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Second-harmonic resonant excitation in optical periodic structures
with nonlinear anisotropic layers
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We propose a method to derive a system of ordinary differential equationpling equationsin order to

analyze nonlinear wave processes inside lossless layered periodic media. We solve the problem associated with
the interaction between the first- and second-harmonic waves inside a structure with anisotropic nonlinear
dielectric layers. An arbitrary angle between the wave propagation direction and the structure interfaces is
considered. The method takes into account both the nonlinear processes occurring at the slab interfaces and the
nonlinear terms that depend differently on the field components. We derive analytically the phase matching
conditions that provide the maximum interaction between the first- and second-harmonic waves. A physical
explanation of the increase in efficiency of the wave coupling that takes place at the frequency near the
passband edges is givdi$1063-651X98)04111-7

PACS numbdrs): 42.65.Tg

[. INTRODUCTION waves propagating in the structure with different wave num-
bers and frequencies may interact, i.e., exchange their energy

Studies of the nonlinear processes associated with the&ith each other. Most studies of nonlinear media deal with
wave interaction inside inhomogeneous meei@., harmon-  so-called Kerr nonlinearity, which, at least for a one-
ics generationshow that the efficiency of frequency conver- dimensional periodic system, permits an analytical solution
sion increases in the vicinity of the passband edgesf.  (see Ref[11] and references thergirFor instance, assuming
The cause of such an increase is the low group velocity ofhat the Kerr nonlinear coefficient is small, Scaletaal.[13]
the harmonic wave achieved at the frequency near the pasg0/ved the problem of optical pulse propagation through a
band edge. The low group velocity results in the increase oPn€-dimensional dielectrigphotoniq lattice.

a distance corresponding to the effective interaction Ofmo-lg—j(;nsetgﬂ)s/ tr;:rllngzlriggar ﬂﬁ’rrggevj;\?z iril:':gfagt?(i)tr? (_a;\r;\t;ll)inho-
waves. -

. . I method was proposgd4—17. This method does not make
The eIectrodyn_amlc propertles_ of layered periodic Struc_any restrictioﬁ oﬁ ael[<ind ofﬂ nonlinearity applied. However
r&] . : ’ . )

. . e smallness of the nonlinear terms is assumed. With the
[5-12. In. Ref. [5] Pozhar and Chernozatons_lq applied ahelp of the TWI method, the system of differential equations
mathematical model to show that the translation symmetry_ partial derivatives(i.e., Maxwell equationscan be re-

may considerably affect the processes of resonant excitatiof,ce to a system of coupling ordinary differential equations
of waves; however, the fundamental physical properties ofy, the slowly varying amplitudes of interacting waves.
the phenomenon observed were not discussed. The same au-The present work studies the nonlinear interaction of
thors derived an estimation for the increase of the generatiofgyves inside a two-dimensional layered structure that is pe-
efficiency, namely, |R|M/27)?, where|R] is the reflection  riodic in one dimension and consists of alternating dielectric
coefficient of one period antl is the number of the lattice layers, namely, uniaxial anisotropic nonlinear slabs and iso-
periods. They[5] established that the conversion efficiency tropic linear dielectrics. For the optical frequency band, the
may be increased by a factor of about 500 times. Theoreticalidth of the layers is about 0.3—@m. To simplify the prob-
and experimental studies of the nonlinear resonant excitatiom, we consider a dielectric lattice belonging to the
of harmonics were carried out for liquid crysta,3,6. A 6mm-symmetry class: If the lattice axis coincides with the
good correspondence between theory and experiments wagptical axis of the crystal then the anisotropic slab is homo-
verified. geneous in the plane of layefsee the discussion in Sec.
Periodic structures appeared to be very effective for the| A).
efficient generation of harmonic waves, which may be used To our knowledge, the existing theoretical studigmse
for practical purposes such as either frequency multiplicatiorbased on the TWI method for a periodic medjuteal only
or conversion. Because of nonlinearity, the electromagnetigvith wave propagation perpendicular to the slab interfaces.
However, it is well known that eigenwaves in periodic media
result from the interference processes inside the structure
*Present address: Institute of Radiophysics and Electronics Ndayers. Hence these natural modes are “collective” modes
tional Academy of Sciences of Ukraine, 12 Academic Proscuraconsisting ofelementary excitationsf layers. The elemen-
Street, 310085 Kharkov, Ukraine. tary excitations are waves propagating along the slab inter-
"Present address: Institute of Radio Astronomy, National Acadfaces. The fields of these waves satisfy the boundary condi-
emy of Sciences of Ukraine, 4 Krasnoznamennaya Street, 3100Qtons. The nonlinear processes associated with waves
Kharkov, Ukraine. propagating obliquely with respect to the slab interfaces ap-
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pear to be more diverse and interesting than those nonline@y expanding the polarization vectrinto a series of elec-

phenomena previously observeste Refs|1-3,6). trical field components, for the nonlinear componeR{s
The present work uses the TWI method and considers any, = .
) =~ fi=x,y,z) of P one has the expressigsee Ref[19], Chap.
value of the angle between the wave propagation directio
and the structure interfaces. It should be noted that Refs:
[1-3,5,8 study only the initial stage of the nonlinear process pn!
evolution. In contrast, we derive coupling equations that can X Xooc Xxyy Xxzz Xxyz Xoxz Xy
be applied to a periodic medium and allow a complete analy- Pyl =1 Xxyxx Xyyy Xyzz Xyyz Xyxz Xyxy

sis of the nonlinear process evolution. In this paper we derive pn!

analytic expressions for the phase matching conditions be- z Xoxx Xzyy Xzzz Xzyz Xzxz Xaxy
tween the first- and second-harmonic waves and point out Ei
particularities of the TWI processes inside a periodic struc- 2
ture in comparison to those of a homogeneous medium. Sy
In Sec. Il we state the problem and describe briefly the Ef
three-wave interaction technique for periodic structures. This EE | 1)
section discusses also the choice of the crystallographic sym- -y
metry and derives basic relations for the linear problem. Sec- E Ex
tion 11l explains how to derive the nonlinear coupling equa- E.E,

tions. In Sec. IV we analyze the phase matching conditions

between the first- and second-harmonic waves. Section ¥)ne can verify that to derive a system of equations for the

