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Second-harmonic resonant excitation in optical periodic structures
with nonlinear anisotropic layers

A. A. Bulgakov,* S. A. Bulgakov,† and L. Vázquez
Departamento de Matema´tica Aplicada, Escuela Superior de Informa´tica, Universidad Complutense, 28040 Madrid, Spain

~Received 22 December 1997; revised manuscript received 19 June 1998!

We propose a method to derive a system of ordinary differential equations~coupling equations! in order to
analyze nonlinear wave processes inside lossless layered periodic media. We solve the problem associated with
the interaction between the first- and second-harmonic waves inside a structure with anisotropic nonlinear
dielectric layers. An arbitrary angle between the wave propagation direction and the structure interfaces is
considered. The method takes into account both the nonlinear processes occurring at the slab interfaces and the
nonlinear terms that depend differently on the field components. We derive analytically the phase matching
conditions that provide the maximum interaction between the first- and second-harmonic waves. A physical
explanation of the increase in efficiency of the wave coupling that takes place at the frequency near the
passband edges is given.@S1063-651X~98!04111-7#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

Studies of the nonlinear processes associated with
wave interaction inside inhomogeneous media~e.g., harmon-
ics generation! show that the efficiency of frequency conve
sion increases in the vicinity of the passband edges@1–4#.
The cause of such an increase is the low group velocity
the harmonic wave achieved at the frequency near the p
band edge. The low group velocity results in the increase
a distance corresponding to the effective interaction
waves.

The electrodynamic properties of layered periodic str
tures have been intensively studied for more than 20 ye
@5–12#. In Ref. @5# Pozhar and Chernozatonski applied
mathematical model to show that the translation symme
may considerably affect the processes of resonant excita
of waves; however, the fundamental physical properties
the phenomenon observed were not discussed. The sam
thors derived an estimation for the increase of the genera
efficiency, namely, (uRuM /2p)2, whereuRu is the reflection
coefficient of one period andM is the number of the lattice
periods. They@5# established that the conversion efficien
may be increased by a factor of about 500 times. Theore
and experimental studies of the nonlinear resonant excita
of harmonics were carried out for liquid crystals@2,3,6#. A
good correspondence between theory and experiments
verified.

Periodic structures appeared to be very effective for
efficient generation of harmonic waves, which may be u
for practical purposes such as either frequency multiplica
or conversion. Because of nonlinearity, the electromagn
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waves propagating in the structure with different wave nu
bers and frequencies may interact, i.e., exchange their en
with each other. Most studies of nonlinear media deal w
so-called Kerr nonlinearity, which, at least for a on
dimensional periodic system, permits an analytical solut
~see Ref.@11# and references therein!. For instance, assumin
that the Kerr nonlinear coefficient is small, Scaloraet al. @13#
solved the problem of optical pulse propagation through
one-dimensional dielectric~photonic! lattice.

To study the nonlinear processes inside finite and in
mogeneous structures athree-wave interaction ~TWI!
method was proposed@14–17#. This method does not mak
any restriction on a kind of nonlinearity applied. Howeve
the smallness of the nonlinear terms is assumed. With
help of the TWI method, the system of differential equatio
in partial derivatives~i.e., Maxwell equations! can be re-
duced to a system of coupling ordinary differential equatio
for the slowly varying amplitudes of interacting waves.

The present work studies the nonlinear interaction
waves inside a two-dimensional layered structure that is
riodic in one dimension and consists of alternating dielec
layers, namely, uniaxial anisotropic nonlinear slabs and
tropic linear dielectrics. For the optical frequency band,
width of the layers is about 0.3–3mm. To simplify the prob-
lem, we consider a dielectric lattice belonging to t
6mm-symmetry class: If the lattice axis coincides with th
optical axis of the crystal then the anisotropic slab is hom
geneous in the plane of layers~see the discussion in Sec
II A !.

To our knowledge, the existing theoretical studies~those
based on the TWI method for a periodic medium! deal only
with wave propagation perpendicular to the slab interfac
However, it is well known that eigenwaves in periodic med
result from the interference processes inside the struc
layers. Hence these natural modes are ‘‘collective’’ mod
consisting ofelementary excitationsof layers. The elemen-
tary excitations are waves propagating along the slab in
faces. The fields of these waves satisfy the boundary co
tions. The nonlinear processes associated with wa
propagating obliquely with respect to the slab interfaces
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pear to be more diverse and interesting than those nonli
phenomena previously observed~see Refs.@1–3,6#!.

The present work uses the TWI method and considers
value of the angle between the wave propagation direc
and the structure interfaces. It should be noted that R
@1–3,5,6# study only the initial stage of the nonlinear proce
evolution. In contrast, we derive coupling equations that
be applied to a periodic medium and allow a complete an
sis of the nonlinear process evolution. In this paper we de
analytic expressions for the phase matching conditions
tween the first- and second-harmonic waves and point
particularities of the TWI processes inside a periodic str
ture in comparison to those of a homogeneous medium.

In Sec. II we state the problem and describe briefly
three-wave interaction technique for periodic structures. T
section discusses also the choice of the crystallographic s
metry and derives basic relations for the linear problem. S
tion III explains how to derive the nonlinear coupling equ
tions. In Sec. IV we analyze the phase matching conditi
between the first- and second-harmonic waves. Sectio
studies properties of the nonlinear interaction coefficie
Analytic and numerical solutions of the coupling equatio
are shown in Sec. VI. In Sec. VII we discuss the charac
istics of nonlinear interactions in periodic media.

