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Colored-noise-induced multistability in nonequilibrium phase transitions
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We investigate the colored-noise effect on nonequilibrium phase transitions. A simple model is studied
analytically in the presence of a dichotomous multiplicative noise. In the white-noise limit, the model shows a
nonequilibrium phase transition. With a finite correlation time of the noise, the system exhibits multistability of
ordered and disordered states and as the coupling strength increases, it also shows a reentrant transition into the
disordered phase. Numerical simulation results are presented confirming the existence of the multistability and
the reentrant transitionS1063-651X98)09512-9

PACS numbgs): 05.40:+j, 05.70.Ln, 02.50.Ey, 64.60.Cn

A noise-induced nonequilibrium phase transition in a dy- i D
namical system with multiplicative noise has been the topic qr - fx) ) m+ - > (X=X, (1)
of much recent investigatioii—10]. While an additive noise Hien®
in equilibrium provides a disordering effect, restoring a bro-\;nerep is a coupling constant(i) stands for the set of
ken symmetry, the multiplicative noise coupled to the statejtes coupled withx; , and7; is the multiplicative noise. The
of the system induces an ordered symmetry-breaking stat§um in Eq.(1) describes diffusive coupling, which depends
The interplay of the additive and multiplicative noises pro-on the difference of two's. The specific case considered
duces a reentrant transition, showing the ordered symmetryrere and analyzed in Re#] is
breaking state only for intermediate intensities of the multi-
plicative noise[4,10]. The fluctuating interaction has also f(x)=—x(1+x%)?, g(x)=1+x?
been studied, showing the symmetry-breaking transit@dn
and noise-enhanced multistabilifg]. Multistability shown  which could be the simplest example exhibiting the nonequi-
in a time-delayed system has also been interpreted as ldrium phase transition. In this case H4) is invariant un-
mechanism of perception of ambiguous or reversible figureder a symmetric operation
[11]. Most studies of the noise-induced phase transition have
usually considered the multiplicative noise as white. Since Xi— =X, m——mn foralli.
the multiplicative noise comes in general from the coupling

with an external source, the consideration of the temporal his symmetry is broken by the multiplicative noise.
correlation of the noise is realistic. To study the colored noise effect on the system, we con-

In this Brief Report we investigate the colored noise ef-Sider7; as the Markovian dichotomous noise that consists of

fect on the nonequilibrium phase transition. We consider w0 levels{A_,A_}. This dichotomous noise is character-
simple model that shows the nonequilibrium phase transitiofz€d Py the transition ratea(A_—A,) anda(A,—A-)
in the presence of white multiplicative noise. In the model aP&tween two levels. Here we consider the case of symmetric
reentrant transition is also shown, leading to an ordered stafichotomous noise given by
only for intermediate intensities of the white multiplicative
noise. To study the colored-noise effect we introduce a di-
chotomous multiplicative noise into the system instead of thel_
white multiplicative noise. For the globally coupled system
we obtain the self-consistent equation of the order parameter 5
analytically, assuming that there is no spatial correlation. , (n=s. T

. 7 ! . - . <77|(t)771(t )) 5Ij EXF{
With the finite correlation time of the dichotomous noise, we 27
show that the system exhibits multistability of the ordered
and disordered states and a reentrant transition into the distherec=A/\/a measures the intensity of the dichotomous
ordered state as the coupling strength increases. A numericabise andr=1/2« is the correlation time of the noise. In the
simulation is performed confirming the analytical results. limit 7— 0, the dichotomous noisg;(t) tends to the white

As in Ref. [4], we consider a dynamical system whosenoise &(t) with correlations(&(t)gj(t’)>=025”-5(t—t’),
state at timet is described by the set of stochastic variableswhich is the case studied in R¢#].
{x;(t)] i=1,...N}. The time evolution of the system is gov-  The composite system, comprising both the state variables
erned by the stochastic differential equation {xj} and the dichotomous nois¢s;;}, is described analyti-

cally by the joint probability distributionp({x;},{#:}.t).
This joint probability distribution satisfies the coupled
*Electronic address: skim@etri.re.kr Fokker-Planck equatior4 2]

A,=—A_=A, a(A_—A))=a(A—A_)=a.
hen the noiseg); have zero mean and the correlations

-t
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[f(x1)+g(xj)m

ot = ax
D
t— 2 (Xk_xj)]l)({xi}:{ﬂi}yt)
j ken(j)