,Sé:[r?gllit:i;c ';rr?genrﬂﬁ]ser?gafhseolgggrl:geoafr térgecrgsglcijr?g ngeLf]f:t:i'g:;ﬁelds of two independent polarizations, the following com-
) . onents ofy;;, must be zero), = = =0. Those
are shown in Sec. VI. In Sec. VIl we discuss the characterpI A Xijk denoted i EXE/I)X Xyzz— Xyxz h bi
istics of nonlinear interactions in periodic media. elements ofy;j, denoted in EQ(1) as i, may have arbi-
trary values. For instance, the following crystalline sub-

stances possess the necessary susceptibility tensor: CdS,
a-ZnS, ZnO, BeO, SiC, Agl, and CaAs are of hexagonal
symmetry; LINbQ, LiTaO;, AgsSbS, a-quartz, HgS, and

A. General system of equations Se are of trigonal symmetry; and BaLiQPbTiO;, and

We study the nonlinear interaction between the first- anaS b:i‘éts S-S?Bcagﬁggze?i)h:rg tt?é;?%c;?:l ggﬁ:s' Bexis. per-
second-harmonic waves in a layered periodic lossless andendicular to the slab in?erfaces f\lext th)g S stem, gf Max-
dispersionless dielectric structure. We shall considee the P : ’ y

) . T . : well's equations will be split into two independent polariza-
discussion beloyva uniaxial dielectric crystal belonging to . = .
tions: E,,E,,H, and E, ,H,,H,. We shall consider an
the émm-symmetry class. Such a symmetry reduces the y Y

problem configuration into a structure that is periodic in on anisotropic dielectric belonging to therén-symmetry group

direction and homogeneous in the plane of layers. Ojlg] with the following tensor of nonlinear susceptibility:

method uses Green’s formula8] to derive a system of cou- 0 0 0 0 0
pling equations. Our structure consists of alternating aniso- Xxxz

tropic and isotropic dielectric layers. Specificallyg 0 0 0 Xxxxe O 0. 2
=(eyxx, Exx» €22 IS the dielectric permittivity of the first Xzxx Xzyy Xzzz O 0 0
slab of widthd,, ande, andd, are the dielectric permittiv-
ity and the width of the second layer, respectivaly=d;  Taking into account the nonlinear terms, let us write Max-
+d, is the structure period. It is also assumed that the firsfye|'s equations inside the first slab for polarization
layer is nonlinear. E..E,,H, as

The electromagnetic wave propagation inside each slab is Y
described by Maxwell's equations, constitutive relations, and JE. OE 1 oH

X z_ = y

boundary conditions derived from the continuity of the tan- — = —,
0z ox c Jdt

IIl. MATHEMATICAL MODEL AND PROBLEM

gential components of the electric and magnetic fields at the
slab interfaces. Next one can choose a problem configuration
so that the system of equations will be split in two indepen- dHy ey JE, 4w d
dent polarizations. Specifically, such a separation of the T2 " ot T e Xy (BED) 3
equations is possible when the optical axis of the uniaxial
dielectric coincides with the axis of the superlattice. In our
problem theZ axis coincides with the optical axis of the
crystal. ox ¢ dt
For an isotropic dielectric, all coefficients of the nonlinear
polarization that may cause second-harmonic generatio®@ne can see that due to the choice af-symmetry class,
equal zerd14]. Therefore, we shall consider a second-orderour problem is homogeneous in the plane of layers. Thus one
nonlinearity(see Refs[14,19) supposing that one layer in a can setd/dy=0. Equations for the field inside the second
unit cell contains a uniaxial dielectric medium with nonzeroslab are similar to Eqg3), but without the nonlinear terms
third-order coefficients x;,;) of the nonlinear polarization. and withe, instead ofe,,,e,y.

dHy &,,0E, 4w d 47 d
= 7t TXZXXE(EXEX) + ?XZZZE(EZEZ)'
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B. Linear solution for d;+Nd=<z<(N+1)d. Here A,B;,B,,C are constant
The linearized system of equatiof® has been studied in and can be determined from the boundary conditions and

the literature[7,8]. Applying the technique of the transfer Floduet theoremNis an integer. It is also supposed that the
matrix method as it is described in RdB] by using the field dependence on timeand the space coordinateis

Floquet theorem and taking into account the boundary cor@XP(iwt+ikx). Next one derives the expressions for

ditions atz=d,, we derive the transfer matrix as B1,B2,A, namely,
kK, e
( :y((g)) ) = fn( :y((:))) ; (4) B,=cosk,;d;cosk,,d; + kzzl—szsin K,1d;sink,,d;
X X Z XX
w &
kZZSXX . . +| — | —) A( _ZCOSkzldlsin kZZdl
m; 1= cosk,,d;cosk,,d,— v sink,,d;sink,,d,, c K,»
z1©2
Exx .
k2182 ) ) - k—SIn kzldlcoskzzdl) y
M,,= c0osk,,d; cosk,,d, — ———sink,;d;Sink,,d,, 71
Kzo€xx
. C kzZ .
LW &y . Exx . BZZ -1 — _Coskzldls|nk22d1
my,= —i —| —cosk,,d;sink,,d,+ —sink,;d;cosk,,d, |, W\ &2
cl kg Kz K
¢/ Ky Ky, — S—leinkzldlcoskzzdl
Myy= — i ;< —sink,,d;cosk,,d,+ eicoskzldlsin kzzdz) . >
XX 2 k,»e
(5 +A coskzldlcoskzzdﬁ%;:sin K,1d,Sink,,d; |,
Z
Here 9)
m,,— exp(ikd)
Exx (1)2 2 (1)2 2 A: m—
k= —| e kK|, Kp= — &2~ K (6) 12
€27\ c? c?