II. MATHEMATICAL MODEL AND PROBLEM

A. General system of equations

We study the nonlinear interaction between the first- a
second-harmonic waves in a layered periodic lossless
dispersionless dielectric structure. We shall consider~see the
discussion below! a uniaxial dielectric crystal belonging t
the 6mm-symmetry class. Such a symmetry reduces
problem configuration into a structure that is periodic in o
direction and homogeneous in the plane of layers. O
method uses Green’s formula@18# to derive a system of cou
pling equations. Our structure consists of alternating an
tropic and isotropic dielectric layers. Specifically,«̂
5(«xx , «xx , «zz) is the dielectric permittivity of the first
slab of widthd1 , and«2 andd2 are the dielectric permittiv-
ity and the width of the second layer, respectively.d5d1
1d2 is the structure period. It is also assumed that the fi
layer is nonlinear.

The electromagnetic wave propagation inside each sla
described by Maxwell’s equations, constitutive relations, a
boundary conditions derived from the continuity of the ta
gential components of the electric and magnetic fields at
slab interfaces. Next one can choose a problem configura
so that the system of equations will be split in two indepe
dent polarizations. Specifically, such a separation of
equations is possible when the optical axis of the unia
dielectric coincides with the axis of the superlattice. In o
problem theZ axis coincides with the optical axis of th
crystal.

For an isotropic dielectric, all coefficients of the nonline
polarization that may cause second-harmonic genera
equal zero@14#. Therefore, we shall consider a second-ord
nonlinearity~see Refs.@14,19#! supposing that one layer in
unit cell contains a uniaxial dielectric medium with nonze
third-order coefficients (x ikl) of the nonlinear polarization
ar

ny
n

fs.

n
-
e
e-
ut
-

e
is
m-
c-
-
s
V
t.
s
r-

d
nd

e
e
r

o-

st

is
d
-
e

on
-
e
l

r

r
n

r

By expanding the polarization vectorPW into a series of elec-
trical field components, for the nonlinear componentsPi

nl

( i 5x,y,z) of PW one has the expression~see Ref.@19#, Chap.
12!

S Px
nl

Py
nl

Pz
nl
D 5S xxxx xxyy xxzz xxyz xxxz xxxy

xyxx xyyy xyzz xyyz xyxz xyxy

xzxx xzyy xzzz xzyz xzxz xzxy

D
3S Ex

2

Ey
2

Ez
2

EzEy

EzEx

ExEy

D . ~1!

One can verify that to derive a system of equations for
fields of two independent polarizations, the following com
ponents ofx i jk must be zero:xyxx5xyzz5xyxz50. Those
elements ofx i jk , denoted in Eq.~1! asx i jk , may have arbi-
trary values. For instance, the following crystalline su
stances possess the necessary susceptibility tensor:
a-ZnS, ZnO, BeO, SiC, AgI, and CaAs are of hexagon
symmetry; LiNbO3, LiTaO3, Ag3SbS3, a-quartz, HgS, and
Se are of trigonal symmetry; and BaTiO3 , PbTiO3 , and
SbN(Sr0.5Ba0.5Nb2O6) are tetragonal lattices.

Let us consider the optical axis, namely, theZ axis, per-
pendicular to the slab interfaces. Next, the system of M
well’s equations will be split into two independent polariz
tions: Ex ,Ez ,Hy and Ey ,Hx ,Hz . We shall consider an
anisotropic dielectric belonging to the 6mm-symmetry group
@19# with the following tensor of nonlinear susceptibility:

S 0 0 0 0 xxxz 0

0 0 0 xxxz 0 0

xzxx xzyy xzzz 0 0 0
D . ~2!

Taking into account the nonlinear terms, let us write Ma
well’s equations inside the first slab for polarizatio
Ex ,Ez ,Hy as

]Ex

]z
2

]Ez

]x
52

1

c

]Hy

]t
,

2
]Hy

]z
5

«xx

c

]Ex

]t
1

4p

c
xxxz

]

]t
~ExEz!, ~3!

]Hy

]x
5

«zz

c

]Ez

]t
1

4p

c
xzxx

]

]t
~ExEx!1

4p

c
xzzz

]

]t
~EzEz!.

One can see that due to the choice of 6mm-symmetry class,
our problem is homogeneous in the plane of layers. Thus
can set]/]y50. Equations for the field inside the secon
slab are similar to Eqs.~3!, but without the nonlinear terms
and with«2 instead of«zz,«xx .
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B. Linear solution

The linearized system of equations~3! has been studied in
the literature@7,8#. Applying the technique of the transfe
matrix method as it is described in Ref.@8# by using the
Floquet theorem and taking into account the boundary c
ditions atz5d1 , we derive the transfer matrix as

S Hy~0!

Ex~0!
D 5m̂S Hy~d!

Ex~d!
D ; ~4!

m115coskz1d1coskz2d22
kz2«xx

kz1«2
sinkz1d1sinkz2d2 ,

m225coskz1d1coskz2d22
kz1«2

kz2«xx
sinkz1d1sinkz2d2 ,

m1252 i
v

c S «2

kz2
coskz1d1sinkz2d21

«xx

kz1
sinkz1d1coskz2d2D ,

m2152 i
c

vS kz1

«xx
sinkz1d1coskz2d21

kz2

«2
coskz1d1sinkz2d2D .

~5!

Here

kz15A«xx

«zz
S v2

c2
«zz2kx

2D , kz25Av2

c2
«22kx

2 ~6!

are the transversal wave-vector components inside the
and second slabs, respectively.kx is the wave number along
theX axis directed parallel to the slab interfaces. The trans
matrix ~5! appearing in Eq.~4! differs from that of Ref.@8#,
namely, it takes into account the anisotropy of the first la
of the unit cell.

Making use of the Floquet theorem, namely,Hy(d)
5Hy(0)exp(ik̄d), Ex(d)5Ex(0)exp(ik̄d), one derives the
dispersion relation for a periodic medium as

cosk̄d5
m111m22

2
. ~7!

