, and in two dimensionsn can be approximated by th
number of layers of particlesH52Na/L. Again usingU2

;Ē/m, we haves;(11r p)Ē/(mgH).
Inserting our expressions fors and U into Eq. ~10!, we

have

Dpp5Cpp~12r p!NmgH~Ē/m!1/2. ~12!

This agrees in order of magnitude with the scaling tested
Fig. 2 and, in addition, explains why the 12r p of Eq. ~9!
collapses the data better than the 12r p

2 of Eqs.~3! and~7a!.

B. Particle-particle dissipation for rough particles

All the simulations and theories presented so far in t
paper consider ‘‘smooth’’ particles (bp521), thus ignoring

-
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e
-
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PRE 58 817ENERGY FLOWS IN VIBRATED GRANULAR MEDIA
rotation. But particles in granular flows rotate, and our the
would not be complete without considering rotation.

We now revise our argument for the scaling ofDpp in Sec.
IV A, to take into account rotation. The only place where t
smoothness of the particles was a consideration was in
mating the change in energy per collision^DE& in Eq. ~10!,
so we use the more complicated expression given in the
pendix, Eq.~A9!:

^DE&522~12r p
2!Ē2

q~12bp
2!

11q
~Ē1E° /q!. ~13!

This involvesE° as well asĒ, so we draw from a recent pape
@23# on the ratio of translational to rotational kinetic ener
in granular flows. One of the principle results of this pape
that

K[
Ē

E°
5

112q2bp

q~11bp!
, ~14!

in vibrated granular flows. This convenient fact enables u

replaceE° with Ē/K. The result is

^DE&522F ~12r p
2!1

q~12bp
2!

112q2bp
G Ē522@12r p*

2#Ē

~15!

with the ‘‘effective restitution coefficient,’’ governing the
loss of energy,

r p*
25r p

22
q~12bp

2!

112q2bp
. ~16!

Inserting^DE&;(12r p*
2)Ē into Eq. ~10! gives

Dpp5Cpp
+ S 12r p*

2

11r p
DNmgH~Ē/m!1/2 ~17!

as the analogy of Eq.~12!. This equation also defines a co
stantCpp

+ , in analogy withCpp. We plotCpp
° in Fig. 3. There

remains a weak dependence onbp , but Cpp5Cpp
° within the

accuracy of the simulations.

C. Energy input

We now turn our attention to the energy added by
vibrating floor. We test first the simplest result: Eq.~8!,
which applies only to wave formB. Reviewing all simula-
tions shown in Fig. 2, we find that the largest deviation fro
Eq. ~8! is 1.6%, with most others much less~90% of the
simulations deviate by 0.5% or less!. This equation is accu
rate because it is independent of the velocity distribution
the particles, and can be derived from the conservation
momentum@17#.

For wave form A, Refs. @7,9# predict Pb

;NmgV2(m/Ē)1/2. We test this scaling against the simul
tions in Fig. 4. We see that the scaling is only partially su
cessful. The rescaled power input varies by as much a
factor of 5, and there is a strong dependence onH(12r p)
y

ti-

p-

s

to

e

f
of

-
a

not captured by the scaling. An analogous plot for wave fo
C is similar.

To find a better way to calculatePb for wave formsA and
C, we try the scaling suggested by Ref.@17#: Pb

5NmgV f(U/V) with U5(Ē/m)1/2. Let us now consider the
unknown functionf (U/V) in the limits U/V→` and U/V
→0. In the first limit, the particles are moving infinitel
more quickly than the wall, and thus have an equal proba
ity of hitting the wall when it is ascending or descending.
this case, the net energy input by the wall will be 0 beca

FIG. 3. A test of the scaling in Eq.~17!, which definesCpp
+ . The

parameters for the simulations areN5160,L550,g51, t51, and
r p50.95, with bp given in the figure andV varying between 100
and 0.35. The dotted line and thebp521 simulation also appear in
Fig. 2. Wave formB is used, and the side walls are replaced
periodic boundaries.