Making use of the Green's formuld 8], we derive in the
are the transversal wave-vector components inside the firstext section theoupling equationshat describe the interac-
and second slabs, respectivety.is the wave number along tion between the first- and second-harmonic waves.
the X axis directed parallel to the slab interfaces. The transfer

matrix (5) appearing in Eq(4) differs from that of Ref[8], Ill. COUPLING EQUATIONS
namely, it takes into account the anisotropy of the first layer
of the unit cell. Next we solve the nonlinear problem taking into account

Making use of the Floquet theorem, nameM,(d) the smallness of the nonlinear terms in E¢®. We shall

_ T _ 0 ; look for solution of Egs(3) in the form of a sum over spatial
=H,(0)expfkd), E,(d)=E,(0)expfkd), one derives the ] ) ) M

y X X
dispersion relation for a periodic medium as harmonics with different longitudinal wave vectés, (cf.

[20]):
coskd— 2L Mz ) -
2 E= > C(2)[e(z)+639(z)]exp —iwt+ikX),
ky=—o0
Herek is the Bloch wave vector. The dispersion relati@h (10
connects the values,k,k, . ' ' Ho= S C2)[hy(2)+h® () exp—iwt+ikx)
To proceed, we need the field expressions A y y —lo X
EX1=C[iCknsinkzlanAcoskzlz , Here C(2z) is the slowly varying amplitud¢21] of the kth
Exx wave(that is, the wave with the longitudinal wave numker
(8)  and frequencyw):
E,=-C XCJ K2+ ATk
71— — COSs le —SINn ZlZ d In C o
“Ez karC T <Kkarz. (11)

for Nd=z<d;+Nd and

In Egs.(10) both values ofC(z) and the fields in square
brackets are different for differefth waves(for simplicity,
we do not assign any index, say, indkx for each of the
values. Also the frequency, k,, and the transversal wave-
number componerk are coupled by the dispersion relation

@).

icky |
E,.»,=C|B; w—szsm k,»z+ B, cosk,,z

wey
B, cosk,,z+ By,~——=sink,,z

Eo_ CkXC ®
2 we, k,»C
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It should be noticed here thég, value is unambiguously field amplitudeC on z and finally derive a system of equa-
related to the angle between the wave propagation directiotions for C. To this end, we substitute the field$0) into
and the structure interfaces. Thus, in E(€) any possible  Egs.(3), multiply the right- and left-hand sides of Ed8) by
directions of the wave propagation are taken into account. explwt—ik,X), and integrate the equations over time

The fieldse(z) andhy(z) are solutions of the homoge- <t<+) and overx (—»<x<+). Finally, the system
neous linear system of equations, i.e., of Egswithout the ~ Of Maxwell's equationg3) takes the form
nonlinear terms(cf. [15,1€]). Inside the structure layers, A S (ad)
these fields contain the fast factors such as £#g ,z) in Lf=H(f,f)— LI (12
their dependences an Additional fieldse®® andh{*? are
partial solutions of the inhomogeneous system of equation
namely, of Egs.(3) with the nonlinear terms taken as the
right-hand side of the system. Also notice thet®,h(*®
appear to be of the order of the nonlinear terms.

L and7 are linear and nonlinear operators, respectiviely.

% solution of the system of equatioﬁ$=0. Actually, bothf
andf@9 are the column vectors consisting of the field com-
ponents of thath slab inside a period:

A solution in the form of Eqs(10) differs from the tradi- hyi h(y?d)
tional technique of analysis of the TWI proces$és,16|. _ (ad)_ | a(ad) o
Specifically, in Eqs(10) not only C but also the components fi=] &, f77=] & =12
&(2),h, depend ore. The latter stems from the fact that our €z el??

structure is inhomogeneous in t@edirection. ] R

Next we average the system of Maxwell equations ovefObserve that due to the smallness of nonlinearkyf,f)
“fast” field variations in time and space, i.e., over depen-contains no additional field&?.
dences such as expik,x—iwt) and the one associated with Equation(12) is the inhomogeneous system of linear dif-
the field variation due to periodicity along tffaxis. Our  ferential equationsL and 7 are defined inside the slabs as
goal is to extract a slow dependence of the electromagnetiollows: For the first layer ld<z<d;+ Nd)

—iw 0 .
¢ C(hy, +h(3?)
- d iw
Lt +179)=| = —ex 0 || Cleated”) |,
» Clen+ei?)
ikx 0 FSZZ
(13
dC
_exla
r dc ™ ren H ' ” 1 roan ron
H(fq,f)= hylE+TXxsz C'l-i(0'+w )]Xz(exlezl+ezlexl)
47T ! n H ! n ! " ! "
?C C [—I((u to )]X(szﬁxlexl+)(zzzezlezl
and for the second lay¢d;+Nd<z<(N+1)d]
—i d
cw 9z ik dc
(ad)
C(hy2+hya2 ~eoy,
N (ad) Jd iw (ad) .
L(fo+f5)=] —— —e2 O Cleeteq’) |, H(faf)=| | dC |. (14)
¥2' 4z
- Clep+els”) 0
IkX —e,
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It should be noted that, despite the second slab consisting éfere we highlight the regions of widthss2and §;+ &;, 1 in

a linear dielectric only, the nonlinear term&f,f) appearin  the vicinity of each boundary. With the help of the Floquet
the field equations for both the first and second layegs.  theorem, we express the fields in the integrals associated
(13) and (14), respectivel}. Observe in Eqs(12)—(14) that ~ With layers in terms of the field of the first period of the

after integration ovet andx, the linear part of Eq12), [f,  Structure. The following sum appears:

contains only parameters of théh wave(i.e., the wave with

the longitudinal wave numbek,). The nonlinear terms Joc i ( J—51+d1 J'—52+d
= lim +

H(f,f) couple the fields of thé’th andk’th waves, i.e.,
those waves associated with the longitudinal wave numbers
k, andk} (the parameters of these waves are marked by one

and two primey respectively. In general, all values of X E
ky Ky, andk are different. Let us also remark that the non-
linear terms in Eqs(12)—(14) contain the produc€’'C" of
the slow varying amplitude€’ andC” of the k’th andk”th
waves, correspondingly.