Here k̄ is the Bloch wave vector. The dispersion relation~7!

connects the valuesv,k̄,kx .
To proceed, we need the field expressions

Ex15CF ickz1

v«xx
sinkz1z1A coskz1zG ,

~8!

Ez152C
kxc

v«zz
Fcoskz1z1A

iv«xx

kz1c
sinkz1zG

for Nd<z,d11Nd and

Ex25CFB1

ickz2

v«2
sinkz2z1B2 coskz2zG ,

Ez252C
kxc

v«2
FB1 coskz2z1B2

iv«2

kz2c
sinkz2zG
n-

rst

r

r

for d11Nd<z,(N11)d. Here A,B1 ,B2 ,C are constant
and can be determined from the boundary conditions
Floquet theorem.N is an integer. It is also supposed that t
field dependence on timet and the space coordinatex is
exp(2ivt1ikxx). Next one derives the expressions f
B1 ,B2 ,A, namely,

B15coskz1d1coskz2d11
kz1«2

kz2«xx
sinkz1d1sinkz2d1

1S 2 i
v

c DAS «2

kz2
coskz1d1sinkz2d1

2
«xx

kz1
sinkz1d1coskz2d1D ,

B25S 2 i
c

v D S kz2

«2
coskz1d1sinkz2d1

2
kz1

«xx
sinkz1d1coskz2d1D

1AS coskz1d1coskz2d11
kz2«xx

kz1«2
sinkz1d1sinkz2d1D ,

~9!

A5
m222exp~ i k̄d!

m12
.

Making use of the Green’s formula@18#, we derive in the
next section thecoupling equationsthat describe the interac
tion between the first- and second-harmonic waves.

III. COUPLING EQUATIONS

Next we solve the nonlinear problem taking into accou
the smallness of the nonlinear terms in Eqs.~3!. We shall
look for solution of Eqs.~3! in the form of a sum over spatia
harmonics with different longitudinal wave vectorkx ~cf.
@20#!:

EW 5 (
kx52`

`

C~z!@eW~z!1eW ~ad!~z!#exp~2 ivt1 ikxx!,

~10!

Hy5 (
kx52`

`

C~z!@hy~z!1hy
~ad!~z!#exp~2 ivt1 ikxx!.

Here C(z) is the slowly varying amplitude@21# of the kth
wave~that is, the wave with the longitudinal wave numberkx
and frequencyv):

d ln C

dz
! k̄,kz1,2. ~11!

In Eqs.~10! both values ofC(z) and the fields in square
brackets are different for differentkth waves~for simplicity,
we do not assign any index, say, indexk, for each of the
values!. Also the frequencyv, kx , and the transversal wave
number componentk̄ are coupled by the dispersion relatio
~7!.
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It should be noticed here thatkx value is unambiguously
related to the angle between the wave propagation direc
and the structure interfaces. Thus, in Eqs.~10! any possible
directions of the wave propagation are taken into accoun

The fieldseW (z) and hy(z) are solutions of the homoge
neous linear system of equations, i.e., of Eqs.~3! without the
nonlinear terms~cf. @15,16#!. Inside the structure layers
these fields contain the fast factors such as exp(6ikz1,2z) in
their dependences onz. Additional fieldseW (ad) andhy

(ad) are
partial solutions of the inhomogeneous system of equatio
namely, of Eqs.~3! with the nonlinear terms taken as th
right-hand side of the system. Also notice thateW (ad),hy

(ad)

appear to be of the order of the nonlinear terms.
A solution in the form of Eqs.~10! differs from the tradi-

tional technique of analysis of the TWI processes@15,16#.
Specifically, in Eqs.~10! not onlyC but also the component
eW (z),hy depend onz. The latter stems from the fact that ou
structure is inhomogeneous in theZ direction.

Next we average the system of Maxwell equations o
‘‘fast’’ field variations in time and space, i.e., over depe
dences such as exp(6ikxx2ivt) and the one associated wit
the field variation due to periodicity along theZ axis. Our
goal is to extract a slow dependence of the electromagn
on

s,

r

tic

field amplitudeC on z and finally derive a system of equa
tions for C. To this end, we substitute the fields~10! into
Eqs.~3!, multiply the right- and left-hand sides of Eqs.~3! by
exp(ivt2ikxx), and integrate the equations over time (2`
,t,1`) and overx (2`,x,1`). Finally, the system
of Maxwell’s equations~3! takes the form

L̂ f 5Ĥ~ f , f !2L̂ f ~ad!. ~12!

L̂ andĤ are linear and nonlinear operators, respectively.f is
a solution of the system of equationsL̂ f 50. Actually, bothf
and f (ad) are the column vectors consisting of the field co
ponents of thei th slab inside a period:

f i5S hyi

exi

ezi

D , f i
~ad!5S hyi

~ad!

exi
~ad!

ezi
~ad!

D , i 51,2.

Observe that due to the smallness of nonlinearity,Ĥ( f , f )
contains no additional fieldsf (ad).

Equation~12! is the inhomogeneous system of linear d
ferential equations.L̂ and Ĥ are defined inside the slabs a
follows: For the first layer (Nd<z,d11Nd)
L̂~ f 11 f 1
~ad!!5S 2 iv

c

]

]z
2 ikx

2
]

]z

iv

c
«xx 0

ikx 0
iv

c
«zz

D S C~hy11hy1
~ad!!

C~ex11ex1
~ad!!

C~ez11ez1
~ad!!

D ,

~13!

Ĥ~ f 1 , f 1!5S 2ex1

dC

dz

hy1

dC

dz
1

4p

c
xxxzC8C9@2 i ~v81v9!#3

1

2
~ex18 ez19 1ez18 ex19 !

