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Potential of interaction between two- and three-dimensional solitons
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A general method to find an effective potential of interaction between far separated two-dime(@inal
and 3D solitons is elaborated, including the case of 2D vortex solitons. The method is based on explicit
calculation of the overlapping term in the full Hamiltonian of the systenthoutassuming that the “tail” of
each soliton is not affected by its interaction with the other solitdhe result is obtained in an explicit form
that does not contain an artificially introduced radius of the overlapping region. The potential applies to spatial
and spatiotemporal solitons in nonlinear optics, where it helps to solve various dynamical problems: collisions,
formation of bound stateBS’s), etc. In particular, an orbiting BS of two solitons is always unstable. In the
presence of weak dissipation and gain, the effective potential can also be derived, giving rise to bound states
similar to those recently studied in 1D mod€lS1063-651X98)02912-3

PACS numbe(s): 03.40.Kf, 42.65.Vh, 52.35.Sb

I. INTRODUCTION where the coefficientsr and y, , 3 are positive. The QNLS
equation is a conservative version of Ed), without its
Recent progress in studies of two-dimensiof#i) soli-  right-hand side. The quintic defocusing teru is included

tons in models of non-Kerr nonlinear optical media has atin order to prevent the collapse. Note that this term is not
tracted a lot of interest to their interactions. 2D vortex soli-merely the simplest one that stabilizes the model: according
tons and interactions between them in the quintic nonlineag, experimental dat&l1], the combination of the focusing

Slchrcdl_nger(Q_NLS)bequatlon Werel_studu_ed in Rgﬂ]’ no_nh nSubic and defocusing quintic terms adequately models the
planar interactions between 2D solitons in a medium with the, ,jinear optical properties of some real materials. The first

. (2) . . . .
quadratic §**) nonlinearity were considered, numerically ,,, torms on the right-hand side of Ed) take into regard
and analytically, in Ref|2], and various features of the in- linear losses, the cubic term, accounts fomonlinear gain

teraction between 2D solitons in photorefractive media were hich compensates the losses. and the quintic dissipation
revealed by numerical simulations and direct experimenti/ P ' 9 P

[3-5]. The nonlinearity must be non-Kerr because the usu erm=—ys providgs for the_ ovgrall stabilizgtion of th? model.
cubic (Kerr) self-focusing term gives rise to collapse in 2D 'N€ QGL equation was first introduced in Rgf2] (in the
and 3D cases. As it was demonstrated in R6F, the col- 2D form), and its 1D(_one-d|men5|onal version later at-
lapse does not take place in any physical dimension in thfacted a great deal of interesiee, e.g., Ref13] and refer-
model with the y® nonlinearity. This opens the way to €nces there@nln particular, ;table localized pulses in the 1D
stable 2D and 3Bpatiotemporakolitons, or “light bullets” ~ QGL equation were found in Ref14] for the case of weak
(LB's) [7]. The x'® LB’s were recently studied in detail in dissipation(relevant for the applications to nonlinear opjics
Refs.[8] and[9]. 0=<1y,;,3<1, that will also be assumed here. The existence
The objective of this work is to find an effective potential of the stable pulses in the opposite limit of strong dissipation
of interaction between 2D and 3D solitons in isotropic mediawas independently shown in three different wofks]. Ac-
(note that, as it was demonstrated in a very recent expertually, the model1) is selected just for the reference, as the
mental work[4], the interaction of 2D solitons in intrinsi- one that certainly gives rise to stable multidimensional soli-
cally anisotropic photorefractive media is, in effect, practi-tons; as will be seen below, the derivation of the effective
cally isotropic to9. The interaction potential is necessary to potential for the interaction between the solitons, presented
solve various dynamical problems, such as collisions, formain this work, is quite universal and may be applied to any
tion of bound states of solitons, etc., including a practicallyconservative or weakly dissipative model that supports mul-
important .problem of designing all-pptlcal_swnchmg by tidimensional solitons.
means of interaction between 2D optical solitons. It will be  Note that stable 2D solitons, as well as two-soliton bound
demonstrated that a universal effective potential can be obsiates, were also found numerically in a model with the quin-
tained analytically by means of a technique which generalyc onjinearity similar to that in Eq(1), in which, however,