Next we proceed with averaging of Ed.2) over fast field
variations along th& axis. This will be done with the aid of _
the Green’s formul418]. Keeping the notations we used in > expli[(k'+k'—Kk)d+27(N'+N"—N)]}
Egs.(12)—(14), this formula can be written as N,N’,N"

80,81,8,—0\ 7 & 6y+dy

exp{i[ (k' +K'—k)d+27(N'+N"—N)]}.
N,N/,NN

N,N’,N” denote the period numbers associated withkithe
k’'th, andk”th interacting waves, respectively, and

X ) - 1—exp{iM[ (k' +K'—k)d]}
L[?*(Ef)—(t?)*f]dz:ff*|g. (15) Cves 1—exdi(k'+K'—k)d]
=8((K' +K'—k)d+27L), L=0*1,... .

Herel is the transpose df, i.e., the transpose of the square
matrix consisting of operators of the linearized system o

equations, and is a solution oﬂA_, T=0. An asterisk denotes
complex conjugationf*(Lf) and Lf)*f denote scalar dC{ fd

fFinaIIy, we obtain22]

1 d
products. It is also known that, in homogeneous mefia, gz hy1€|dz+ L |hy2€x2|dz]
1

N 0
andL are algebraic operatof45]. 4
A

The transposei of the operatorl is obtained using a =—j —2 [
standard procedure, hamely, we exchange rows and columns ¢ k. K

in L, substituted/dz by —a/dz, and apply complex conju-

di| 1
* ! " * ! 1
fo [EXxxz(exlexlezl+exlezlexl)

gation. It turns out that each element lofis equal to the + X208 80t X22£71€18%
corresponding term of taken with the opposite sign. Thus o
solutions of the initial and corresponding transposed system Xdzé((K' +k"—k)d+27L)exd —i(w' + 0" — o)t
coincide. An important meaning of the Green’s formula con-
sists in the following: Eigenfunctions of the transposed linear St '

. . . . +i(k;, + k5 — Ky )x . 1
differential operator are orthogonal to the right-hand side of (ktke—kdx]pC’C (16

the inhomogeneous system of linear differential equations,

namely, eigenfunctions df are orthogonal to the operator |t the following phase matching conditions are fulfilled,

H. namely,
Making use of Eq(15), we find that the integration of the

linear operatord. andL vyields the difference between the 0 +o"—w=0, (179
corresponding field componeni&q. (8)] at the structure
boundaries. Both the main field8) and the additional fields

@ h{ad satisfy the boundary conditions. Therefore, the ky+ki—kx=0, (17
integrals of all linear terms are zeros.

Next we integrate the nonlinear teri§f, f). Let us rep- Iy
resent the integral over(—«<z<) as a sum of integrals k' +k"—k+ e =0, (170
associated with the structure layers:

ff” ~ im [ N fﬁo N f_5l+dl+ f51+d1 then the equation for the amplitudztakes the forn{16]

—®  5-0i=0*1, . —d0 Jog —6p+d;
dC

E :Wk,k',k"C,C”’

—8,+d
+f e
8y+dq
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A o'+ "
i ——
c S
dy Xxxz
* 1 AN * A Al
Xfo dz T(exlexlezl+exlezlex1

* i U * ! A
t Xz0€718x18x1 T X22£71€1€22 |-

Wk,k',k”: -

(18

Here S, denotes the expression in large curly brackets afte
dC/dzon the left-hand side of Eq16). S, is the energy flow
of the kth wave in theZ direction. ThusW, . y~ is a ratio of
the energy flow along th& axis (this flow appears due to the
nonlinear interaction of wavgso the energy flux of théth
wave itself. The inequalityll) meansWy y, (»<1.
Equation(18) is written for thekth wave. Equations for
the k’th andk”th waves may be derived by permutation of
indices in Eq.(18). Then a system of equations for the three
interacting waves will be derived.

It is necessary here to highlight the particularities of the
nonlinear interaction in a periodic structure in comparison to

the TWI processes in a homogeneous infinite medium.

(i) The dispersion relations for the three interacting waves

contain Bloch wave vectoris,k’,?’ instea_d of the t_ransver-
sal wave number k,, namely, w(kk,),o’'(k"k}),
w//(kl/,kfl).

X

(ii) Despite the first two laws of the energy conservation,

namely, Eqgs.(17a and (17b), not differing from those of
homogeneous media, the third relati¢h7c contains the
term 27L/d associated with the structure periodicity. The
latter means that umklapp phenomdeae Ref[6]) exist in
this periodic medium. The necessity of this third law was
discussed from a physical viewpoint in REL7].

(iii) The third particularity of the nonlinear interaction in
a periodic structure is associated with the shape of the coe
ficient of the nonlinear interactiowV, , ,» [See EQ.(18)].
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its second harmonic, say, ttk¢h wave with frequency @’
and the wave-number componerk;2 Making use of the
TWI method, we assume that tkéth andk”th waves are the
same wavew”"=w’,k;=k, , andk"=k’. Thus the resonant
conditions(17) take the forms

k=2k"+2mL/d,

w=20,

ky= 2k, ,

L=0,+1,%2,.... (19)

r
Then the system of equations for slowly varying amplitudes

of thek’th wave and its second harmonic, i.e., &ib wave
(amplitudesC’ and C, respectively, takes the form

dC/dZ:WZKI‘k/C,Z,
dC’/dz=W, 4« CC'*. (20)

The matrix element®Vy, . Wy 5 are determined by Eq.
(18) where values with one and two primes are equal each

other. The values,k, .k,w’ k. k' satisfy the dispersion re-
lations

cos k' d=cos k.,d;cos X.,d,

cosk’d=cosk},d;cosk},d,

|

1

2

! !
kpexx  Kzeo

’
22€xx

; ) sin 2k}, dsin 2k},d,,
kz182

(213

1

2

! !
kZZSXX kzl"’"32

: ; )sinkgldlsinkgzdz.
kue2 22€xx

f- (21b

This coefficient is discussed in Sec. IV, where the interactiorﬁquation,s(zb take into account both relationd9) and
between the first- and second-harmonic waves is considerellz1,2=2K;1 o. The latter equality is valid in dispersionless

In Egs. (10) [see also Eq(18)], the slowly varying am-
plitude C is assumed to be dependentaonly. We highlight
here that th& axis should not be confused with the direction
associated with the maximum nonlinear interaction betwee

dielectric media[to verify this one should substitutk,
=2k, andw=2w’ into Egs.(6)].