4p

c
C8C9@2 i ~v81v9!#3~xzxxex18 ex19 1xzzzez18 ez19 !

D
and for the second layer@d11Nd<z,(N11)d#

L̂~ f 21 f 2
~ad!!5S 2 iv

c

]

]z
2 ikx

2
]

]z

iv

c
«2 0

ikx 0
iv

c
«2

D S C~hy21hy2
~ad!!

C~ex21ex2
~ad!!

C~ez21ez2
~ad!!

D , Ĥ~ f 2 , f 2!5S 2ex2

dC

dz

hy2

dC

dz

0

D . ~14!
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It should be noted that, despite the second slab consistin
a linear dielectric only, the nonlinear termsĤ( f , f ) appear in
the field equations for both the first and second layers@Eqs.
~13! and ~14!, respectively#. Observe in Eqs.~12!–~14! that
after integration overt andx, the linear part of Eq.~12!, L̂ f ,
contains only parameters of thekth wave~i.e., the wave with
the longitudinal wave numberkx). The nonlinear terms
Ĥ( f , f ) couple the fields of thek8th and k9th waves, i.e.,
those waves associated with the longitudinal wave numb
kx8 andkx9 ~the parameters of these waves are marked by
and two primes!, respectively. In general, all values o
kx ,kx8 , andkx9 are different. Let us also remark that the no
linear terms in Eqs.~12!–~14! contain the productC8C9 of
the slow varying amplitudesC8 andC9 of thek8th andk9th
waves, correspondingly.

Next we proceed with averaging of Eq.~12! over fast field
variations along theZ axis. This will be done with the aid o
the Green’s formula@18#. Keeping the notations we used
Eqs.~12!–~14!, this formula can be written as

E
a

b

@ f̃ * ~ L̂ f !2~ L̂̃ f̃ !* f #dz5 f f * ua
b . ~15!

Here L̂̃ is the transpose ofL̂, i.e., the transpose of the squa
matrix consisting of operators of the linearized system

equations, andf̃ is a solution ofL̂̃, f̃ 50. An asterisk denotes

complex conjugation.f̃ * (L̂ f ) and (L̂̃ f̃ )* f denote scalar
products. It is also known that, in homogeneous mediaL̂

and L̂̃ are algebraic operators@15#.

The transposeL̂̃ of the operatorL̂ is obtained using a
standard procedure, namely, we exchange rows and colu
in L̂, substitute]/]z by 2]/]z, and apply complex conju

gation. It turns out that each element ofL̂̃ is equal to the
corresponding term ofL̂ taken with the opposite sign. Thu
solutions of the initial and corresponding transposed sys
coincide. An important meaning of the Green’s formula co
sists in the following: Eigenfunctions of the transposed lin
differential operator are orthogonal to the right-hand side
the inhomogeneous system of linear differential equatio

namely, eigenfunctions ofL̂̃ are orthogonal to the operato
Ĥ.

Making use of Eq.~15!, we find that the integration of the

linear operatorsL̂ and L̂̃ yields the difference between th
corresponding field components@Eq. ~8!# at the structure
boundaries. Both the main fields~8! and the additional fields
eW (ad),hy

(ad) satisfy the boundary conditions. Therefore, t
integrals of all linear terms are zeros.

Next we integrate the nonlinear termsĤ( f , f ). Let us rep-
resent the integral overz (2`,z,`) as a sum of integrals
associated with the structure layers:

E
2`

`

5 lim
d i→0,i 50,61,

. . . H •••1E
2d0

d0
1E

d0

2d11d1
1E

2d11d1

d11d1

1E
d11d1

2d21d

1•••J .
of

rs
e

-

f

ns

m
-
r
f
s,

Here we highlight the regions of widths 2d i andd i1d i 11 in
the vicinity of each boundary. With the help of the Floqu
theorem, we express the fields in the integrals associ
with layers in terms of the field of the first period of th
structure. The following sum appears:

E
2`

`

5 lim
d0 ,d1 ,d2→0

S E
d0

2d11d1
1E

d11d1

2d21dD
3 (

N,N8,N9
exp$ i @~ k̄81 k̄92 k̄!d12p~N81N92N!#%.

N,N8,N9 denote the period numbers associated with thekth,
k8th, andk9th interacting waves, respectively, and

(
N,N8,N9

exp$ i @~ k̄81 k̄92 k̄!d12p~N81N92N!#%

5 lim
M→`

12exp$ iM @~ k̄81 k̄92 k̄!d#%

12exp@ i ~ k̄81 k̄92 k̄!d#

5d„~ k̄81 k̄92 k̄!d12pL…, L50,61, . . . .

Finally, we obtain@22#

dC

dzH E0

d1
uhy1ex1udz1E

d1

d

uhy2ex2udzJ
52 i

4p

c (
kx8 ,kx9

H E
0

d1F1

2
xxxz~ex1* ex18 ez19 1ex1* ez18 ex19 !

1xzxxez1* ex18 ex19 1xzzzez1* ez18 ez29 G
3dzd„~ k̄81 k̄92 k̄!d12pL…exp@2 i ~v81v92v!t

1 i ~kx81kx92kx!x#J C8C9. ~16!

If the following phase matching conditions are fulfilled
namely,

v81v92v50, ~17a!

kx81kx92kx50, ~17b!

k̄81 k̄92 k̄1
2pL

d
50, ~17c!

then the equation for the amplitudeC takes the form@16#

dC

dz
5Wk,k8,k9C8C9,
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Wk,k8,k952 i
4p

c

v81v9

Sz

3E
0

d1
dzFxxxz

2
~ex1* ex18 ez19 1ex1* ez18 ex19 !

