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A one-dimensional ferroelectric six-vertex model with dipole-dipole interactions between nearest neighbor-
ing vertices has been calculated exactly by the transfer matrix method. The phase transition is first order, the
low temperature phase is completely ordered ferroelectrically, and the correlation functions in the high tem-
perature phase exhibit new periodic behavior with the periodicity depending upon detailed competition among
the interaction parameters.@S1063-651X~98!10810-3#

PACS number~s!: 64.60.Ak, 05.70.Fh, 75.10.2b, 77.80.Bh
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I. INTRODUCTION

Crystals with hydrogen bonds undergo phase transi
induced by proton ordering specified by the ice rule@1#,
which forbids charged configurations~with very high ener-
gies j→`) of protons. The thermodynamics of these sy
tems is usually investigated by six-vertex models that t
into account differences in energies of the allowed verti
and their compatibility with neighboring vertices@2#. Such
lattice models have been solved exactly in one@3# or two
dimensions@2#. In the one-dimensional model with finitej,
no phase transition occurs. However, it was shown by Na
@3# that the one-dimensional ferroelectric model with infin
j undergoes a first-order phase transition at the same
peratureTc5«/kB ln 2 as the two-dimensional six verte
model and the thermodynamic function has a large and s
anomaly in the vicinity ofTc , causing a finite entropy jump
It was also shown@3# that for physically realistic finite val-
ues ofj, while the thermodynamic properties are analytic
very sharp specific heat anomaly remains. These results
gest that the thermal behavior of such proton ordering s
tems can be fruitfully investigated using the ice rule in o
dimension.

For the hydrogen bonded ferroelectrics, such as KH2PO4,
dipole-dipole interactions are present. Therefore, invest
tion of the influence of dipole-dipole interactions on the th
modynamics of the phase transition should be of interest
this paper, we discuss the influence of the dipole-dipole
teraction taking into account the ice rule on the phase tr

FIG. 1. One-dimensional H-bonded chain that consists ofN
vertices.
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sition. This modified six-vertex model is solved using
transfer matrix method.

II. MODEL

The one-dimensional, four-fold coordinated chain withN
vertices bonded by double hydrogen bonds is shown in F
1. It is assumed that a proton on each of the hydrogen bo
is on either one of two possible sites. Then there are 24 types
of vertices depending on the different arrangements of
protons on the four adjoining hydrogen bonds. Only six v
tices shown in Fig. 2 obey the ice rule. The configurati
states of those six vertices are denoted by the six unit vec
s(k) (k51,2,...,6). As shown in Fig. 2, they are divide
into three classes with the energiesv1 (52v) for k51,2,
v2 (52v1«1) for k53,4 and v3 (52v1«2) for k
55,6. Furthermore, the dipole-dipole interactions, satisfy
the ice rule between nearest neighboring vertices, can
divided into three classes of interaction by considering
pair vertex symmetry, as shown in Fig. 3. We define t
interaction energies between the neighboring parallel dip

FIG. 2. Six-vertix model. Configuration statess(k) (k
51,2,...,6) are divided into three classes with the energiesv1

(52v) for k51,2, v2 (52v1«1) for k53,4 andv3 (52v
1«2) for k55,6 from the viewpoint of symmetry.
7990 © 1998 The American Physical Society
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moments byv1 (52v), the neighboring antiparallel one
by v2 (52v1d1), and the neighboring ones being at rig
angles to each other byv3 (52v1d2). We note that the
parameters« i andd i will vary with the specific crystal struc
ture of hydrogen bonded crystals in ways that are difficul
quantify.

The energy of each microstate of the model consists of
sum of the vertex energiesv i shown in Fig. 2 and the neare
neighbor dipolar pair energiesv i shown in Fig. 3. Further
neighbor dipolar pair energies are small and will be ignor
No other nearest neighbor pairs are allowed than th
shown in Fig. 3 because for other pairs the arrows on at l
,
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one of the bonds joining the two vertices run in oppos
directions; this corresponds to zero or two protons on a bo
which costs much higher energy which is taken to be infin
in ice-rule and six-vertex models.