FIG. 4. A test of Eqs. ~4! and ~7b!: we plot Cb

[Pb /@NmgV2(m/Ē)1/2# for the symmetric wave formA. The sym-
bols and parameters of the simulations are the same as in Fi
except that the bottom plate is driven by wave formA instead of
wave form B. The dashed lines show the constants predicted
Eqs.~4! and ~7b!.
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818 PRE 58SEAN McNAMARA AND STEFAN LUDING
the energy gained by particles during the ascending pha
lost during the descending phase. AsU becomes smaller, the
particles have a higher probability of hitting the wall durin
its ascending phase, and hencePb becomes positive. Finally
in the limit U→0 the particles can hit the wall only durin
the ascending phase, so wave formA becomes equivalent to
wave formB, so f (U/V)→1. This limiting value off is also
attained for wave formC if V52Vmax/3. In all cases,V is
equal to a space average of the velocity of the plate during
ascending phase,V5A21*0

AV(y)dy, where y5A is the
maximum height attained by the plate. When the pl
sweeps through a motionless gas of particles,V is the aver-
age plate velocity seen by the particles~assuming all par-
ticles collide only once with the plate!. For the sinusoidal
wave form, a similar calculation givesV5pVmax/4.

The unknown functionf is shown in Fig. 5 for wave form
A. An analogous plot for wave formC is similar. For wave
forms A and C, points fall on a single curve, but they a
bunched together depending on the value of (12r p)H. The
function f is well approximated by an exponential, so tha

Pb5NmgVexp@2aU/V#. ~18!

Least-squares fits giveaA50.35360.002, andaC50.475
60.003.~Of course,aB50.! We note thataA /aC'3/4. Fig-
ure 5 does not prove thatf is an exponential, because w
have calculatedf over less than one order of magnitud
However, an exponential is a better approximation forf than
a power law or a straight line.

Note that in all scalings,Pb depends on the plate motio
only throughV and not throught. This differs from previous
simulations, which suggest thatPb drops dramatically when
t is below a critical value@4#. However, Ref.@4# used a
soft-sphere simulation method, where particles remain
contact during a finite time while colliding. Ift approaches
this contact time, the efficiency of the forcing will drop. O
the other hand, ift is made very large, the granular mater
dissipates most of its energy during one vibration cycle, a
the transition to the coherent state occurs. In the cohe

FIG. 5. A graph off (U/V)5Pb /(NmgV), with U5(Ē/m)1/2.
The parameters and symbols of the simulations are the same
Fig. 2, except that wave formA is used.
is

ts

e

.
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l
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state, the relevant parameter describing the forcing is
longerV, but the accelerationV/t.

D. Effect of side walls

Finally, we consider dissipation of energy through col
sions between the particles and the side walls. There is
theory for Dpw in the literature. Nevertheless, we find th
Dpw can be estimated by

Dpw5Cpw~y!DppS a

L D S Ēx

Ē
D 3/2

, ~19!

wherey[(h2ho)/(aH)5L(h2h0)/(2Na2) is proportional
to the specific volume or inverse density.Cpw(y) is a linear
function, andĒx is the kinetic energy per degree of freedo
in the x component of the particle velocities:Ēx

5m(2N)21(vxi
2 . In a gas at thermal equilibrium,Ēx /Ē

51, but in these simulations,Ēx /Ē can attain values as hig
as 0.2. The functionCpw(y) is shown with the data from the
simulations in Fig. 6. The simulations agree well with E
~19!, except for the largeH (L510 andN5800) simula-
tions.

The result Eq.~19! can be understood as a continuati
between two limits. In the limit ofy!1 ~dense limit!, Eq.
~19! becomes Dpw;Dpp(a/L)(Ēx /Ē)3/2. The factor of
(Ēx /Ē)3/2 appears because thex velocities alone determine
the frequency of collisions with the wall and the amount
energy lost. The factor ofa/L appears because in this lim
the particles remain tightly packed and rarely change pla
The ratio betweenDpp and Dpw will be proportional to the
ratio between the number of particle-particle contacts and
number of particle-wall contacts. Geometrical consideratio
show that these ratios are of ordera/L.