1xzxxez1* ex18 ex19 1xzzzez1* ez18 ez29 G . ~18!

HereSz denotes the expression in large curly brackets a
dC/dz on the left-hand side of Eq.~16!. Sz is the energy flow
of thekth wave in theZ direction. ThusWk,k8,k9 is a ratio of
the energy flow along theZ axis ~this flow appears due to th
nonlinear interaction of waves! to the energy flux of thekth
wave itself. The inequality~11! meansWk,k8,k9!1.

Equation~18! is written for thekth wave. Equations for
the k8th andk9th waves may be derived by permutation
indices in Eq.~18!. Then a system of equations for the thr
interacting waves will be derived.

It is necessary here to highlight the particularities of t
nonlinear interaction in a periodic structure in comparison
the TWI processes in a homogeneous infinite medium.

~i! The dispersion relations for the three interacting wa
contain Bloch wave vectorsk̄,k̄8,k̄9 instead of the transver
sal wave number kz , namely, v( k̄,kx),v8( k̄8,kx8),

v9( k̄9,kx9).
~ii ! Despite the first two laws of the energy conservatio

namely, Eqs.~17a! and ~17b!, not differing from those of
homogeneous media, the third relation~17c! contains the
term 2pL/d associated with the structure periodicity. Th
latter means that umklapp phenomena~see Ref.@6#! exist in
this periodic medium. The necessity of this third law w
discussed from a physical viewpoint in Ref.@17#.

~iii ! The third particularity of the nonlinear interaction
a periodic structure is associated with the shape of the c
ficient of the nonlinear interactionWk,k8,k9 @see Eq.~18!#.
This coefficient is discussed in Sec. IV, where the interact
between the first- and second-harmonic waves is conside

In Eqs. ~10! @see also Eq.~18!#, the slowly varying am-
plitudeC is assumed to be dependent onz only. We highlight
here that theZ axis should not be confused with the directio
associated with the maximum nonlinear interaction betw
the harmonic waves. As is known, in general, a maxim
nonlinear interaction~such as the amplification of th
second-harmonic wave! occurs in a certain direction that ha
nonzero components on both theX andZ axes~see Ref.@4#!.
Equation ~18! implies that the phase matching conditio
~17! are satisfied. Thus those values of the longitudinal a
transversal components of the wave vector that satisfy E
~17b! and~17c!, respectively, will determine the direction o
the maximum nonlinear interaction between the harmon
Below, in Sec. VI, we analyze the dependences of slo
varying amplitudesC,C8 on z in order to determine the spa
tial distance of the complete energy exchange between
first- and second-harmonic waves.

IV. ANALYSIS OF PHASE MATCHING CONDITIONS

We shall consider the interaction of thek8th wave with
given frequencyv8 and longitudinal wave numberk8 with
r

o

s

,

f-

n
d.

n

d
s.

s.
y

he

its second harmonic, say, thekth wave with frequency 2v8
and the wave-number component 2kx8. Making use of the
TWI method, we assume that thek8th andk9th waves are the
same wave:v9[v8,kx9[kx8 , andk̄9[ k̄8. Thus the resonan
conditions~17! take the forms

v52v8, kx52kx8 , k̄52k̄812pL/d,

L50,61,62, . . . . ~19!

Then the system of equations for slowly varying amplitud
of the k8th wave and its second harmonic, i.e., thekth wave
~amplitudesC8 andC, respectively!, takes the form

dC/dz5W2k8,k8C82,

dC8/dz5Wk8,2k8CC8* . ~20!

The matrix elementsW2k8,k8 ,Wk8,2k8 are determined by Eq
~18! where values with one and two primes are equal e
other. The valuesv,kx ,k̄,v8,kx8 ,k̄8 satisfy the dispersion re
lations

cos 2k̄8d5cos 2kz18 d1cos 2kz28 d2

2
1

2S kz28 «xx

kz18 «2

1
kz18 «2

kz28 «xx
D sin 2kz18 d1sin 2kz28 d2 ,

~21a!

cosk̄8d5coskz18 d1coskz28 d2

2
1

2S kz28 «xx

kz18 «2

1
kz18 «2

kz28 «xx
D sinkz18 d1sinkz28 d2 .

~21b!

Equations~21! take into account both relations~19! and
kz1,252kz1,28 . The latter equality is valid in dispersionles
dielectric media@to verify this one should substitutekx

52kx8 andv52v8 into Eqs.~6!#.
The five equations~19! and ~21! contain six unknown

values v,v8,kx ,kx8 ,k̄,k̄8. Therefore, one of these value
must be determined, e.g., the first-harmonic frequencyv8 ~or
wave numberkx8). Then the functionsk̄8(v8) and kx8(v8)
can be determined with the help of Eqs.~ 21!.

Equations~21! possess the exact solution

cosk̄8d5cos~kz18 d16kz28 d2!. ~22!

The solution~22! is valid inside the passbands where t
absolute value of the right-hand side of Eq.~7! is less than 1.
Substituting Eq.~22! into Eq.~21b!, one derives the relation
for the functionkx8(v8) @or v8(kx8)#:

~«xxkz28 6«2kz18 !2

«xx«2

sinkz18 d1

kz18

sinkz28 d2

kz28
50. ~23!

Thus the phase matching conditions~17! are fulfilled for the
three cases
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«xxkz28 2«2kz18 50, kx85
v8

c A«2«zz~«xx2«2!

«xx«zz2«2
2

;

~24a!

kz18 d15m1p, kx85A«zzS v82

c2
2

m1
2p2

«xxd1
2D ,

m1561,62, . . . ~24b!

kz28 d25m2p, kx85Av82

c2
«22

m2
2p2

d2
2

,

m2561,62, . . . . ~24c!