The five equationg19) and (21) contain six unknown
Ralues w,w’,ky k; ,k,k'. Therefore, one of these values

the harmonic waves. As is known, in general, a maximummust be determined, e.g., the first-harmonic frequentcyor

nonlinear interaction(such as the amplification of the
second-harmonic way@ccurs in a certain direction that has
nonzero components on both tkeandZ axes(see Ref[4]).
Equation (18) implies that the phase matching conditions

(17) are satisfied. Thus those values of the longitudinal and
transversal components of the wave vector that satisfy Egs.

(17 and(1790), respectively, will determine the direction of
the maximum nonlinear interaction between the harmonic

Below, in Sec. VI, we analyze the dependences of slowlyS
varying amplitude<C,C’ onzin order to determine the spa- f
tial distance of the complete energy exchange between th

first- and second-harmonic waves.

IV. ANALYSIS OF PHASE MATCHING CONDITIONS

We shall consider the interaction of thketh wave with
given frequencyw’ and longitudinal wave numbeé¢’ with

S

wave numberk.). Then the function&’ (') andk)(w’)
can be determined with the help of Eq21).
Equations(21) possess the exact solution
cosk’ d=cogk};d; +k.,d5). (22
The solution(22) is valid inside the passbands where the
bsolute value of the right-hand side of Ef). is less than 1.
ubstituting Eq(22) into Eq.(21b), one derives the relations

or the functionk,(w’) [or w’(k;)]:

a

(exikyp® 82K)? sinkj,dy sinkj,d,
k1

0. (23

!

EyxE
XX© 2 22

Thus the phase matching conditiofls) are fulfilled for the
three cases
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6000

in Fig. 2). All the passbands touch each other in points that
divide the corresponding stop band into two parts. It should
be noted that the second asympt&fe=0 (dashed line in

2000 E Fig. 1) is tangential to the curves ckd=*1 at the inflec-
3 tion points.
4000 The thick straight line in Fig. 1 corresponds to E243).

This line is the dispersion curve=Kk,c/\eq¢; Of a light
wave propagating in a homogeneous medium with an effec-

3000 tive dielectric permittivity

o (1/cm)

g €28, Exx—€2)
2000 L Ceff—— 5 - (25
Exx€zz7 €2

We now analyze the field expressiof@® and (9) for the
case when the relatiof25) is satisfied. Substituting Eq.
(243, namely,k},/ex=k,/e,, into Egs.(8) and (9), one

1000 1-stlayer: CdS, d,= 1.5 uk;

2-nd layer: NaCl, d,=0.75 k.

0 IIIIIII|III|IIIIIII|III|III|III|III|III Obtalns
0 2 4 6 8 10 12 14 16 18 20 oy
k',d 11 =C'a'e*n? 0<z<d,
FIG. 1. Zone spectrum of the dielectric lattice. Frequencis , K K dy ik oz

plotted versus dimensionless longitudinal wave nurniger Stop Ey,=C'a’ea " 2%e 2% d;<z<d

bands are marked by filled pattern: light lines derigte=0 (lower

straight thin ling and k,,=0 (upper straight thin line The solu- 8xx822_8§_82 +e,e

tions of Eqs.(24) (thick curves arek., = 7/d, [Eq. (24b)], zone I, o = XX . XX (26)

and kj,=m/d, [Eq. (240], zone V. The thick straight line corre- €o(ExxEzz— €3)

sponds tee kK, = e2ky; [Eq. (243)].
Expressions for the field of the second-harmonic wave are

o [ere,f60—82) analogous. Equation@6) show that the traveling wave re-
Exkiy— ekl =0, ki=— 22—”22; gime is set in the structure: There is no reflection from the
¢ Exx€27 €2 boundaries. It should be noticed that for a homogeneous me-

(248 dium, the relations,k.,=&,k., becomes identical. There-
5 fore, this type of resonant interaction is analogous to those
w'? mim? TWI phenomena that take place in homogeneous media with
€22 "~ 5 T ' the effective dielectric permittivitf25). However, as it is
seen in Fig. 1, the straight lindeq. (24a] crosses the stop
m=+1%2 ... (24b) bands where the relation,k,,=&,k,, is not valid. There-
fore, in the vicinity of the band boundaries, the nonlinear
2 o interaction of waves cannot be studied with the help of Eq.
Kppdo=mpm,  ki=\ — &2~ 2_2 (18): This equation is inapplicable inside the stop band re-
ds gions.
Equations(24b) and (24¢ are the Bragg resonance con-
my=>=1,+2,.... (249  ditions for the first and second layers, namely,,
) ) ) ) =m,w/d; andk,,=m,m/d,, respectively. The thick curves
I Eqﬁatlons(|24) have a S|mp(;e physical mﬁanmg JO gna in Fig. 1 correspond to these equatiq@db) and (24¢). The
yze these relations we consider in Fig. 1 the passbands a% rvek;,, = m/d; starts in the second passband and, with the
stop bands of the lattice that consists of nonlinear dielectric
fncrease ofk,d, crosses the stop band and approaches an
CdS as the first layer inside the unit cptl;=1.5 um,e,, totic linek’- = 0. Th hould t particul
=5.382, ;= 5457, Y= 210<10°° CGSE (cantimeter- £ /00 5 Tu i the vicinity of the pount
- -electrical i =192x10"° -
gramm-second-electrical sySIENUNIts, xz,,=192x10 ary of the second passband. Only part of the curve for Eq.

