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A one-dimensional ferroelectric six-vertex model with dipole-dipole interactions between nearest neighbor-
ing vertices has been calculated exactly by the transfer matrix method. The phase transition is first order, the
low temperature phase is completely ordered ferroelectrically, and the correlation functions in the high tem-
perature phase exhibit new periodic behavior with the periodicity depending upon detailed competition among
the interaction parametersS1063-651X98)10810-3

PACS numbg(s): 64.60.Ak, 05.70.Fh, 75.168b, 77.80.Bh

I. INTRODUCTION sition. This modified six-vertex model is solved using a
transfer matrix method.
Crystals with hydrogen bonds undergo phase transition
induced by proton ordering specified by the ice r{ig, Il. MODEL
which forbids charged configuratio@ith very high ener- . ) ) o
gies &) of protons. The thermodynamics of these sys- The one-dimensional, four-fold coordinated chain whth
tems is usually investigated by six-vertex models that tak&/€rtices bonded by double hydrogen bonds is shown in Fig.

into account differences in energies of the allowed vertices™ Itis grs]sumed tfhat a prOt(.)QI on_eact]rﬁf thehhydg)gen bonds
and their compatibility with neighboring vertic¢g]. Such IS on either one of two possible sites. Then there dryges

lattice models have been solved exactly in 8¢ or two of vertices depending on the different arrangements of the
dimensiong2]. In the one-dimensional model with finitg protons on the four adjoining hydrogen bonds. Only six ver-

6 oh transition rs. However. it w hown by N Itices shown in Fig. 2 obey the ice rule. The configuration
0 phase fransition OCCUrs. HOWever, as sho Y Nadl&ates of those six vertices are denoted by the six unit vectors

[3] that the one-dimensional ferroelectric model with infinite oK) (k=1,2,...6). As shown in Fig. 2, they are divided

& undergoes a first-order phase transition at the same temio three classes with the energies (= — w) for k=1,2,
peratureT.=e/kg In 2 as the two-dimensional six vertex w, (=—w+e;) for k=3,4 andwz (=—w+e,) for k
model and the thermodynamic function has a large and sharp's g Fyrthermore, the dipole-dipole interactions, satisfying
anomaly in the vicinity off ¢, causing a finite entropy jump. the ice rule between nearest neighboring vertices, can be
It was also show3] that for physically realistic finite val- djvided into three classes of interaction by considering the
ues of¢, while the thermodynamic properties are analytic, apair vertex symmetry, as shown in Fig. 3. We define the
very sharp specific heat anomaly remains. These results sugnteraction energies between the neighboring parallel dipole
gest that the thermal behavior of such proton ordering sys-

tems can be fruitfully investigated using the ice rule in one @ 3) @ 5) 6)

dimension. NN TN TN TN TN

For the hydrogen bonded ferroelectrics, such asi®i, A * A
dipole-dipole interactions are present. Therefore, investiga S A A A A

tion of the influence of dipole-dipole interactions on the ther- 1 0 0 0 0 0
modynamics of the phase transition should be of interest. Ir 0 (‘) ‘1) 0 0 0
this paper, we discuss the influence of the dipole-dipole in-s(1)= g o@)=| | o®=|,| o= (1) a(5) = 3 o(6) = g
teraction taking into account the ice rule on the phase tran o 0 0 0 | o

0 0 0 0 0 1

m FIG. 2. Six-vertix model. Configuration states(k) (k

=1,2,..,6) are divided into three classes with the energigs
FIG. 1. One-dimensional H-bonded chain that consistiNof (=-w) for k=1,2, w, (=—w+e4) for k=3,4 andw; (= -
vertices. +&,) for k=5,6 from the viewpoint of symmetry.
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moments byv,; (=—v), the neighboring antiparallel ones one of the bonds joining the two vertices run in opposite
by v, (= —v+8;), and the neighboring ones being at right directions; this corresponds to zero or two protons on a bond,
angles to each other hy; (= —v+68,). We note that the which costs much higher energy which is taken to be infinity

parameterg; and §; will vary with the specific crystal struc- in ice-rule and six-vertex models.
ture of hydrogen bonded crystals in ways that are difficult to  Then, the partition functioy for one-dimensional chain