in

FIG. 6. A test of the scaling in Eq.~19!, where Cpw

[(Dpw /Dpp)(L/a)(Ē/Ēx)
3/2 is linear in y[(h2ho)/(aH)5L(h

2h0)/(2Na2). The dotted line isCpw51.4510.905y. These values
were obtained by fitting all the points on the graph except those
the largeH simulations (L510 andN5800). These simulations
have the same parameter values as those in Figs. 2, 4, and 5, e
that periodic boundaries have been replaced by walls withr w5r p

andbw521.
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In the limit of y@1 ~dilute limit!, Eq. ~19! becomes@after
using Eq.~7a! for Dpp# Dpw;(12r p

2)NĒx
3/2/(m1/2L). Then,

realizing that the average energy lost in particle-wall co

FIG. 7. Streaklines showing the motion of each particle dur
one cycle of the wall vibration. The solid dot shows the position
the particle at the beginning of the wall vibration, and the li
shows its motion during the cycle. The simulation hasN5800, r p

5r w50.95, bp5bw521, L550, g51, t51, andV515.5 with
wave formB.
-

sions is^Ew&;(12r w
2 )Ēx ~note thatr w5r p), and that the

typical x velocity will be Ux5(Ēx /m)1/2, Eq. ~19! becomes

Dpw;N^Ew&~Ux /L !. ~20!

The similarity between this equation and Eq.~10! for Dpp
permits the following interpretation: in the dilute limit, th
particles are bouncing back and forth between the two s
walls. The factorUx /L gives the frequency of collisions with
the wall, so that̂ Ew&(Ux /L) gives the rate of energy los
per particle. There areN particles, so a factor ofN appears in
Eq. ~20!.

The deviation of the largeH simulations from Eq.~19! is
probably due to their different mass distribution. These sim
lations differ from the others because they form a dense p
of particles suspended by a dilute ‘‘hot’’ region. In contra
the others have a density maximum near the bottom, sim
to a normal atmosphere. An additional curiosity is conve
tion, which appears in the largeN simulations~solid circles
in Fig. 6!. Figure 7 shows the motion of all the particle
during one cycle for aN5800 simulation, revealing a circu
lation of particles within the plug. WhenV is decreased be
low a critical value, the circulation ceases, and this criti
value of V corresponds to the break in theN5800 curve
~solid circles! in Fig. 6. We have not studied this convectio
in detail.

A further complication arises when the walls are rou
(bwÞ21). One must decide whether the walls move w
the vibrating bottom or not; i.e., whether the bottom is
piston moving vertically between the stationary walls,
whether the particles are contained in a box which is shak
If the side walls also move, then energy can be input at
side walls as well as at the bottom~i.e.,Dpw can be negative!
@5#. In this paper, we always consider the side walls to
stationary.

E. Gravitational potential energy

As shown in Sec. IV A,Dpp is a known function of the
system parameters, the energy, andh2h0. We would like to

g
f

FIG. 8. The ratio of translational kinetic energyĒ to gravita-
tional kinetic energyEg scaled by 1/r p and plotted againsty[(h
2h0)/(aH)5L(h2h0)/(2Na2), for the simulations in Fig. 2.
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820 PRE 58SEAN McNAMARA AND STEFAN LUDING
eliminate this dependence onh2h0 before combining our
results forDpp, Pb , andDpw . In order to do this, we plot in
Fig. 8 the ratio Ē/(r pEg) @where Eg[mg(h2h0) is the
gravitational potential energy per particle#. This scaling suc-
cessfully collapses the data onto a single curve reminis
of Fig. 2. We note thath must be carefully calculated; ifh is
taken to be the height above the lowest position of the fl
instead of the height above the average position of the fl
the simulations withgt2525 fall off the curve.

Gravitational energy and kinetic energy are often assum
to be equivalent. Figure 8 should be a cautionary note.
variation of Ē/Eg with y has not been theoretically invest
gated.