1zeS éhat devglc:ped for the &D ﬁo"tonf.o'lf‘ RELO]. Als & the linear part is of a higher order, containing the operators
g?rzazlbfrm—lg%dii(ggeucgnutgtignt e multidimensional quIntiC,2; 542 414y [16]. However, that model is essentially more
9 q ' complicated than Eq(l), and its physical applications are

_ 1 less clear.

v+ §V20+ v]?v —alv|* The paper is organized as follows. In Sec. I, the 2D and

3D soliton solutions are briefly considered, with emphasis on
=—iv+iy Vo +iylv|2v—iyslv|[*v, (1) the form of their asymptotic “tails,” which determine the

effective interaction potential. In the same section, the model

(1) is also reformulated in terms of nonlinear optics, where it

*Electronic address: malomed@eng.tau.ac.il finds applications of two types: the description of spatial
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cylindrical solitons in the bulk medium, and 2D and 3D LB’s |s|>1 are stablgnote that all the bright vortex solitons are
in the 2D nonlinear wave guide or 3D bulk, respectively. Theunstable in they(?> model, see, e.g., Ref17]). Below, an
multidimensional solitons in the model with thé? nonlin-  arbitrary integer value o will be kept, as the potential can
earity have their own peculiarities, which are summarized irbe derived in the general case, provided that the two solitons
a separate subsection in Sec. II. In Sec. lll, the interactiomaves;=*s,.

potential is analytically derived, in a general form, for the 2D  Description of 3D solitons with the internal “spin” is a
and 3D solitons. In the same section, the interaction potentiatather complicated problem, therefore only the 3D solitons
for LB’s is also considered. In particular, the potential maywith the zero spin will be considered here. The correspond-
be spatiotemporally anisotropifor the x(?) LB'’s, while in ing solution is sought for in the form of E¢3) with s=0,

the other models it can always be cast into an effectivelyand with the difference thatis now the radial variable in the
isotropic form. Concluding remarks are collected in Sec. 1V,3D space, hence

including a discussion of a possibility of existence of bound

states of the solitons. In particular, it is concluded, in accord V(r)~Agr ~texp — «r) @)
with the recent results obtained for € spatial solitons in

Ref. [2], that a bound state of two solitons orbiting aroundat r — .

each other may exigin the dissipationless modebut it is In the conservative version of the model, the frequency
always unstable. In the presence of the weak dissipation and<<0 is an arbitrary parameter of the soliton, while the am-
gain, there are bound states of quiescent solitons, quite simplitude A, that can be found numerically, is a functionof

lar to those recently studied in the 1D mod#iat may be [as well asag in Eq. (6)]. In the presence of the weak dissi-
both unstable and almost stablélew possible states in the pation and gain, an actual soliton solution is selected from

2D and 3D cases are soliton lattices and “molecules.” the continuous family as the one providing for a balance of
the “number of photons,”f5|V(r)|?r®~1dr [14]. In that
Il. TWO- AND THREE-DIMENSIONAL SOLITONS case, the value ab should also be found numerically. Be-

low, w andAg will be treated as given parameters.