N
- ajzl [o({Xi} A mi} ) —pj (X} A mi} D]

)

for all configurations of 7;}. In Eq.(2), pj({xi}.{ 7i},t) rep-
resents the joint probability distributign({x;},{#/ },t) with
n =—3&;n;+(1— &) n for all i. In the globally coupled

system, since the variabl¢g;} are statistically independent
[7], we assume that there is no spatial correlation in

p({x}.{m}.t) leading to

N
P({Xi}’{”i}it):il;[l p1(Xi, 7 t),

with the normalization condition

J p1(X,m,t)dx=1.
ne{d,—A}

This assumption is confirmed by extensive numerical simu-

lations. For a given, by the integrations ovex;’s and sum-

mations overy;’s for all j #i, Eq.(2) reduces to the Fokker-

Planck equation fop(x, »,t),

apa(X, 7.t J
%: = o H{E)+ 900 7+ D(m=x)}pa(X, 7,0)]

- a‘[Pl(Xl 7lut) _pl(X! - W:t)],

wherem is the order parameter given by

m=

f X p1(X,m,t)dx. (©))
ne{d,—A}

The ordered symmetry-breaking state is characterized by the

nonzero order parametet.

The quantity that we are interested in is the probability

distribution for the state variablex alone, i.e., P(x,t)
=p1(X,At)+p.(X,—A,t). Defining q(x,t)=p1(X,A,t)
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FIG. 1. Plot of the order parameter as a function ofo- at D
=20 and7=1. Solid and dashed lines are stable and unstable so-
lutions of the self-consistent equati@), respectively.¢ and ]
represent the order parametewobtained from the numerical simu-
lations aso increases from zero and decreases from 50, respec-
tively. 0.1, 0¢, ando; are transition points of the triple transi-
tions, disordered stateordered state>multistable state-disorder
state, respectively.

1
F.(x) F_(x)

X( 1 1
ex _“J Fo(x)  F_(x)

F.(X)=f(x)=Ag(x)+D(m—x).

P(x)=No

ax'|, (5

with

In Eqg. (5), Ny is determined by the normalization condition
JP(x)dx=1. P(x) in Eqg. (5) has two singular points.. ,
which are roots ofF..(x), respectively. Since the singular
points Xx.. are stable fixed points of the deterministic equa-
tions dx/dt=F_..(x), respectively,P(x) is normalizable re-
stricting x in (x_,x,) [12]. Equation(3) with Eq. (5) pre-
sents the self-consistent equation of the order paramessr

m=G(m)EJ X P(x)dx. (6)

In Fig. 1 we show the order parameterobtained from
the self-consistent equatidB) as a function ofo- at D=20

—pi(x,—A,t), we obtain the evolutionary equations for 5,4 -=1. For smallo< oy =5.0,m=0, implying that the

P(x,t) andqg(x,t) as

JP(x,t) d
== o ALf0+D(m=x)]P(x.t)
+Ag(x)a(x,H},
4
aq(x,t) J
== A[f()+D(M=x)]a(x.t

+Ag(X)P(x,t)}—2aq(x,t).

In the stationary state, we solve Ed) with the boundary

system is in a disordered symmetric state.d®t o1, m

=0 becomes an unstable solution and a stable solution ap-
pears, implying that the system is in an ordered symmetry-
breaking state. Ag increases above.,, the stable solution
increases continuously, leading to the second-order phase
transition ato=o0.;. At 0=0,=21.0, m=0 becomes a
stable solution again and an unstable solution appears, lead-
ing to a subcritical bifurcation. Ag increases above,,

the unstable solution increases. In this case, there are two
stable solutions: One is zero and the other is nonzero. This
means that the system shows multistability of ordered and
disordered states. At=o.3=36.7, the stable solution with

condition that there is no probability current at boundary,nonzerom and the unstable solution are annihilated, leading

leading to the stationary probability distribution

to an inverse subcritical bifurcation. Thus, for>o.3, m



7996 BRIEF REPORTS PRE 58

40
30t
£ QA 20t
10}
o 1 1 1 L
0.4 0.5 0 10 20 30 40 50
t Y
FIG. 2. Plot of time evolutions of the order parametarob- FIG. 4. Plot of the phase diagram in the-D plane at
tained by the numerical simulation with different initial configura- =1. DO, O, and MS represent disordered, ordered, and multi-
tions for the system of sizi=10* at D=20, =1, ando=30. stable phases, respectiveby,, , o¢,, ando; are transition lines of

the triple transitions, D6:0—MS—DO, respectively.
=0 is only a stable solution, implying that the system is in
the disordered symmetric state again.
To confirm the analytical result we have performed a nu
merical simulation with the stochastic equatitt) for the

expands. The ordered phase also expands. Figure 3 also
shows a reentrant transition exhibiting a disordered state for
large values ofr. The critical pointsoyy, o¢, ando.z, at
system of size&N=10". In the simulation we have used the which the _triple transitio_ns, disordered phasardered
phase-multistable phase-disordered phase, occur, respec-