CGSE units,y,,,~=378x 10 ° CGSE unit$, and a homoge- ; : Lt . .
. g (240 is depicted in Fig. 1. The slope of this curve is steeper
neous dielectric NaCl as the second sldb=0.75 xm and than that of the line given by Eq24b). This is due to the

=2.38). Filled circuits mark the band boundaries where
2 )- choice of the values,>¢,,. Numerical calculations show

cosk'd=1. Circumferences correspond to the curves Withiat the curve for Eq240 crosses a point belonging to both
cosk'd=—1. Stop bands are marked by filled pattern. Eachpassband boundaries. Therefore, in contrast to(Z4p), the
passband is numbered by a roman figure. The first passbapthase matching conditions given by E¢4b) and (240 are
(number ) starts from low frequenciese( —0) and small  fulfilled along the curves that cross the boundary between the
wave numbers K;d—0). With the increase of frequency, passbands and stop bands only one time.

this passband becomes narrow and both of its boundaries In the cases of Eq924b) and (240, the fields of har-
approach an asymptotic line’ =k,c/e,, (k,;=0) (thinline  monic waves possess the following interesting particularity.

c exxd1
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For the first harmonic wave, making use of the condition %3
k,,di=lm (1=1,2,...),from Eqgs.(8) and(9) one obtains -
k’ k’ 2E-3 —
c €
E,n=—-C’ 2,2 (coskélz—i ,Z;Zsinkélz), 0<z<d,
w €7 22€xx

« (arb. units)

< 0E+0 — t

5
—

!

’ /kZ

X2 C

-2E-3 —

Cc
2 exp(ikgldl)lexq—ikgzz), d;<z<d.
w &)
(27)

One can derive analogous relations for the second-harmonic™
field in the casek),d,=I#. Specifically, to obtain expres-
sion forE,; ,E,, one should exchange the indices 1 and 2 in %€ L L
Eq. (27); the valuess, ande,, should be exchanged also. If 0 2000 4000 6000
Bragg resonance conditions are satisfied for one layer inside frequency (1/cm)
the unit celllEq. (24b) or (240)], the expressions for the field 0 2000 2000 6000
componentg27) imply that a standing wave exists in one T
layer (say, slab 1, while a traveling wave propagates inside g
another slalfsay, slab 2 Thus the periodic structure can be = 7 2 \\\:}:‘]
represented as a chain of coupled resonators distributed irs 2

1 2 1

| |
Im W
space. The existence of a traveling wave means a complete £ f\J

Re W,

eW 0, ReW .

4E-3 — Re W,

0E+0 L L

|
2K
—

b. units)

matching between the resonators. z . Im W, 2
£
7L -4E-3 —
V. PROPERTIES OF THE COEFFICIENT g
OF NONLINEAR INTERACTION = 7 1
E

The complete expression faW, . «» [EQ. (18)] is un- B — 1

wieldy an.d we d.o. nOt. represent it here. Neyertheless, the FIG. 2. Dependence of the nonlinear interaction coefficients on

form of this coefficient is simple and can be discussed. EaclﬂequenCy for the case of E4a: real (top) and imaginary(bot-

term in the integra(18) results in four multipliers such as tom) parts of W, 5 and Wy, . The breaks in the curves are
associated with the stop bands in Fig. 1: 1, stop bands of the first-

cosksdy —1+i sinksd, (29) harmonic wave; 2, stop bands of the second-harmonic wave.

kd '
o value. In our problem, the relatidg, —k,, —k},=0 [see Eq.
wherekg stands for one of the combinations (29d] is identical becausk,, =k}, andk,; =2k, in a dis-
persionless mediuisee the paragraph after Eq&1)]. Here
K1+ Ky T Ky, (293  and in what follows we shall consider in E(L8) only one
term containingks=Kk,; — kj; —k;;=0.
Kz1— Ky Ky, (29b) It should be noted that the discussion above is not valid if
the parameters of waves, namely, eithgk, or o’ k; , are
(SR ol (299  close to the passband edges. In the vicinity of the passband
boundary, the nonlinear elementg,, ,» and W, . [EQ.
Ky — Ko — K5, . (29d)  (20)] have singularities, as it will be shown below in Figs. 2
and 3.

For the TWI phenomena in a homogeneous medium, the Figure 2 shows the real and imaginary parts of the non-
phase matching conditions are fulfilled for the transversalinear coefficients as functions of frequency for the case Eq.

’

wave-number components ,k; k. Therefore, one of the (244a. Itis seen in the figure that the curves have breaks near

sums in Eq.(29) will be zero and the multiplief28) is  the passband edges wheked=0 or 7 (see Fig. L The
imaginary. Therefore, in a homogeneous mediWR, « iS  breaks marked by 1 are associated with the stop bands of the
imaginary also. In a periodic structure, the law of synchro-first-harmonic wave and label 2 stands for the band gap of
nism is completed for the Bloch wave numbé&t&’ ,k” [Eq.  the second-harmonic wave. The Bloch wave number of the
(179]. Thus, in general, none of relatiof®9) is zero. Hence first harmonic equalst/2. It is seen in Fig. 2 that in the
the multiplier (28) is complex. The latter results in complex vicinity of the stop bands, the real and imaginary parts of the
Wik kv - Nonzero real and imaginary parts\8 - » result  nonlinear coefficients vary considerably. Specifically, the ab-
from the fact that the fields of the three waves accumulatsolute value of the real part increases from zero to values
different phase shifts along the path between two slab intereomparable to those absolute values of the imaginary part. It
faces. One can say that a “mismatch” between the opticaturns out that Re{,. )ReWy »,)<O0 and both
widths of the layers takes place. IM(Waoir ) )<O0  and  Im@Wr 5)<0.  Also, Wy

If one of the sums29) is zero, the corresponding value of =W,y /2.
the multiplier(28) is imaginary and has a maximum absolute A physical reason for such considerable varyifay
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frequency (1/cm) If the Bragg resonance conditions are satisfied for one
1000 2000 3000 4000 5000 6000 . . . . . .
layer inside the unit cell, the following analytic expression
for the nonlinear coefficients can be derived:

0.0E+0 IIIIIIIII|IIIIIIIIIIIIIIIIIIIIIIIIIIIIIlIIIIIIIII

87C &4y Kidq k.? k.2

z
Wy o = =1 —— — —— (Xxxz+szx)_2+Xzzz_2 ,

-4.0E-4 — I e !
w 2z K Exx €5,

Im W K2k

Worr ki =2Wyer - (30
-8.0E-4 —
Here we supposk,,= m/d,.