In the application to the nonlinear optics, the QNLS ver-

A general stationary solution to Eq(l) is v sion of the 2D model1) describes time-independent light
=exp(—iwt)V(r), whereV(r) satisfies the equation distributions in a 3D medium, so that the varialbles not
time, but the propagation coordinate. The dynamics of LB’s
in 2D and 3D optical media is governed by an equation that
is also similar to Eq(1). Neglecting the dissipative part, the
corresponding QNLS equation is

A. The general case

1
§V2V+|V|2V—a|V|4V+wV

=—iV+iy,VAV+iy,|VI2V=iyg|V|*V. (2)
In the 2D case, the solution is restricted to the form iv,+ E(vaﬂ, )+ |v]|?v = alv|*v=0 (8)
2 TT 1

V(r)=explis®)V(r), s=0,+x1,*2,..., 3
wherev is the envelope of the electromagnetic waweand
wherer and ¢ are the polar coordinates# 0 corresponding 7=t —z/c,, are the propagation coordinate and the so-called
to avortex soliton and(r) exponentially decays at—=.  retarded timeg,, being the mean group velocity of the car-
From the consideration of Eq(l) it follows that the rier wave, and the operatdt? acts on the transverse coor-
asymptotic form of the soliton at— is dinatés). In Eq. (8), anomaloustemporal dispersior(ac-
counted for by the ternp ;) is assumed. A spatiotemporal-

~ A p- L _
() ~Ag ™ exp( = ar), ) soliton solution to Eq(8) (i.e., LB) can be sought for in the
- . form [cf. EqQ. (3)]
w+1
=\/— 75—~V 2w—iq, = _
K Toriy,~ V20710, 4= == v=expik)V(§), &=\ri+7 9
tyiv-20, (5) Here,k is the propagation constanéndr, is the transverse
and. atr —0 coordinate in the 2D model, or the radial variable in the

transverse plane in the 3D model. In the latter case, a more
V(r)~ag!s (6) general solution with a “spatiotemporal spin” can be looked
s for in the form

(i.e., the vortex soliton has a hole in its centewith un- . _

known constant#\; andas. The expansion ok in Eq. (5) v=explikz+iso)V(§), (10

employs the fact that, in the weakly dissipative regimejs

small, andw>1, as the dissipation coefficient in front of the Where this timeé is the formal angular coordinate on the

term —v in Eq. (1) is 1. plane ¢, ,7). The solution(10) has a “hole” in its center,
The stability of thes=0 soliton in the mode(1) is very  cf. Eq. (6). The asymptotic form of all the LB solutions at

plausible, and, in the conservative version of Et), the  £— is similar to that given above by Eqgl), (5), and(7):

stability of the vortex soliton withs|=1 was numerically

demonstrated in Ref1]. It is not known if the solitons with V(&E)~AE P~ Dizgyy —\2q¢). (11)
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B. The model with the quadratic nonlinearity [note that the underlying conditions that define the present
An allied physically important model is that which de- €2S€ guarantee that the expressib® is not singula}. The
scribes multidimensiona}® media[8]: solitons of this type may be called, on the contrary to the
' free-tail ones defined abovail-locked solitons. Note that,
_ 1, in the intermediate cagé6), the free-tail asymptotic expres-
v+ E(VﬂH‘UTT)—U‘Fv*W:O, (12)  sion (15) holds inside the sectdl7), while the tail-locked
expression(18) is valid outside the sector.

; 1 2 1 2
2iw,+ §(V¢W+ oW,,)— yw+ -v=0, (13

2 Ill. THE INTERACTION POTENTIAL
wherev andw are envelopes of the fields at the fundamental A. The general case

match parameter, andlis arelative coefficienbf the tem-  the conservativéleft-hand side of its stationary versiof®)
poral dispersion. In the real physical situatiofis; 1, includ-  ¢an be derived from the Hamiltonian

ing negative values(which correspond to the normal
dispersion at the second harmanids was shown in Refs.

