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Evolution of a single defect in an ideal two-dimensional hexagonal soap froth

W. Y. Tam
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
(Received 31 July 1998

We have simulated the evolution of a single defect in an ideal two-dimensional hexagonal soap froth using
a physical model based on a combination of mass transfer, vertex movement, and edge relaxation. We find that
the defect grows quadratically with time while the mean area of the cells surrounding the defect remains
constant in a new scaling state with a topological distribution that differs from the normal froth. Moreover, the
number of cell neighbors to the defect is found to grow linearly with time. The results agree with th&large-
Potts model for soap froth and qualitatively with a recent experiment using a bubble raft.
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Cellular structures observed in such areas as metal grairike need to better quantify the new scaling state. While an
and biological tissues are common in nat{t¢ Soap froth  experiment starting with a single defect in an ideal dry hex-
has been a paradigm for the studies of nonequilibrium celluagonal froth is highly desirable, we use the direct simulation
lar systems because of its simplicity and relative ease in itapproach to obtain the long time behavior for the defect and
experimental setup2—-5]. The system is driven by gas dif- the cluster of cells surrounding the defect.
fusion and in two dimensions the evolution is governed by The direct simulation used in this study has been reported
von Neumann'’s law: recently in detai[13,14] and is similar to that of Weaire and
Kermode (WK) [11] and Aref and Herdtl§AF) [12]. The
simulation is based on a physical model where the movement
of cell walls and vertices due to gas diffusion through the
cell walls between neighboring cells is followed by finding
whereA,, is the area of am-sided cell andk is the diffusion  the quasiequilibrium configuration such that three walls
constant. Thus an-sided cell will grow forn>6 or shrink  (edgeg meet at 120° and the pressure difference across each
for n<6. von Neumann’s law combined with, and T,  edge is balanced by the tensional force acting on the edge
topological transitions led to the coarsening of the froth to aafter each “diffusion step.” Furthermord,1 andT2 topo-
universal scaling state indicated by the stationarity of thdogical transitions are implemented with a series of criteria to
distribution functiond5-7]. It is believed that the universal eliminate spurious behavior and enable tight control on the
scaling state is independent of initial conditions and has beeaccuracy(see Refs.[13,14 for detailed implementation
confirmed by experiment§2-5] and simulations[8—14]  Note that, unlike the simulations of WKL1] and AF[12],
starting with disordered initial conditions. However, this von Neumann’s law is not built into the model but is well
common belief has been tested by a topological simulatiosatisfied for every individuah-sided cell[13]. The model
for the evolution of an ideal two-dimensional hexagonalhas been shown to reproduce quantitatively the evolution of
froth with a singe defedtl5]. This study suggested that with two-dimensional soap froth13,14 and has also been ap-
this particular initial condition the system will evolve to a plied to a recent study of ancestral celisicestorsthat sur-
new scaling state different from the usual scaling state ofive for long times[21].
normal froth. The result was reexamined by recent simula- The simulation starts with a perfect two-dimensional hex-
tions of the large® Potts model[16] and direct simulation agonal lattice with 5000 cells. The defect is created by sup-
[17] using the method of Weaire and Kermddd]. Both the  pressing an edge in the lattice giving an eight-sided cell with
largeQ Potts mode[18] and the direct simulatiofL1] have  two symmetrical five-sided cells and six hexagonal cells sur-
been shown to reproduce well the evolution of two-rounding the defect, as shown in Figal This initial con-
dimensional soap froth. These studies support the previoudition is the same as that used in Ref7]. Using periodic
suggestion qualitatively. However, it is not clear whether theboundary conditions, the froth is allowed to evolve according
new scaling state has been reached due to the small sampitethe dynamics as stated above for normal soap froth. The
size in the direct simulatiof17] and lattice effects in the defect is found to grow while the surrounding cells shrink,
Potts model [16]. Previous experiments on dry two- leading to a circular propagating front “consuming” the
dimensional soap froth have shown a transient that differsegular hexagonal lattice, as shown in Fig. 1. The result is
from the normal scaling state for relatively ordered frothsimilar to the largeQ Potts model except that the Potts
with many topological defect§19]. However, the system model gives a less symmetric front probably due to lattice
eventually reached the normal scaling state at long time. Affects.
recent experimental study of a single topological defect in a Figure 2 shows qualitatively a quadratic dependence of
two-dimensional bubble raf20] provides some insight into the normalized areay.= Aqei/ Ag Of the defect as a function
the new scaling state despite the fact that the experimemf the simulation time. Here Ay is the area of the defect
corresponds to wet froth. Nevertheless, this study reenforceend A, is the lattice size. A power-law fit foages versust
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FIG. 1. Evolution of a single defect in a perfect hexagonal froth 6 I T T T 1.5