Equationg(30) imply that the nonlinear coefficient is pro-
portional to the relative width of the nonlinear layer. The
anisotropy of the dielectric permittivity has a weak influence
on W, o because,,~¢,, for the optical frequency. Nev-
ertheless, depending on the relation between the wave-vector
componentk, andk,,, the anisotropy considerably affects
the nonlinear properties. Whedj—0 (see Fig. 1, the sus-
ceptibility componentg,,, and x,4, have the most influence
on Wy, . With the increase ok;, k;, decreases and the

FIG. 3. Imaginary part of the nonlinear interaction coefficients jnfluence ofy,,,dominates. It should be noted that the stud-
as a fu_nction of frequency for Eq24b) (left-hand curvesand Eq. ies of Refs.[2,3,5 use a method that determines only the
(249 (right-hand curves ReW a0 =ReWo o =0. dependence of the nonlinear coefficient on one component of

the nonlinear susceptibility, namely, on tleg,, component.
breaks of the nonlinear coefficients is as follows. There is aReference 1] has stated the increase of the nonlinear inter-
point inside a stop band whene,,=0 [23] that is associated action coefficient at the passband edges.
with the Bragg resonance of the whole structure period. In-

-1.2E-3 —| ok

mw . 0.Im W, (arb. units)

-1.6E-3 —

k', = wd,

-2.0E-3

deed, if the condition$24a are satisfied, then VI. ANALYSIS OF COUPLING EQUATIONS
® e To solve Eqs(20) we introduce the notation
Mip= i = o Sin(kz1 s+ kyod) =O. _ _ |
22 C=Ce'®, C'=C'e?, Wy  =We’
That is,k,1d, + k,,d,=nr is the Bragg resonance condition. Wi g =W'¢' O p=p—2¢. (31

As it follows from Eg. (9), if m,=0, the coefficients
A,B;1,B, tend to infinity. As consequencél, 5, and  Then the coupling equatior{20) transform into
W,y diverge. In the vicinity of the passband edy#,

and W,,, ,» are finite values that depend on the detuning dC —5
! —=WC'“coq 6+ D),

between the frequency of the band edges and the frequency dz

that givesm;,=0. In other words, the nonlinear coefficients

increase when the wave frequency approaches the frequency dc’

of the Bragg resonance of the lattice period. ——=W'CC’coq ¢’ — D), (33
Figure 3 shows imaginary parts of the nonlinear coeffi- dz

cients for the case when Bragg resonance conditions are ful- 4 o2

filled for one single layer inside the unit cell, namely, Eq. e =,

(24b) or (249. Now ReWj. 5, =0 and RéW,, »,=0. One a7 - W Sino+ @)+ 2WICSIn(E’ -~ D).

can see in the figure that the absolute values of the nonlinear
coefficients increase when the frequency approaches thé 6+ 6’, then only a numerical integration of E¢R2) is
band edges. A physical explanation is as above, namely, theossible[16].
Bragg resonance conditions are satisfied not only inside each In the cases of Bragg resonandgsth) or (240, as it
of the layers inside the unit cell but for the whole period asfollows from Eg. (30) and Fig. 3, the nonlinear elements
well. In contrast to Fig. 2, this kind of resonance occurs atw,, 5., andW,,, ,, are imaginary, i.e.f= 0’ =3/2m. There-
the passband edges. Therefore, in order to obtain the coefﬁere', Eq.(32 has two first integral§l14]
cientsA,B;,B, one should pass to the limit in E¢(P):

62 612 —
T Ki= W + E K,=CC'“cos®, (33

mp

A= lim

kg1 +kgply—nm whereK; andK, are the constants determined by the initial
conditions az=z,. Now the system of equatiori82) con-
Now one can verify that the nonlinear coefficients are finiteverts into an elliptic integral and possesses a solution in the

values. form of elliptic functions
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2.0

02=WKl{y1+(yz—y1)

X srf

Yo=Y
WWY2KY2(7- 7,) “
it o Ys—Y1

wherey,<y,<y; are the roots of the cubic equation
2

1-y)2-K=0, K=—02—.
y(1-y) KWW )2

€ ,C' x 10 " (arb. units) @ (rad)

If the amplitude of the second-harmonic wave is small at the
coordinate origin, namelyC(0)<C’'(0), then

_ 0.0 L N I B B R
~C’(0)2 — (OO ()2 0 40 80 120 160 200

K= W K,=C(0)C’'(0)“cos®(0), 2/d

a)
C(0) Z\W' = 2.0 —
o) W cogd(0). R
K=1 andK is independent of;/ and W’ becausew’/W g -2.0 —
=1/2 always. Now one can approximately derive the roots of = .
the cubic equationy;~K andy,~1+* JK. Consequently, £ 45
the amplitude of the first and second harmonics can be ex- .
pressed as o 7
x 0.8 —
— W _ o i
C2~W[C’(O)]anz[\/WWC’(O)Z,l— VK1, o ]
0.4 —
_ (34) ]

C'2~[C'(0)]3{1—sr?[ yWW C'(0)z,1— VK]}. oo
. IIIIIII|III|III|III
The existence of the first integra(83) means that the 0 40 80 120 160 200
total energy of thé&th andk’th harmonic waves is conserved z/d
along theZ axis. By analyzing the mutual variations Gf b)

andC’ one can study how these harmonic waves exchange gig 4. Dependence of absolute vall@C' and phasab of

their energy with each Othﬂ- nonlinear waves on the dimensionless coordizadefor the case of
In Fig. 4(a) the amplitudeC of the second-harmonic wave Eq.(24b): (8) ®=1700 cnil, InW=—6.7X10"4 and ImW’ =

increases almost from zero up to a maximum value at a dis=3.3x10 % and (b) ©=1906 cm?, ImW=-1.4x10"3, and

tance of about 25 structure periods, wh@é decreases from m W'=—7.0x 1074

a maximum to a minimum at the same distance. Thus the

energy of the fundamental wavghe k’th wave converts

) : C’ decreases considerably. The latter is due to the increase
into the energy of the second-harmonic wathe kth wave.