[8] and[9], the spatiotemporal soliton solutions to E¢E2) H :f
and(13) can only exist if6=0. However, the solution cannot

be sought for in the fornt9), except for the unrealistic spe- o i o .
cial cases=1. The asymptotic form of the soliton can be The Hamiltonian allows one to define an effective interaction

nevertheless easily found from the linearized versions oPotential for two separated solitorjd8]. In the original

1 1 1
§|VV|2— §|V|4+ §a|V|6—w|V|2 dr. (19

Egs.(12) and(13), cf. Egs.(4)—(7) and (9): works, the wave field corresponding to the two-soliton con-
figuration was postulated to be a linear superposition of two
v~ AET (P~ DRexy —\2¢), (14) isolated solitons. This was substituted into the Hamiltonian,

and a term produced by the overlapping of the “body” of
we~BE (P~ Di2gyp — \/Z,”g), ~25rf+ 5 172, (15 each soliton with a weak “tail” of the other one was iden-
tified as an effective interaction potential. This approach re-
Here, only the case=0 is considered, and the propagation quires actual calculation of the corresponding integral term
constant is not explicitly introduced, as it may be absorbedn Eg. (19), a drawback being that a distortion of the “tail”
by the mismatch parametsr. due to its interaction with the other soliton is ignored. In this
The consideration of Eq.13) readily demonstrates that, work, a more consistent approach will be developed, follow-
while the asymptotic expressiaii4) for FH is always rel- ing that elaborated for the 1D solitons in R¢l0]. The
evant, the expressiofl5) makes sense only if it decays at method is based on representing the wave field in a vicinity
r, ,7—c not fasterthanv?. Further straightforward analy- of each soliton in the form
sis shows that this condition is always satisfied, provided that
y<4§, and never satisfied, if>4. In the intermediate case v(r,t)=exp —i o) [V(r)+Vi(n)], (20)

45<y<4 (16
whereV(r) is the isolated solitori3), V(r) is a small tail
generated by the second soliton, and the influence of a given
soliton on the other soliton’s “tail” isnot neglected. The
distanceR between the centers of the two solitons is assumed
to be essentially larger than the soliton’s siz& 1, see Eq.
(4). A similar structure of the wave field is assumed near the
S, (17 center of the second soliton.

Only the case when the interacting solitons are identical is

. . ) el consideredin particular,s;= *s, for the 2D vortex soli-
P oo noe e e anepeto ol aayotor oM. and he ampitudey| defined as per Eq4) are
“tails” in each harmonic isindependentlyletermined by the equal, hence the solitons have the same frequancyhich

- : . 8llows one to define a phase differengédetween them. The
corresponding linearized equations, may be naturally calle : : : .
) . case of the identical solitons is the most relevant one, as
free-tail solitons ; . . S
. . _parameters of the solitons are, in a real physical situation,
In the case when the above condition does not hold, i.e., . .
unigely selected by the above-mentioned balance between
the gain and dissipation.
€ The next step is, as was said above, to insert the expres-
ion (20) into the Hamiltonian(19) and calculate the overlap
term in an area around the first soliton, adding then a sym-
metric contribution from the vicinity of the other soliton. In
1 £ the first z_ippr(_)ximation, only _the terms Ii_near\'wtl are to be_
W= = A2 . Sexp(—2 2y¢) (18  kept, which yields the following expression for the effective
2 (y—A)EP+4(1-8)T interaction potential

(recall that the physical constraint #<1, andy=4 has a
special meaning corresponding to te&act matchingbe-
tween FH and SH8])), the condition holds, on the plane of
the variableg and r, inside the sector

4—vy
y—46

(rlr,)%<

vg, as given by Eq(14), decays slower thawg as per Eq.

(15), the latter expression does not apply. In this case, th
actual decay of the SH tail is governed by the quadratic ter
in Eqg. (13), while Eq. (14) remains valid. The final result
which, in this case, replaces E{.5) is
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V, in the surface integral term in ER2) by the asymptotic
expressiong4), which yields, in the 2D case

w
Ua(Ryh) ==\ — 51AJ*Vpe ™

FIG. 1. The two-soliton configuration in the two- and three-
dimensional caseén the latter case, the figure shows the central X
cross section of the 3D configuratjoriThe points 1 and 2 are
centers of the solitons.