V. SUMMARY AND TEST

To summarize and test the formulas forDpp, Pb , and
Dpw presented in the previous sections, we calculate the
dicted value ofĒ for a set of simulations from a previou
paper@5#. Using Eqs.~17!, ~18!, and~19! to rewrite the en-
ergy balance, Eq.~2!, as an equation in terms of the syste
parameters andU5(Ē/m)1/2, gives

gVexp~2aU/V!5Cpp

12r p*
2

11r p
gHU

1Cpp

12r w*
2

11r w
gHUCpw~y!S a

L D S Ēx

Ē
D 3/2

,

~21!

where Cpp5min(0.30log@h2h0#11.35,A2p), and Cpw
51.4510.905y. In writing down Eq.~21!, we have assumed
that Eq. ~16! holds for the particle-wall restitution coeffi

FIG. 9. A test of the theoretical results from Eq.~21!. The cen-
tral simulations haveN550, a50.05 cm, L520a, r p50.9, g
5981 cm/s2, t50.01 s, r w51.0, andbp5bw521, with wave
form C. The other simulations are the same, except for the par
eters given in the figure legend. The solid lines give the result
the theory presented in Eq.~21!. The dotted lines give the theor
without taking into account the logarithmic dependence ofCpp on
h2h0, i.e., with Cpp5A2p.
nt

r
r,

d
e

e-

cients. To close Eq.~21!, expressions for (h2h0)/a and Ēx

need to be supplied. We assume (h2h0)/a52Ē/(mga) and
Ēx5Ē, which are true in a gas of elastic hard spheres un
gravity (r p51, bp561, V50). These assumptions hol
approximately for granular media, except in some extre
cases.

We test this equation against simulations in Fig. 9. T
parameters of the central simulations areN550, a50.05
cm,L520a, r p50.9,g5981 cm/s2, t50.01 s,r w51.0, and
bp5bw521, with wave formC. These parameters wer
chosen to mimic the simulations in Fig. 11 of Ref.@5#. There
remain three differences between these simulations and t
of Ref. @5#. First, Ref.@5# uses a more complicated collisio
rule, where the tangential restitution coefficient varies b
tween21 and an upper limitb0, depending on the impac
parameter. In our simulations, the tangential restitution co
ficient is the same for all collisions. Second, Ref.@5# used
slightly polydisperse spheres, whereas we use monodisp
spheres. Finally, we replace the sinusoidal wave form of R
@5# by wave formC. In spite of these differences, the sim
lations presented here show the same behavior as thos
Ref. @5#.

We show two versions of the theory, one which takes in
account the logarithmic dependence ofCpp ~the solid lines!
and the other which does not~the dotted lines!. The solid
lines reproduce the observed dependenceĒ;V3/2 for Vmax

,100 cm/s, whereas the dotted lines showĒ;V2. Thus, the
puzzling scaling observed in previous work@5,7# is due to
the logarithmic dependence ofCpp on h2h0. This depen-
dence does not yet have a theoretical explanation.

For Vmax.100 cm/s, there is a significant disagreeme
for the simulations with dissipative walls (r wÞ1), which can
be traced back to the failure of the assumptionĒx5Ē.

VI. CONCLUSIONS

This paper has studied the two-dimensional vibra
granular media, using the energy balance Eq.~2! to organize
our investigation. Reviewing existing theories, we find t
particle-particle dissipation is well understood in the dilu
limit. We were able to show that Eq.~7a! is very accurate in
the absence of side walls. This result was extended to
with rough rotating particles with a constant tangential re
tution coefficient. More work is needed to account for t
more realistic situation of variable tangential restitution.
the dilute limit, particle-particle dissipation is well accounte
for by existing theories, but in the dense limit, it shows
unexplained dependence on the height of the center of m
above the vibrating bottom,h2h0, well approximated by a
logarithm. It is this departure from the dilute theory whic
accounts for theE;V3/2 scaling observed in previous work
The cause of this departure is not yet known: it is not due
a change in density, since it depends only on the heigh
the center of mass. Nor can it be explained by waves pro
gating upwards from the bottom. Furthermore, the ratio
tween potential and kinetic energy,Ē/Eg , can vary by al-
most a factor of 3. This variation is not understood, a
hampers the ability of our theory to predicth2h0.