guantify. with N vertices is obtained using the transfer matrix
The energy of each microstate of the model consists of the
sum of the vertex energies shown in Fig. 2 and the nearest M, O
neighbor dipolar pair energias shown in Fig. 3. Further Mz( )eﬁ(“’*”) 1)
neighbor dipolar pair energies are small and will be ignored. o M
No other nearest neighbor pairs are allowed than those
shown in Fig. 3 because for other pairs the arrows on at leastith
|
0 @ Ble1+81) g Ble1+dy) 0
10 e Alerton) 0 0 g Ale1+dy)
Ml:(o 1)’ M= 0 @ Bleat87) e Be2 0 ' 2
@ Bleat ) 0 0 e~ Be2

It is noted that the transfer matridl breaks up into two )
diagonal blocks: X2 unit matrixM; and 4x4 matrix M, Ns= 2
namely,M=M;®M,, where® means direct sum. Finally,

Zy can be calculated analytically as

{1_ @ Bler—sa+51)

+\/(1+e—ﬁ(sl—52+51))2_4e—/3(al—82+252)}’ 7

6

6
Zy= 2 0" (k)MMa(ky) =Tr{(M)N} =) 3 A3,
= =

and
e7332
(3 Ne=5

{1_ e—ﬁ(sl—52+ 87)

where\; and\, come fromM; and\3~\g come fromM,. —J(1+e Blere2701))2_ o= Ble1—25+25)) } (8)

The eigenvalues can be written as follows:

where\ 3, which is the largest eigenvalue of the mathis,

is unique as shown by Frobenius’s theorem and a positive

)\1: )\2: 1, (4)
analytic function that increases monotonically with tempera-

e Pe2 B(ey—, 61) tureT. Now we consider the case bf—x. If A3 is smaller
Ng=—5—1{l+e Alor=ezt oy than A;=\,=1, then Zy=2 exdNB(w+v)}, while if A3
>1 thenZy=exp{NB(w+v)}\} . Consequently, the free en-
+\(1—e Plermeat0))24 4o~ Blea=e2t20) - (5)  ergyFy (=—kgT In Zy) is given as
_ _((I)+U) fOf )\3<l
e P pe- Fu/N= 9
Ng=——{l+e Flaamear o N ~(0+v)—kgT A for ag>1 @
— \/(1_e—B(61—82+ 51))2+4e—5(81—82+252)}' (6) lll. FIRST-ORDER TRANSITION
. If £, is negative, then s is always larger than unity for
~TL, T VTN any temperature and the free energy is analytic forTall
AN AN, . PN ,,J’\ Consequently no phase transition occurs&g«0.
N ‘\I/’vz\y/ \@rv ~ ~ Incontrast to this, foe,>0, the possibility exists that;
4/\\ 1;)\\ ) AN _/4'\ 3:;‘\ increases continuously fromz<<1 toN3>1 as the tempera-
~& ~& vt ® ! ture increases fror=0. That is, if the following relations
/‘\vl/.‘\ \‘o’/_vzﬂ\o/y \"/”3 _\"’/_ hold:
o — s DA | W N N
™~ '/v:\,’/_ ! _v3?€/' £,>0, 6,+&,>0,
S A and (10)

FIG. 3. Ten types of the dipole-dipole interactions, which are

divided into three classes with the energies (=—v), v, (=
—v+68,), andv; (= —v+ 8,). The arrow marked above each ver- then A3 increases from 0 aT=0 to 2 at T=. Conse-

tex denotes the dipole moment.

81+82+252>0,

quently, the system undergoes a first-order transition at a
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FIG. 4. Thea dependences of for various values op. The
ordered phaséthe low temperature phasées abovea-T. curve
and the disordered phagae high temperature phasées below.

transition temperatur@; with a jump in entropyAS, where

theT, is determined by the substitution ®{= 1 into Eq.(5)
and is obtained as

exp Bo){exp( Be) — 1}

exp( — Bea) = —— - : (1)
exp(Bc) +expBcp) —1
where
A €9 _51+81 _51_252
ﬁc—m, a= o 1, andp= 0y
(12

If we put §;=48,=0 (p=0) into Eg. (11), which corre-

sponds to the case for the consideration of the ice rule onl

without the dipole-dipole interaction, then we obtain

€9 -1 €1
ex _kBTC =1—€X —kBTC.