2
f r~Yexp(iy+is;0—is,n)
0

Xexp(—«r)dg+c.c.|+{1=2}. (25

1
UotRan=| [ (370 7V - vtz +alvivy

2 The anglesy and 6 and the radius
—oVVy |dr+c.c|+{1=2}, (22) r=(R+pcosh)’+ p?sirfg
1 .
where the subscrigd pertains to the dimension. Here, c.c. =R+ pcosf+ E(pz/R)Slnze'F e (26)

stands for the complex conjugate expression, the integration

is assumed over the overlapping region in a vicinity of theare gefined in Fig. 1, the conditid3) being used to expand
first soliton, and{1=2} is the symmetric contribution from the radical in Eq.(26). Substituting the expansion into Eq.
the second soliton. Applying the Gauss theorem to the firstps) ang taking into regard the conditiof24), in the first
term in Eq.(21), one transforms, in the 2D case, the expres-zpproximation it is enough to keep the first two terms from

sion (21) into the form Eq. (26) in exp(—«r), and only the first term im 2. Addi-
tionally, in the same approximation one may get0, which
1oz leads to
Up(Rp)=1 |~ | |5V2Vs

A P A 12p-12 [ kp
+|VS|2vS—a|vs|4vs+wvs)v;*dr U2(R,#) SIAI°R Jpe

2m
>< _KR H 1
+c.cf+{1=2, © fo eXHiy+is,6)

1
+§f VI (n-V)Vdl

(22 X exp(— kp cosf)do+c.c.|+{1=2}.

where the surface integral term is taken over a closed contour

surrounding the first solitom being a local vector normal to 27
the contour. As the contour, one can choose a circumference
whose center coincides with that of the first soli{éig. 1).
The radiusp is chosen so that

The integral in Eq(27) can be calculated exactly in terms

of the Bessel functions, but this is not necessary. Indeed,

taking into regard, in line with the previous approximations,
-1 that kp>1, the Laplace approximation can be applied to the

Kk T<p<R, (23 . . S . L

integral, a dominant contribution coming from a vicinity of

i.e., it is much larger than the size of the soliton, but muchtN€ Pointé= (point A'in Fig. 1):

smaller than the separation between the two solitons. The o

final objective will be to obtain an expression that does not f expl — kp cos8)df~\2m(kp)~ Yet e, (28)

depend on the auxiliary radiys. To this end, it will be 0

necessary to supplement the conditi@8) by the additional

one Substituting this into Eq(27), one sees that the-dependent
multipliers in Eq.(27) are exactly cancelled byp %" *?
p?IR<k™1, (24)  from Eq. (28). This cancellation(in the lowest-order ap-
proximation considered herés a crucial result, as it makes
which is obviously compatible with Eq23). the effective potential independent of the auxiliary ragius

In the 3D case, the difference is that the surface integral in Of course, the dependence prwill not disappear if one
Eq. (22) is taken over a sphere of the radjusso that Fig. 1  tries to calculate higher-order correctiofgith respect to
shows the central cross section of the 3D situation. The corR™?) to the effective potential. Actually, this implies that the
ditions (23) and (24) pertain equally well to the 3D case.  effective interaction potential, treating the solitons as par-

At this stage of the analysis, the dissipative terms in Eqticles, can be consistently defined only in the lowest-order
(2) are still neglected. Becaudg, is an exact single-soliton approximation. At the higher orders, it is necessary to explic-
solution to Eq.(2), the first integral term in Eq(22) van- itly take into regard deformation of the solitons by the inter-
ishes. The condition@3) allow one to substitute bot#i, and  actions, which is not an objective of the present work.
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In the term{1=2} in Eq. (27), ¢ is replaced, according R, and T being, respectively, the separation between the
to its definition, by— ¢, and the dominant point in the sur- solitons in the transverse direction and the temporal delay
face integral isf=0. This means that the terfl=2} is between them.
obtained by the changg¢— — s;m— —s;#. Finally, in
the multipliere™ % in Eq. (27), smallq=—Imx should be B. The model with the quadratic nonlinearity
also taken into regarfisee Eq.(5)], as it gives rise to an ) _ ] 2) ant _
important effect, viz., long-period oscillations in the expo- ~ The interaction potential for thg'” solitons has its own
nentially decaying tail of the interaction potentfd0]. Note ~ Peculiarities. For the spatiastationary 2D x') solitons, the
that the potential does not directly take into account the modexPonentially decaying potential with two components, gen-
el's small dissipative part; however, that part indirectly af-€rated by the FH and SH fields, was postulated in Ra&f.
fects the potential, inducing the oscillations in the solitons’The interaction between the® LB's is more complicated,