Then, the partition functionZN for one-dimensional chain
with N vertices is obtained using the transfer matrix

M5S M1 O

O M2
D eb~v1v ! ~1!

with
M15S 1 0

0 1D , M25S 0 e2b~«11d1! e2b~«11d2! 0

e2b~«11d1! 0 0 e2b~«11d2!

0 e2b~«21d2! e2b«2 0

e2b~«21d2! 0 0 e2b«2

D . ~2!
tive
ra-

-

-

t a
It is noted that the transfer matrixM breaks up into two
diagonal blocks: 232 unit matrixM1 and 434 matrix M2 ,
namely,M5M1% M2 , where % means direct sum. Finally
ZN can be calculated analytically as

ZN5 (
k151

6

sT~k1!MNs~k1!5Tr$~M!N%5eNb~v1v ! (
n51

6

ln
N ,

~3!

wherel1 andl2 come fromM1 andl3;l6 come fromM2 .
The eigenvalues can be written as follows:

l15l251, ~4!

l35
e2b«2

2
$11e2b~«12«21d1!

1A~12e2b~«12«21d1!!214e2b~«12«212d2!%, ~5!

l45
e2b«2

2
$11e2b~«12«21d1!

2A~12e2b~«12«21d1!!214e2b~«12«212d2!%, ~6!

FIG. 3. Ten types of the dipole-dipole interactions, which a
divided into three classes with the energiesv1 (52v), v2 (5
2v1d1), andv3 (52v1d1). The arrow marked above each ve
tex denotes the dipole moment.
l55
e2b«2

2 $12e2b~«12«21d1!

1A~11e2b~«12«21d1!!224e2b~«12«212d2! % , ~7!

and

l65
e2b«2

2 $12e2b~«12«21d1!

2A~11e2b~«12«21d1!!224e2b~«12«212d2! % , ~8!

wherel3 , which is the largest eigenvalue of the matrixM2 ,
is unique as shown by Frobenius’s theorem and a posi
analytic function that increases monotonically with tempe
tureT. Now we consider the case ofN→`. If l3 is smaller
than l15l251, then ZN52 exp$Nb(v1v)%, while if l3
.1 thenZN5exp$Nb(v1v)%l3

N . Consequently, the free en
ergy FN (52kBT ln ZN) is given as

FN /N5H 2~v1v ! for l3,1

2~v1v !2kBT ln l3 for l3.1
. ~9!

III. FIRST-ORDER TRANSITION

If «2 is negative, thenl3 is always larger than unity for
any temperature and the free energy is analytic for allT.
Consequently no phase transition occurs for«2,0.

In contrast to this, for«2.0, the possibility exists thatl3
increases continuously froml3,1 to l3.1 as the tempera
ture increases fromT50. That is, if the following relations
hold:

«2.0, d11«1.0,

and ~10!

«11«212d2.0,

then l3 increases from 0 atT50 to 2 at T5`. Conse-
quently, the system undergoes a first-order transition a
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transition temperatureTc with a jump in entropyDS, where
theTc is determined by the substitution ofl351 into Eq.~5!
and is obtained as

exp~2b̂ca!5
exp~ b̂c!$exp~ b̂c!21%

exp~ b̂c!1exp~ b̂cp!21
, ~11!

where

b̂c5
«2

kBTc
, a5

d11«1

«2
21, and p5

d122d2

«2
.

~12!

If we put d15d250 (p50) into Eq. ~11!, which corre-
sponds to the case for the consideration of the ice rule o
without the dipole-dipole interaction, then we obtain

expS 2
«2

kBTc
D512expS 2

«1

kBTc
D . ~13!

If one replaces«1 with «182«28 and «2 with 2«28 , corre-
sponding to Zubkus’s definitions@4# of the configuration en-
ergies, then the formulas~13! agrees with the result o
Zubkus’s model:

expS 2
«28

kBTc
D 511expS 2

«18

kBTc
D ~«28,0!. ~14!