Equations~24! have a simple physical meaning. To an
lyze these relations we consider in Fig. 1 the passbands
stop bands of the lattice that consists of nonlinear dielec
CdS as the first layer inside the unit cell@d151.5 mm,«xx
55.382, «zz55.457, xxxz521031029 CGSE ~cantimeter-
gramm-second-electrical system! units, xzxx519231029

CGSE units,xzzz537831029 CGSE units#, and a homoge-
neous dielectric NaCl as the second slab (d250.75 mm and
«252.38). Filled circuits mark the band boundaries whe
cosk̄8d51. Circumferences correspond to the curves w
cosk̄8d521. Stop bands are marked by filled pattern. Ea
passband is numbered by a roman figure. The first pass
~number I! starts from low frequencies (v8→0) and small
wave numbers (kx8d→0). With the increase of frequency
this passband becomes narrow and both of its bounda
approach an asymptotic linev85kx8c/«zz (kz18 50) ~thin line

FIG. 1. Zone spectrum of the dielectric lattice. Frequencyv is
plotted versus dimensionless longitudinal wave numberkxd. Stop
bands are marked by filled pattern: light lines denotekz150 ~lower
straight thin line! and kz250 ~upper straight thin line!. The solu-
tions of Eqs.~24! ~thick curves! arekz18 5p/d1 @Eq. ~24b!#, zone II,
and kz28 5p/d2 @Eq. ~24c!#, zone V. The thick straight line corre
sponds to«xxkz28 5«2kz18 @Eq. ~24a!#.
-
nd
ic

e
h
h
nd

ies

in Fig. 1!. All the passbands touch each other in points t
divide the corresponding stop band into two parts. It sho
be noted that the second asymptotekz28 50 ~dashed line in

Fig. 1! is tangential to the curves cosk̄8d561 at the inflec-
tion points.

The thick straight line in Fig. 1 corresponds to Eq.~24a!.
This line is the dispersion curvev5kxc/A«e f f of a light
wave propagating in a homogeneous medium with an ef
tive dielectric permittivity

«e f f5
«2«zz~«xx2«2!

«xx«zz2«2
2

. ~25!

We now analyze the field expressions~8! and ~9! for the
case when the relation~25! is satisfied. Substituting Eq
~24a!, namely,kz18 /«xx5kz28 /«2 , into Eqs.~8! and ~9!, one
obtains

Ex18 5C8a8eikz18 z, 0<z,d1

Ex28 5C8a8ei ~kz18 2kz28 !d1eikz28 z, d1<z,d

a85A«xx«zz2«2
22«xx

2 1«2«xx

«2~«xx«zz2«2
2!

. ~26!

Expressions for the field of the second-harmonic wave
analogous. Equations~26! show that the traveling wave re
gime is set in the structure: There is no reflection from
boundaries. It should be noticed that for a homogeneous
dium, the relation«xxkz28 5«2kz18 becomes identical. There
fore, this type of resonant interaction is analogous to th
TWI phenomena that take place in homogeneous media
the effective dielectric permittivity~25!. However, as it is
seen in Fig. 1, the straight line@Eq. ~24a!# crosses the stop
bands where the relation«xxkz28 5«2kz18 is not valid. There-
fore, in the vicinity of the band boundaries, the nonline
interaction of waves cannot be studied with the help of E
~18!: This equation is inapplicable inside the stop band
gions.

Equations~24b! and ~24c! are the Bragg resonance co
ditions for the first and second layers, namely,kz18
5m1p/d1 andkz28 5m2p/d2 , respectively. The thick curve
in Fig. 1 correspond to these equations~24b! and~24c!. The
curvekz18 5p/d1 starts in the second passband and, with
increase ofkx8d, crosses the stop band and approaches
asymptotic linekz18 50. Thus one should expect particular
ties of the nonlinear interaction in the vicinity of the boun
ary of the second passband. Only part of the curve for
~24c! is depicted in Fig. 1. The slope of this curve is steep
than that of the line given by Eq.~24b!. This is due to the
choice of the values«2.«zz. Numerical calculations show
that the curve for Eq.~24c! crosses a point belonging to bot
passband boundaries. Therefore, in contrast to Eq.~24a!, the
phase matching conditions given by Eqs.~24b! and~24c! are
fulfilled along the curves that cross the boundary between
passbands and stop bands only one time.

In the cases of Eqs.~24b! and ~24c!, the fields of har-
monic waves possess the following interesting particular
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For the first harmonic wave, making use of the conditi
kz18 d15 lp ( l 51,2, . . . ), from Eqs.~8! and ~9! one obtains

Ex18 52C8
kz28 c

v8«2
S coskz18 z2 i

kz18 «2

kz28 «xx

sinkz18 zD , 0<z,d1

Ex28 5FC8
kz28 c

v8«2

exp~ ikz18 d1!Gexp~2 ikz28 z!, d1<z,d.

~27!

One can derive analogous relations for the second-harm
field in the casekz28 d25 lp. Specifically, to obtain expres
sion forEx1 ,Ex2 one should exchange the indices 1 and 2
Eq. ~27!; the values«2 and«xx should be exchanged also.
Bragg resonance conditions are satisfied for one layer in
the unit cell@Eq. ~24b! or ~24c!#, the expressions for the fiel
components~27! imply that a standing wave exists in on
layer ~say, slab 1!, while a traveling wave propagates insid
another slab~say, slab 2!. Thus the periodic structure can b
represented as a chain of coupled resonators distribute
space. The existence of a traveling wave means a comp
matching between the resonators.