tails in Eq.(4) through Imx. because the nonstationary mo@dk2) and(13) is, effectively,
With regard to what was said above, the final expressiorgPatiotemporally anisotropjcs it was explained in detail in
for the potential(27) is the previous section, see E@§4), (15), and(18). A straight-
forward consideration demonstrates that, in both 2D and 3D
- 2(_1ys 5 p\12 cases, the SH-generated interaction potential dominates at
U2(R.¢) 2\/%|AS| (=1 eosyp(V—20/R) v< 4, so that the potential is given by EqR9) and (31),
Xexp—v—2wR)codqR), (299 with o replaced by —y, q=0, and R replaced by

Z=R?+ 5 172, cf. Egs.(15) and(32). On the contrary to
wheresis eithers; or s,=*s,, both giving the same value. thijs, aty>1, the FH-generated interaction always dominates,
Except for the factors(—2w/R)*? and (—1)%, which are  which means that one should use the potent2® and(31),
specific for the 2D case, the potent{@b) is essentially the with w=—1 andRreplaced byZ defined as per E432). In
same as that obtained in the similar 1D models in RE].  the intermediate casé<y<1 [cf. Eq. (16); recall that the

In the 3D case, the consideration is also limited to thephysically relevant case i§<1], the interaction potential
interaction of identical solitongas it was said above, only turns out to be truly anisotropic in the plan&,(,T): the

the spinless solitons are considered in the 3D kaske  SH-generated interaction dominates inside the sécfoEq.
above expressiofR2) yields the interaction potential in the (17)]

3D case todrecall that, in this case, the integration in the
surface term is over the spherds well as in the 2D case,
the first term in Eq(22) vanishes in the approximation that
neglects the direct influence of the dissipation, and the inte-
gration over the sphere is dominated by a contribution fromand the FH-generated interaction dominates outside the sec-
a small vicinity of the pointA (Fig. 1). Substituting into Eq. tor (33). Accordingly, one should substituiin the expres-

(22) the 3D asymptotic expressiofid) for Vs andV; and the  gjons(29) and (31) for the interaction potential b inside
expansion(26), one arrives, instead of the integ(@ig), at the sector(33), and byE outside of it.

1_
(T/RL)2<7T;6, 33)

277J exp(— kp cosh)sinddo=2m(kp) (et P—e “P) IV. CONCLUDING REMARKS
0
The effective interaction potentia{29) and(31) can give
~2m(kp) let P (30) rise to bound state®S’s) of two solitons. In the presence of

the dissipation and gain, it makes sense to consider only
BS’s of quiescent solitons, as any motion is suppressed by a
friction force. Because the form of the potentials is essen-
tially the same as in 1D, the situation is not different from
the 1D case, which was recently studied in ddtbdl]. There
_ are two types of BS's, with the phase difference between the
Us(R,¢) = —4m|Ad*cosyR™Texp( - V_Z“’R)COS(qR)B' solitons /=0 or 7, and with y=7/2. The BS’s of the
(3D) former type are saddles, while the BS’s of the latter type
have imaginary stability eigenvalues. The fact that the BS'’s
with =0 or 7 are saddles is related to a fundamental prop-
erty of the interacting solitons: while an effective mags of
the two-soliton system corresponding to the radial degree of
freedomR is positive, an effective mas®, of the phase
degree of freedom isegative[19].
Thus, these two types of the BS'’s are, respectively, un-
stable and stable, in the first approximation. In R&g], it
has also been demonstrated that the BS withw/2 is sub-
ject, in the next approximation, to an extremely weak insta-
bility, which transforms it into a very slowly unwinding spi-
ral. However, it was also demonstrated that, even if this next-
= VRE +T2, (32 order instability can be observed, it does not destroy the BS,