Especially, in the case«15«2 in Eq. ~13! @or «1850 in Eq.
~14!#, then Nagle’s result@3# Tc5«/kBln 2 is obtained,
where«5«2 ~or «52«28).

In Fig. 4, thea dependences ofTc for various values ofp
are illustrated. The transition temperatureTc increases asp
decreases ora increases. WhenTc approaches zero,a ap-
proachesa0 , wherea0521 for p,1 anda05p22 for p
.1. Therefore, the first-order transition occurs in the reg
satisfying both inequalities ofa.21 anda.p22, which
agree with the relations~10!. The curvesa versusTc for
various values ofp, shown in Fig. 4, represent a coexistin
surface on (Tc ,a,p).

FIG. 4. Thea dependences ofTc for various values ofp. The
ordered phase~the low temperature phase! lies abovea-Tc curve
and the disordered phase~the high temperature phase! lies below.
ly

n

IV. CORRELATION FUNCTIONS OF PHASES

In this section, for the case of«2.0 for which a first-
order transition occurs, we discuss the dominant struct
Let us define a structure in which the configuration states
vertices align in order withs(k1),s(k2),s(k3),... (ki
51 – 6), as@k1 ,k2 ,k3 ,...#.

For T,Tc the low-temperature phase (L phase! with free
energy per vertexFN /N52(v1v) is stable. TheL phase is
a ferroelectric one whose structure is composed of only
configuration states~1! @or s~2!# ~refer to Fig. 2! with con-
figuration energyv1 (52v) and the dipole-dipole interac
tion energyv1 (52v). Then the structure of theL phase is
represented as@1,1,1, . . . # ~or @2,2,2, . . . #!.

For T.Tc , the high-temperature phase (H phase! with
the free energy per vertexFN /N52(v1v)2kBT ln l3
(l3.1) becomes stable. On the coexisting surface, t
phases (L and H phase! coexist. We are interested in how
the structure of theH phase varies in the phase diagram
Fig. 5. Since theH phase is disordered, only short rang
order exists. To describe this short range order it is con
nient to describe the long range order that would exist in
H phase if the transition into theL phase did not take place
This is the ground state (T50) of theH phase whose energ
per vertex is higher byD« than that ofL phase, where

D«52 lim
T→0

kBT ln l3 . ~15!

For a.0, D« is

D«5H ~«11«2!/21d2 for p.a

«2 for p,a
~16!

and fora,0

D«5H ~«11«2!/21d2 for p.2a

«11d1 for p,2a .
~17!

In Fig. 5 in the region (A) theH phase at the ground state
a periodic structure@5,4,6,3,5, . . . # whose energy is highe
by D«5(«11«2)/21d2 than that ofL phase, in the region
(B) a ferroelectric phase@5,5,5, . . . # ~or @6,6,6, . . . #! being

FIG. 5. Region of different ground states of theH phase in the
a-p plane. The structure in region (A) is @5,4,6,3,5, . . . #, in region
(B) is @5,5,5, . . . # ~or @6,6,6, . . . #!, and in region (C) is
@4,3,4,3, . . . #. In region (D), no phase transition occurs.
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higher byD«5«2 than that ofL phase, and in the region (C)
a periodic structure@4,3,4,3, . . . # being higher byD«5d1
1«1 than that ofL phase. In the region (D), no phase tran-
sition occurs.

Consequently, in the case of«2.0, it is clear that the first
order transition occurs by competition between theL phase
and theH phase and the correlation functions in the H-pha
exhibit the periodic behavior with the periodicity dependi
upon detailed competition among the interaction paramet
On the other hand, in the case of«2,0 where no phase
l

e

rs.

transition occurs, theH phase is stable for any temperatu
and the structure is the same as the case of«2.0 and T
.Tc .

Since the interaction parameters depend delicately u
the detailed geometry ofH-bonding groups in actual crystals
this work shows that a variety of short range ordering may
expected. Experimental observation of such short range
dering could then be used, together with this kind of theo
to estimate the basic« i and d i interactions energies in hy
drogen bonded crystals.
.
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