V. PROPERTIES OF THE COEFFICIENT
OF NONLINEAR INTERACTION

The complete expression forWk,k8,k9 @Eq. ~18!# is un-
wieldy and we do not represent it here. Nevertheless,
form of this coefficient is simple and can be discussed. E
term in the integral~18! results in four multipliers such as

cosksd1211 i sinksd1

ksd1
, ~28!

whereks stands for one of the combinations

kz11kz18 1kz19 , ~29a!

kz12kz18 1kz19 , ~29b!

kz11kz18 2kz19 , ~29c!

kz12kz18 2kz19 . ~29d!

For the TWI phenomena in a homogeneous medium,
phase matching conditions are fulfilled for the transver
wave-number componentskz ,kz8 ,kz9 . Therefore, one of the
sums in Eq.~29! will be zero and the multiplier~28! is
imaginary. Therefore, in a homogeneous medium,Wk,k8,k9 is
imaginary also. In a periodic structure, the law of synch
nism is completed for the Bloch wave numbersk̄,k̄8,k̄9 @Eq.
~17c!#. Thus, in general, none of relations~29! is zero. Hence
the multiplier ~28! is complex. The latter results in comple
Wk,k8,k9 . Nonzero real and imaginary parts ofWk,k8,k9 result
from the fact that the fields of the three waves accumu
different phase shifts along the path between two slab in
faces. One can say that a ‘‘mismatch’’ between the opt
widths of the layers takes place.

If one of the sums~29! is zero, the corresponding value o
the multiplier~28! is imaginary and has a maximum absolu
ic

de

in
te

e
h

e
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-

te
r-
l

value. In our problem, the relationkz12kz18 2kz19 50 @see Eq.
~29d!# is identical becausekz18 [kz19 andkz152kz18 in a dis-
persionless medium@see the paragraph after Eqs.~21!#. Here
and in what follows we shall consider in Eq.~18! only one
term containingks5kz12kz18 2kz19 [0.

It should be noted that the discussion above is not vali
the parameters of waves, namely, eitherv,kx or v8,kx8 , are
close to the passband edges. In the vicinity of the passb
boundary, the nonlinear elementsW2k8,k8 and Wk8,2k8 @Eq.
~20!# have singularities, as it will be shown below in Figs.
and 3.

Figure 2 shows the real and imaginary parts of the n
linear coefficients as functions of frequency for the case
~24a!. It is seen in the figure that the curves have breaks n
the passband edges wherek8̄d50 or p ~see Fig. 1!. The
breaks marked by 1 are associated with the stop bands o
first-harmonic wave and label 2 stands for the band gap
the second-harmonic wave. The Bloch wave number of
first harmonic equalsp/2. It is seen in Fig. 2 that in the
vicinity of the stop bands, the real and imaginary parts of
nonlinear coefficients vary considerably. Specifically, the
solute value of the real part increases from zero to val
comparable to those absolute values of the imaginary pa
turns out that Re(W2k8,k8)Re(Wk8,2k8),0 and both
Im(W2k8,k8),0 and Im(Wk8,2k8),0. Also, Wk8,2k8
5W2k8,k8/2.

A physical reason for such considerable varying~or

FIG. 2. Dependence of the nonlinear interaction coefficients
frequency for the case of Eq.~24a!: real ~top! and imaginary~bot-
tom! parts of Wk8,2k8 and W2k8,k8 . The breaks in the curves ar
associated with the stop bands in Fig. 1: 1, stop bands of the fi
harmonic wave; 2, stop bands of the second-harmonic wave.
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breaks! of the nonlinear coefficients is as follows. There is
point inside a stop band wherem1250 @23# that is associated
with the Bragg resonance of the whole structure period.
deed, if the conditions~24a! are satisfied, then

m1252 i
v

c

«2

kz2
sin~kz1d11kz2d2!50.

That is,kz1d11kz2d25np is the Bragg resonance conditio
As it follows from Eq. ~9!, if m1250, the coefficients
A,B1 ,B2 tend to infinity. As consequence,Wk8,2k8 and
W2k8,k8 diverge. In the vicinity of the passband edge,Wk8,2k8
and W2k8,k8 are finite values that depend on the detun
between the frequency of the band edges and the frequ
that givesm1250. In other words, the nonlinear coefficien
increase when the wave frequency approaches the frequ
of the Bragg resonance of the lattice period.

Figure 3 shows imaginary parts of the nonlinear coe
cients for the case when Bragg resonance conditions are
filled for one single layer inside the unit cell, namely, E
~24b! or ~24c!. Now ReWk8,2k850 and ReWk8,2k850. One
can see in the figure that the absolute values of the nonli
coefficients increase when the frequency approaches
band edges. A physical explanation is as above, namely
Bragg resonance conditions are satisfied not only inside e
of the layers inside the unit cell but for the whole period
well. In contrast to Fig. 2, this kind of resonance occurs
the passband edges. Therefore, in order to obtain the co
cientsA,B1 ,B2 one should pass to the limit in Eq.~9!:

A5 lim
kz1d11kz2d2→np

m222eik̄d

m12
.

Now one can verify that the nonlinear coefficients are fin
values.

FIG. 3. Imaginary part of the nonlinear interaction coefficien
as a function of frequency for Eq.~24b! ~left-hand curves! and Eq.
~24c! ~right-hand curves!. ReWk8,2k85ReW2k8,k850.
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If the Bragg resonance conditions are satisfied for o
layer inside the unit cell, the following analytic expressio
for the nonlinear coefficients can be derived:

Wk8,2k852 i
8pc

v8

«xx

«zz

kx8d1

kz18
F ~xxxz1xzxx!

kz18
2

«xx
2

1xzzz

kx8
2

«zz
2 G ,

W2k8,k852Wk8,2k8 . ~30!