N4 of the argument of the elliptic function near the passband
All curves in Fig. 4a) have been calculated at the frequency g nqary. Therefore, the periodicity of the structure results

wa=1700 cm*. This pointA lies on the curvé,; =m/d: iy the following: The distance of the energy exchange be-
far from the band edge. In Fig(#) we present an analogous yeen the harmonic waves becomes a minimum in the vicin-
calculation forC, but at the frequencwg=1906 cm*. A ity of the passband edges.

distance that corresponds to the amplitude increase from zero |f the phase matching conditiof24a is fulfilled, 6~ 6’.

up to a maximum value equals 12 structure periods. A comtet us make the following variable change®=3/27+ ¢
parison shows that the imaginary parts\dfandW’ associ- and 6’ =3/27—9'. If 9=19', on substitutingb=2¢' — ¢
ated with pointB are almost 2 times greater than the corre-+ 3/27 into Eq.(32), one obtains an integrable system again,
sponding values at poim: ImW=—-1.4x10"%, ImW’'  putd varies within the limits that depend o

=—7.0<10*% and ImW=-6.7x10"% ImW' =-3.3 In the vicinity of the passbands, boWiy - andW, g
X104, respectively. As it follows from Eq.34), if both the diverge(see Fig. 2 As a consequence;# 3'; however, the
frequencyw’ and wave numbek; increase in such a way difference betweer andd’ is small. In this case, Eq32)
that the Bragg resonance condition is satisfledy., one may be solved only numerically. Figure 5 shows a numerical
moves from pointA toward B along the curvek};=a/d in  solution of Eq.( 32) for 9=1.2741 and}’ =1.2723. In con-

Fig. 1), the period of the variation of the amplitud€sand  trast to the behavior o€(z) and C’(z) in Fig. 4, the har-
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2.0 — artificial symmetry. Here we present a technique that reduces
:é; ‘j ﬂ ||_\ I,_\ ||_\ the problem to a known system of coupling equatipb4)].
s 00 g e T Our method is based on Green’s form(1#®) and allows one
¢ 1 U U Y Uy Ve coupling equati - -
Y a0 to derive coupling equations for an arbitrary functional de-
2 pendence of the nonlinear dielectric permittivity on the elec-
2 ] tric field amplitude. This means that not only a well-known
& 1.2 — Kerr-like nonlinearity(such ase|E|?) but any other depen-
T 1 dence can be considerédf. y;;E;E.{j.k}=x,y,z). We
2 - assume that the nonlinearity is weak, namely, the nonlinear
x 08— terms in Maxwell equations are small. For nonlinear optical
Q ] materials of interest to ugsee the paragraph after EQ.)]
O g4 this assumption is surely satisfied. Our method allows one to
. study both the nonlinear processes inside the slabs and those
] taking place at the structure interfaces.
0.0 L L o B It is shown that the translation symmetry of the structure
0 120 160 200 changes the conservation laws for the transversal wave-
vector componenti.e., Bloch wave vector In general, the
coefficient of the nonlinear interaction is complex even with-
4.0 out dissipation. In contrast, for the TWI processes in a ho-
= mogeneous medium, the coefficient of nonlinear interaction
g 2.0 — nﬂnnnnnnnuﬂvnwvﬂvnv .],‘,‘.‘,“\l\‘ is ir?]aginary_
& . UL It is stated that, during the generation of the second-
z ?-g — harmonic wave, the laws of energy and pulse conservation
B - [Egs. (17@ and Egs.(17b and (17¢), respectively of the
g ] interacting waves are associated with the Bragg resonances
L 12 of either a single layer or the whole period of the structure.
o 4 The latter type of Bragg resonance implies that the conser-
% og H'HH‘H It vation laws are completed for the structure with an effective
o — dielectric permittivity given by Eq(25). For this case, the
o ] phase matching conditions imply that a traveling wave
0.4 — propagates in the periodic structure.
] c The particularities of the nonlinear interaction associated
0.0 —] | with the complex character of the matrix elemewmts,,

andW,, 5 have been studied. The increase of the coefficient
0 100 200 d 300 400 500 of the nonlinear interaction is associated with the Bragg reso-

zb nant conditions. During the Bragg resonance, one observes a

) considerable decrease of the wave path associated with the

FIG. 5. Same as in Fig. 4 but for Eq243: (@ o complete energy exchange between the harmonics propagat-

—4200 cml, IMW=—-55x104—i1.8x10°3, and Imw’'=  ing inside a lossless periodic structure.
—2.8x107%—i9.1x10°% and (b) w=4260 cm!, ImW=—1.7 From our point of view, the present study has both a basic
X10°3—i1.6x10°3, and ImW'=—7.2x 10 4—i6.5x 10" 4. interest and practical applications for the purposes of spec-

troscopy and for the determination of periodic structure pa-
monic amplitudes in Fig. 5 are not periodic functionszof  rameters. Specifically, Fig. 3 allows a measurement of the
C(z) and C’(z) oscillate alongz, but the period of these stop band parameters. Therefore, the configuration and di-
oscillations also varies slowly along tieaxis and the mini-  electric characteristics of layers may be determined. As it

mum values ofC andC’ increase. If the wave path alozg Was mentioned, for a periodic structure, the distance of the
exceeds a certain distance, both the period of the variation gomplete energy transfer between the harmonics may be
the harmonic amplitudes and the minimum value<odnd shortened significantly. Thus periodic structures may be ef-

— fectively used in amplifiers and mixers of optical signals.
C’ become independent af This distance depends on the y P P g
mismatch between R&, \» and ReW,, 5 [i.e., on value

of |o— 6’|.; see Eq.(32)]. For instanc;e, in Fig. @), such a ACKNOWLEDGMENTS
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