at (a) 0.00,(b) 9.81,(c) 19.80, andd) 39.80 simulation time units. v,,{."'
(b) &

gives an exponent of 2.28 0.01. The result is the same as !
the previous simulation with about 1000 cells where the ra-
dius of the defect increases roughly linearly with time 4 410
[13,14). Since only the cells around the defect are affected, it
is desirable to define a clustf} as cells having at least one A
neighbor that is not six-sidefdl5]. However, the cluster is \“j
heavily dominated by the defect when the defect is much
bigger than the lattice size. Thus an alternate choice is to ) 405
exclude the defect to form a boundary cludtet} surround- '
ing the defec{20]. In addition, to facilitate the use of an-
other time scale, the cel{®} that are neighbors to the defect
will also be monitored. Figure (B) shows the mean area
(normalized by the hexagonal lattjcef the cluster{c}, the o : | | : 00

boundary clustefc’}, and the neighbor cell} as a func-
tion of time. The mean area of the cluster,) is found to
increase almost linearly due to the effect of the defect. In t
contrast, the mean areas of the boundary cluser) and
the neighbor cellga,) approach stationary values of 0.83
+0.03 and 0.620.01, respectively. The steady-state value
of (a./) is between those of the Potts-model simulation
({ac/)=0.88+0.08 [16]) and the bubble-raft experiment
({ae)=0.77=0.04[20]).

Figure 3a) shows an almost linear dependence on themuch. This implies that the propagation of the defect has a
number of celldN, that are neighbors to the defect with the relatively “sharp” interface such that there is a thin bound-
simulation time. A power-law fit ofN,, versust gives an  ary, at most two layers of cells, between the defect and the
exponent of 1.020.01. Hence ifN,, is used as a new time regular lattice. The above result confirms the topological
scale, the area of the defect should grow quadratically witlsimulation[15] in which the number of “killed” cells was
Np. Indeed, a power-law fit 0&4; VErsusN, gives an ex- used as the time scale because the number of “killed” cells
ponent of 2.0%0.01. Furthermore, it is expected that the scales with the defect area.
number of cellsN,: in the boundary clustefc’} is propor- Figure 4a) shows the second moment of the topological
tional toNy, as shown in Fig. @). A power-law fit of N, distributionp(n) defined agu,=3(n—6)?p(n) for the clus-
versusN, gives an exponent of 0.990.02. In addition, the ter{c}, the boundary clustdrc’}, and the neighbor cellb}
ratio N, /Ny, is found to be 1.880.02. Physically, the as a function of time. It is clear that, for the cluster{c}
boundary clustefc’} consists of one layer of neighbor cells increases with time primarily due to the increase in the num-
{b} surrounding the defect plus a partial lay80%) of six-  ber of sides of the defect and is in agreement with the Potts
sided cells next to the neighbor cells. The mean area of theimulation[16]. However,u, for both the boundary cluster
cells in the partial layer differs only by 1% from the regular {c’} and the neighbor cell$b} reaches steady values of
lattice, indicating that they are not affected by the defect veryd.76+0.01 and 1.3% 0.02, respectively. In addition, the to-
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FIG. 2. (a) The normalized area of the defect as a function of
simulation time(b) The normalized mean number of the clugigr
(dashed ling the boundary clustdrc’} (solid line), and the neigh-
bor cells{b} (dotted ling as a function of simulation time.
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FIG. 3. (8 The number of cell neighbors to the defect as @ i 4. () The second moment of the topological distribution
function of simulation time(b) The numbgr of cells in the bound- ¢, ihe cluster{c} (dashed ling the boundary clustefc’} (solid
ary cluster{c’} versus the number of neighbor cells. line), and the neighbor cell&} (dotted ling as a function of simu-
lation time.(b) The topological distribution for the boundary cluster

c'} (solid line), the neighbor cell$b} (dotted ling, and the normal
roth (dashed ling

pological distributionsp(n) for both sets of cellc’} and
{b} are found to be stationary and the mean values are sho
in Fig. 4(b) using data withN,, larger than 80. The above
results strongly support a nontrivial new scaling state that is . ) . .
different from the normal froth shown as a dashed line infations [15,16. However, the comparison with the experi-
Fig. 4b). The u, and the topological distribution for the ment[20] using a pubble raft is only qualltatlve due.to the
boundary clustefc'} agree well with the Potts simulation f@ct that the experiment has a short duration and is a wet
[16] despite the fact that there is still a slow increasgsin froth whlle_ the direct S|mulat|0r_1 is assqmed to be fdeIess_: in
shown in Fig. 3 of Ref[16]. One striking feature of the the soap films. Thus an experiment with a single defect in a

topological distribution of the boundary clustar’} and the ~ dry hexagonal froth is highly desirable.
neighbor cellsb} is that there is no cell with eight sides or
more, indicating that they are relatively more “ordered”
than the normal froth.
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