Euler method with discrete time steps®f=10"4. At each ; ; i . :
vely, increase monotonically asincreases. This produces

run, the first 16 time steps have been discarded to achieve %1 frant t ition into_the disordered ph .
steady state and>61(P time steps have been used to calcu- € reentrant transition n'o he disordered phaser as-
creases at a fixed value of>o 3 (7=0).

late the order parametenr. Figure 1 showsn obtained by the Fi 4 sh h di in thed ol i
numerical simulation as increases and decreases. The nu- ' 'JUr€ # SNOWS a phase diagram in el plane atr
=1. For smallD<D_.=5.6, the system is in the disordered

merical data coincide with the analytical stable solution very dl £ th | AL D=D. the ordered
well. Figure 2 shows the time evolutions of obtained by ~State regardiess of the valuesaf At D=Dy, the ordere

the numerical simulation with different initial configurations phase and the muIt|stabI_e phase appear at an mtermec_jlate

for the system ab =20, =1, ando= 30. While one goes to value of o, og=4.7. AsD increases thg ordered and multi-

zero, the other approaches a finite value. This implies that.2Ple phases expand. The critical poiats, oc,, andocg

the system is in the multistable phase of the ordered anfit Which the triple transitions, disordered phasedered

disordered states. phase-multistable phase-disordered phase, occur, respec-
Figure 3 shows a phase diagram in ther plane atD tively, increase monotonically d3 increases. This produces

=20. At 7=0 there is no multistable phase. The orderegth€ reentrant transition into the disordered phaséais-

phase exists only in the intermediate intensities-showing ~ c'eases at a fixed value of>ay.

the reentrant transition into the disordered phaserads- 9

creases. Asr increases the multistable phase appears and
o8
2
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D
00 10 20 30 20 50 FIG. 5. Plot of the order parameter as a function oD at 7

=1 ando=10. Solid and dashed lines are stable and unstable so-
lutions of the self-consistent equatidf), respectively.& repre-

FIG. 3. Plot of phase diagram in ther plane atb =20. DO, sents the order parametarobtained from the numerical simulation
O, and MS represent disordered, ordered, and multistable phasdsr the system of sizdl=10*. o3, 0., ando,; are transition
respectively,o¢;, 0, and ocs are transition lines of the triple points of the triple transitions, disordered statmultistable
transitions, DG-0—MS—DO, respectively. state—ordered state-disordered state, respectively.
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Figure 5 shows the order parameteias a function oD  finite correlation time of the noise, the system has the mul-
at =1 and 0=10. There are three transition points,; tistable phase of the ordered and disordered states in addi-
=8.17,0.,,=9.10, ando; =95.0, at which the triple transi- tion to the ordered and disordered phases. The transition
tions, disordered phasemultistable phase-ordered points of the triple transitions, disordered phasedered
phase-disordered phase, occur, respectively. In Fig. 5 onghase-multistable phase-disordered phase, increase as the
can see that the large strength of coupling induces disorder iforrelation time and the coupling strength increase. This pro-
the system. Since the coupling-induced disorder does not exqces the reentrant transitions into the disordered phase as
ist in the system with white noise, it is a pure colored-noisehe correlation time and the coupling strength increase. The
effect. Numerical simulation confirms the analytical result. ¢o|or-induced disorder and coupling-induced disorder are

In conclusion, we investigated the colored-noise effect ofhyre colored-noise effects because of the absence in the

the nonequilibrium phase transition, considering a simpleypite-noise limit. We also performed numerical simulations
model under a dichotomous multiplicative noise. We ob-¢qnfirming the analytical results.

tained a self-consistent equation of the order parameter ana-

lytically. In the white-noise limit, the system shows a non-  This work was supported by the Ministry of Information
equilibrium phase transition presenting the ordered phase iand Communications, Korea. We are grateful to Dr. E. H.
the intermediate intensities of the noise. In the presence of kee for his support of this research.
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