With regard to Eq(30), the final expression for the effective
interaction potential in the 3D case beconiek Eq. (29)]

Note that the auxiliary radius is completely canceled out in
the final expression&9) and (31).

The potentialg29) and(31) can be as well applied to the
description of the interaction between the 2D and 3D spa
tiotemporal solitongLB’s), given by Egs.(9) and (4), (7).
The differences from the above results are @pat0 (recall
the dissipation was completely neglected in the LB magdels
o must be replaced by k, and the separatioR between the
solitons is replaced by thepatiotemporal separatiog de-
fined according to Eq(9):
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but, instead, makes it dynamical, wikhand ¢ very slowly  where, according to Eq$29) and (31), the constanC de-
oscillating in alimited range. Note that the same mechanismpends on the dimensidd and the soliton’s spis. It is easy
gives rise, in the 1D case, t@mos} stable chains of the O check that the effective energg4) gives rise to a station-
bound solitons: in the 2D and 3D cases, a new possible paly state with siy=0, Cp cosy<0, provided thaM? is

tern is alattice of the bound solitons. There may also exist 5'2“6‘” engugh.. However, this stationary state always has
“covalent soliton molecules,” in the form of triangles and ¢ Eet/dR°<0, i.e., it is amaximumof the effective energy,

. . consequently, the orbiting BS is unstable against variation of
tetrlah(ra]drork;s in the fZI?] agq ?fD c_asesl,s,sresfpectwelﬁl. biti R. Moreover, one can check that the same state always has
n the absence of the dissipation, BS of mutually orbiting ,2p 5,20, with regard to the above mentioned,

;qlitons is possible in the 2D apd 3D caﬁies_the latter case, <0, this BS is also unstable against variationyjof

it is assumed that the two solitons move in one pla@- In conclusion, a general method to find the effective po-
biting of incoherently interacting 2D solitons was experi- tential of interaction between two-dimensional and three-
mentally observed in a photorefractive medi{®t Numeri-  dimensional solitons was elaborated, including the case of
cal simulations and analytical arguments presented in Rethe two-dimensional vortekspinning solitons. The method
[2] demonstrate that the orbiting BS states of the 2D solitonés based on calculation of the overlapping term in the full
in the x® model are unstable. In the present class of thédamiltonian of the system. The main technical point that
models, the orbiting BS cannot be stable either. Indeed, foakes the calculation possible is that the bulk integral re-
the orbiting state the interaction potenti@®) or (31) must ~ duces to a surface one and, in the lowest-order approxima-
be supplemented by the centrifugal energf tion, the final expression dpes not contain the_ auxiliary ra-
=(M?2mg)R 2, where M is the angular moment of the dlu_s of the ovgrlapplng region. The result applle_s to spatial
soliton pair, andmg is the above-mentioned effective mass. solitons and "light bullets”(spatiotemporal solitonsn non-

: . . linear optics(in the model with the quadratic nonlinearity,
Thus, the net effective energy of the orbiting state is the interaction between the “bullets” may be spatiotempo-

rally anisotropi¢. The interaction potential predicts that an
orbiting bound state of two solitons exists, but is always

Eer=Up(R.#) + Eqs unstable. In the presence of weak dissipation and gain, the

- —(D-1)12 5 effective potential can also be derived, giving rise to bound
=CoCosyR exi 20R) states of Ft)he soliton&both unstable and agllmos% staplmi-
+(M?2mg)R™?, (39 lar to those recently studied in the one-dimensional model.
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