The energy input by the vibrating plate is also well know
for the special driving wave formB in Fig. 1~b!. For more

-
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PRE 58 821ENERGY FLOWS IN VIBRATED GRANULAR MEDIA
conventional wave forms, the energy input is well appro
mated by the exponentially decaying function ofU/V shown
in Eq. ~18!.

To our knowledge, this is the first paper to treat partic
wall dissipation in detail. Our theory accurately predicts e
ergy losses at the wall, but requires knowing the differen
between the horizontal and vertical kinetic energies. A m
complete theory would have to estimate this difference fr
the system parameters.
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APPENDIX: THE COLLISION RULE

Consider a collision between two particles of radiusa.
Let v1 be the translational velocity of the first particle,v1 its
angular velocity, andr1 its position at the time of contact
The quantitiesv2, v2, andr2 are the analogous quantities fo
the second particle. Then the relative velocity at the poin
contact is

vc5v12v22a~v11v2!3n̂. ~A1!

Here, the unit vectorn̂[(r12r2)/ur12r2u points along the
line connecting the centers of the colliding particles, fro
particle 2 towards particle 1. The change in the normal co
ponent ofvc is parametrized by the ‘‘coefficient of norma
restitution’’ r p , so thatvc8•n̂52r p(vc•n̂), where the prime
denotes the velocity after the collision. Whenr p51, energy
is conserved, and energy dissipation requires 0<r p,1. The
coefficient of tangential restitutionbp is defined analo-
gously, i.e.,vc83n̂52bp(vc3n̂). Energy is conserved fo
bp521 ~perfectly smooth surfaces! and for bp51 ~per-
fectly rough surfaces!. In the first case thevi have no effect
on the outcome of the collision and do not change during
collision. Energy is dissipated whenbp lies between these
two extremes.

From the definitions ofr p andbp and the assumption tha
the interaction takes place only at the point of contact, i
possible to derive the collision rules

v1,28 5v1,27
11r p

2
vn7

q~11bp!

2q12
~v t1v r !,

av1,28 5av1,21
11bp

2q12
@ n̂3~vt1v r !#, ~A2!
ett

ys

ro
-

-
-
e
e

er

f

-

e

s

where the equation for particle 1~2! takes the2 (1) sign in
the top line above. To derive Eq.~A2! we used momentum
conservation and the definitions

vn[@~v12v2!•n̂#•n̂,

v t[v12v22vn , ~A3!

v r[2a~v11v2!3n̂.

Here,vn is the normal component ofvc , v t is the tangential
component due to translation, andv r is the tangential com-
ponent due to rotation. Note thatvc5vn1v t1v r .

The change in translational energy is

DĒ52Qvn
22S@Ct1v t

21Ct2~v t•v r !2Ct3v r
2#, ~A4!

with the positive prefactorsQ[m(12r 2)/4, S[mq(1
1bp)/@4(11q)2#, and the constantsCt1[21q(12bp),
Ct2[222qbp , and Ct3[q(11bp). Likewise, the change
in rotational energy is

DE° 52S@2Cr1v t
21Cr2~v t•v r !1Cr3v r

2#, ~A5!

where the constants areCr1[(11bp), Cr2[2(q2bp), and
Cr3[2q112bp . Note that theC are positive~only Cr2 can
also be negative! so that the signs in Eqs.~A4! and ~A5!
indicate the direction of energy transfer between the deg
of freedom.

Equations~A4! and ~A5! can be added together to give

DE52Qvn
22S~11q!~12bp!~v t1v r !

2. ~A6!

In this paper, we need to know the average energy lost
collision. Using angle brackets to denote averages over
lisions, we have

^DE&52Q^vn
2&2S~11q!~12bp!^~v t1v r !

2&. ~A7!

Assuming that the particles’ velocities are distributed acco
ing to a Maxwellian velocity distribution and that their pos
tions and velocities are uncorrelated gives

^vn
2&58Ē/m, ^~v t1v r !

2&54~Ē1E° !/m, ~A8!

in two dimensions@23#. Thus the total energy lost during on
collision is

^DE&522~12r p
2!Ē2

q~12bp
2!

11q
~Ē1E° /q!. ~A9!
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