If one replacese; with e;—¢5 and e, with —&;, corre-
sponding to Zubkus's definitiorig] of the configuration en-
ergies, then the formulagl3) agrees with the result of
Zubkus’'s model:

o
ex KaT.
Especially, in the case;=¢, in Eq. (13) [or £;=0 in Eq.
(14)], then Nagle's resulf3] T.=e/kgln 2 is obtained,
wheres=¢, (Or e=—¢3).
In Fig. 4, thea dependences df,, for various values op
are illustrated. The transition temperatdrg increases ap

decreases ow increases. Wheif. approaches zeray ap-
proachesy,, whereay=—1 for p<1 andag=p—2 forp

13

Y ,
—1+ex;<—ﬁ) (£5<0). (14
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FIG. 5. Region of different ground states of tHephase in the
a-p plane. The structure in regiod\] is [5,4,6,3,5. . .], in region
(B) is [5,55...] (or [6,6,6...]), and in region C) is
[4,3,4,3...]. Inregion D), no phase transition occurs.

IV. CORRELATION FUNCTIONS OF PHASES

In this section, for the case ef,>0 for which a first-
order transition occurs, we discuss the dominant structure.
Let us define a structure in which the configuration states of
vertices align in order witho(k,),o(ks),o(Kg),... (K
=1-6), agky,ky,ks,...].

For T<T, the low-temperature phasé phasg with free
energy per verteky/N=—(w+v) is stable. Thd. phase is
a ferroelectric one whose structure is composed of only one
configuration stater(1) [or o(2)] (refer to Fig. 2 with con-
figuration energyw; (= — w) and the dipole-dipole interac-
tion energyv, (= —v). Then the structure of the phase is
represented d4,1,1,...] (or[2,2,2...)).

For T>T,., the high-temperature phasél (phasé¢ with
the free energy per verteky/N=—(w+v)—KkgT In )3

Y)\3>1) becomes stable. On the coexisting surface, two

phases I( andH phasé coexist. We are interested in how
the structure of théd phase varies in the phase diagram in
Fig. 5. Since theH phase is disordered, only short range
order exists. To describe this short range order it is conve-
nient to describe the long range order that would exist in the
H phase if the transition into thie phase did not take place.
This is the ground statel=0) of theH phase whose energy
per vertex is higher byAe than that ofL phase, where

Ae=—Iim kBT In )\3. (15)
T—0
For >0, Ac is
(e1t+e0)2+ 6, for p>a
e= (16)
€5 for p<a
and fora<0
(e1+e9)2+ 6, for p>—a
e= (17
81+5l fOI’ p<_0f

>1. Therefore, the first-order transition occurs in the region

satisfying both inequalities off>—1 anda>p—2, which
agree with the relation§l0). The curvesa versusT,. for

In Fig. 5 in the region A) theH phase at the ground state is
a periodic structur¢5,4,6,3,5. . .] whose energy is higher

various values op, shown in Fig. 4, represent a coexisting by Ae=(g1+¢,)/2+ &, than that ofL phase, in the region

surface on (¢, a,p).

(B) a ferroelectric phasgs,5,5...] (or[6,6,6...]) being
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higher byAe = ¢, than that ofL phase, and in the regiolC] transition occurs, thél phase is stable for any temperature

a periodic structurg4,3,4,3...] being higher byAe=6,  and the structure is the same as the case,0f0 and T

+ ¢4 than that ofL phase. In the regionY), no phase tran- >T..

sition occurs. Since the interaction parameters depend delicately upon
Consequently, in the case 85> 0, it is clear that the first the detailed geometry ¢1-bonding groups in actual crystals,

order transition occurs by competition between thphase this work shows that a variety of short range ordering may be

and theH phase and the correlation functions in the H-phaseexpected. Experimental observation of such short range or-

exhibit the periodic behavior with the periodicity dependingdering could then be used, together with this kind of theory,

upon detailed competition among the interaction parameterso estimate the basie; and §; interactions energies in hy-

On the other hand, in the case ©§<0 where no phase drogen bonded crystals.
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