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Electron oscillations in a plasma slab
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We have found that new nonlinear volume plasma modes can exist in cold plasma slabs with particular
density profiles. The wave trapping disappears in the linear I[I8%063-651X98)05711-Q

PACS numbd(s): 52.35.Mw

The science of low-temperature bounded plasmas is not dscitiesv(x,t) = ug;(t) + uy;(t)x, and match the velocities at
well developed as that of high-temperature fusion plasmaghe boundaries. Due to very lengthy algebra it is, however, in
Because of many possible industrial applicati¢fs$ it is, reality impossible to proceed in this way. Thus, in the
however, desirable that plasma physicists focus more attepresent Brief Report we shall propose an alternative method
tion on cold bounded plasmas. Although the linear behaviowhere a perturbation expansion in the wave amplitudes is
of such plasmas has been fairly well understood for a longised.
time (see, e.g., the review pap€d] and[3]) it has been We first eliminaten and E in Egs. (1)—(3) to obtain the
difficult to secure a thorough understanding of their nonlin-equation for the electron fluid velocity
ear propertie$4,5]. Thus, there are still some important ba-
sic, but nontrivial, theoretical problems that remain to be Fov+ w5 ()0 + ddw 2+ vddw +odvA2=0  (4)
solved.

In the present Brief Report we are going to consider avhere w,=(no(x)a?/eom)*? is the electron plasma fre-
very simple geometry, namely a plasma slab of width 2 duéncy. _ -

The electrons are assumed to be cold, and the ions are re- Next, we look for a solutionv =ZXv;(x)exp(-ij wt),
garded as an immobile background with densiggx). We  Wherevexp(-iot) is the linear solution. Keeping only the
shall for simplicity restrict our analysis tone-dimensional lowest order terms, i.e., limiting our analysis to a small am-
volume plasma oscillations. Our electron fluid is thus gov-Plitude expansion, we then calculatg from

erned by the equations of continuity and momentum, and the

Poisson equation, i.e., z9t202+ w;(x)vz-i- &t&xv%/2+vlﬂtéxvl=0, (5)
dN+ dy(nv) =0, (1)  which means that

dw+vdw=(q/m)E, 2 U2= %iw&xvi/(wg(x)—4w2) (6)
and The equation fow, is accordingly

aE=q(n—ng)/eg, 3) Fev1+ 05(X)0 1+ 0oy v2) TV kv T V00T
whereE(x,t)X, n(x,t), v(x,t)X, g, andm represent the elec- +v105(v1v}) + o dfvi2=0, (7)
tric field, electron density, velocity, charge, and mass, re-
spectively. 1€,

In a previous papef6] a plasma slab with constant ion .
density was considered. The slab was bounded by a dieleé’—lz[3'“’UWxUZ_Ulai(vlv’lc)_v’lk&ivi/z]/(wg(x)_ w?).
tric at x=—dy andx=+d,. For piecewise constant initial 8)
density perturbation$6], e.g.,n(x,0)=ny(1+A) for —dg
=x<—dp/2 and dyp/2<x=dy, and n(x,0)=ng(1—A) for
—dg/2=x=dy/2, whereA is a constant parameter describing
the initial eleptron density p_erturbatipn, it turned out tc_J'be wz—wf,(x)=3<9x( 9—1(9)(0%/2), (9)
possible to find exact solutions, with boundary condition
v(*dp,t)=0, for any amplitude. The solutions had an ex-where
plosive character for sufficiently large values &f In the
present paper, where the ion density is a more general func- 0=(wf,(x)—4w2)/(wf,(x)—w2). (10)
tion of x, one may similarly find the electron motion by
replacing the ion density profilag(x) by piecewise con- The electric field and electron fluid velocity are zero at the
stantsng; for d;<x=d;, . In each short intervgl one can turning points which are denoted by the coordinates—d
then look for solutions with electron densitiagt) and ve- and x=+d. It follows from Eqg. (9) that ¢ is also zero at

Inserting Eq.(6) for v, into Eq. (8), and noting that here
vi=v7 , it follows from (8) that
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these points. Consequently we choose the slab boundaries to We have tried to generalize our problem to consider a
be atx==*d. The solution of Eq(9) is accordingly slightly nonlinear low-temperature plasma. Due to math-
ematical difficulties we did not derive a useful generalization
of Egs.(9) and(13), however.

2 _2 X ’ ’ fx' " 2 2/unm
v1(%)= 3f7ddx 0(x") 7ddx [0™=0px)], (1) With a slowly varying wave numbek(x) one has, from

Eq. (13),
which, together with the conditioni(d)zo, yields the dis- ) )
persion relation 0= wp(X) — 0?k*(X)NG(X)=0. (14)
, | [d x o, d As an examplg7], if w>=w§(1+x?/x5) where w, and
@ = _ddx 0(x) _ddx wp(X’) _ddx(x+d)0(x). Xp are constants, Eq14) determines the turning poinis »
(12) = i(wzlwg—l)xo, which together with the Bohr-

Sommerfeld quasiclassical quantization r[#3 fi;dx k(x)

Equation(12), together with Eq(10), is the main result of ) . . . .
= (j +1/2) wherej is an arbitrary integer, yields

this Brief Report. By using our specific slab profile function
no(x), or wg(x), we have thus deduced an equation from
which w? can be calculated. It should then be stressed that

only slabs with particular density profiles can support ounn our cold plasma case, which obviously differs signifi-
resonant volume oscillations, for which the fitting of the cantly from those described in the linear lirfit,8], we can-
boundary conditions can occur. The wave amplitudes shoulflot find any turning points unless the nonlinear terms are
also be so small that the omission of fourth order terms in thencluded. A basic formul&l2), that corresponds to E¢L5),
expansion below Eq4) is justified. This means that; has  \yas therefore derived. In evaluating that eigen frequency for-
to be much smaller thaw,(0)d. mula, one has in general to face some rather lengthy algebra.

In order to shed some light on E9), it may first be  As a comparatively simple example, we choose a slab with

instructive to inspect the linear limit. As E(P) then reduces w,2)=w(2)(1+X/X0) for x<0 and wgzwg(l—x/xo) for x
to the impossible equality? — w3(x) =0 we have to slightly ~ ~'q, wherex,>d. Equation(12) can for this particular pro-

generalize our basic equations by adding a pressure terflle after some straightforward algebra, be reduced to the
—vZ(3,n)/n to the right hand side of Eq2), wherev, isa  equation

parameter representing the thermal velocity. Tihearized

%= w3+ (2j+ 1) wgvi/Xo. (15

equation which corresponds to E@®) is then[7,8] 1+8p—12p(1+3p)In(1+1/3p)=0. (16
w? = wi(x)= — (0/v1) d(Np 1), (13)  for p=w?/ w3. Equation(16) has a solutiorp~0.05, which
) demonstrates that this cold slab can support resonant volume
wherenp(x) =v(/wy is the electron Debye length. oscillations. The frequency is slightly changed if, by means

_Thus, whereas Eq(9) has been derived for a cold and of very lengthy algebra, fourth order terms in the amplitude
slightly nonlinear plasma, Ed13) is the corresponding re- expansion are included. Adopting other slab density profiles

sult for a low-temperature and linear plasma. In both casegne can similarly calculate the eigenfrequencies by means of
the right hand side of the deduced equatif® and(13)]is  gq. (12).

necessary to determine the two turning points for our inho-
mogeneous plasma. The waves are trapped between theseThis work was supported by the Russian Academy of Sci-

turning points. ences and the Royal Swedish Academy of Sciences.
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