Here we supposekz28 5p/d2 .
Equations~30! imply that the nonlinear coefficient is pro

portional to the relative width of the nonlinear layer. Th
anisotropy of the dielectric permittivity has a weak influen
on Wk8,2k8 because«xx'«zz for the optical frequency. Nev-
ertheless, depending on the relation between the wave-ve
componentskx8 andkz18 , the anisotropy considerably affec
the nonlinear properties. Whenkx8→0 ~see Fig. 1!, the sus-
ceptibility componentsxxxz andxzxx have the most influence
on Wk8,2k8 . With the increase ofkx8 , kz18 decreases and th
influence ofxzzz dominates. It should be noted that the stu
ies of Refs.@2,3,5# use a method that determines only t
dependence of the nonlinear coefficient on one componen
the nonlinear susceptibility, namely, on thexxxz component.
Reference@1# has stated the increase of the nonlinear int
action coefficient at the passband edges.

VI. ANALYSIS OF COUPLING EQUATIONS

To solve Eqs.~20! we introduce the notation

C5C̄eiw, C85C̄8eiw8, W2k8,k85Weiu,

Wk8,2k85W8eiu8, F5w22w8. ~31!

Then the coupling equations~20! transform into

dC̄

dz
5WC̄82cos~u1F!,

dC̄8

dz
5W8C̄C̄8cos~u82F!, ~33!

dF

dz
52W

C̄82

Ck
sin~u1F!12W8C̄ sin~u82F!.

If uÞu8, then only a numerical integration of Eq.~32! is
possible@16#.

In the cases of Bragg resonances~24b! or ~24c!, as it
follows from Eq. ~30! and Fig. 3, the nonlinear elemen
Wk8,2k8 andW2k8,k8 are imaginary, i.e.,u5u853/2p. There-
fore, Eq.~32! has two first integrals@14#

K15
C̄2

W
1

C̄82

W8
, K25C̄C̄82cosF, ~33!

whereK1 andK2 are the constants determined by the init
conditions atz5z0 . Now the system of equations~32! con-
verts into an elliptic integral and possesses a solution in
form of elliptic functions
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C̄25WK1H y11~y22y1!

3sn2FW8W1/2K1
1/2~z2z0!,Ay22y1

y32y1
G J ,

wherey1,y2,y3 are the roots of the cubic equation

y~12y!22K50, K5
K2

2

K1
3W~W8!2

.

If the amplitude of the second-harmonic wave is small at
coordinate origin, namely,C̄(0)!C̄8(0), then

K1.
C̄8~0!2

W8
, K2.C̄~0!C̄8~0!2cosF~0!,

K.S C̄~0!

C̄8~0!
D 2

W8

W
cos2F~0!.

K<1 and K is independent ofW and W8 becauseW8/W
51/2 always. Now one can approximately derive the roots
the cubic equation:y1'K andy2,3'16AK. Consequently,
the amplitude of the first and second harmonics can be
pressed as

C̄2'
W

W8
@C̄8~0!#2sn2@AWW8C̄8~0!z,12AK#,

~34!
C̄82'@C̄8~0!#2$12sn2@AWW8C̄8~0!z,12AK#%.

The existence of the first integrals~33! means that the
total energy of thekth andk8th harmonic waves is conserve
along theZ axis. By analyzing the mutual variations ofC̄

and C̄8 one can study how these harmonic waves excha
their energy with each other.

In Fig. 4~a! the amplitudeC̄ of the second-harmonic wav
increases almost from zero up to a maximum value at a
tance of about 25 structure periods, whileC̄8 decreases from
a maximum to a minimum at the same distance. Thus
energy of the fundamental wave~the k8th wave! converts
into the energy of the second-harmonic wave~thekth wave!.
All curves in Fig. 4~a! have been calculated at the frequen
vA51700 cm21. This pointA lies on the curvekz18 5p/d1

far from the band edge. In Fig. 4~b! we present an analogou
calculation forC̄, but at the frequencyvB51906 cm21. A
distance that corresponds to the amplitude increase from
up to a maximum value equals 12 structure periods. A co
parison shows that the imaginary parts ofW andW8 associ-
ated with pointB are almost 2 times greater than the cor
sponding values at pointA: Im W521.431023, Im W8
527.031024 and ImW526.731024, Im W8523.3
31024, respectively. As it follows from Eq.~34!, if both the
frequencyv8 and wave numberkx8 increase in such a wa
that the Bragg resonance condition is satisfied~e.g., one
moves from pointA toward B along the curvekz18 5p/d in

Fig. 1!, the period of the variation of the amplitudesC̄ and
e

f

x-

e

s-

e

ro
-

-

C̄8 decreases considerably. The latter is due to the incre
of the argument of the elliptic function near the passba
boundary. Therefore, the periodicity of the structure resu
in the following: The distance of the energy exchange
tween the harmonic waves becomes a minimum in the vic
ity of the passband edges.

If the phase matching condition~24a! is fulfilled, u'u8.
Let us make the following variable changes:u53/2p1q
and u853/2p2q8. If q5q8, on substitutingF52w82w
13/2p into Eq.~32!, one obtains an integrable system aga
but F varies within the limits that depend onq.

In the vicinity of the passbands, bothW2k8,k8 andWk8,2k8
diverge~see Fig. 2!. As a consequence,qÞq8; however, the
difference betweenq andq8 is small. In this case, Eq.~32!
may be solved only numerically. Figure 5 shows a numeri
solution of Eq.~ 32! for q51.2741 andq851.2723. In con-
trast to the behavior ofC̄(z) and C̄8(z) in Fig. 4, the har-

FIG. 4. Dependence of absolute valuesC̄,C̄8 and phaseF of
nonlinear waves on the dimensionless coordinatez/d for the case of
Eq. ~24b!: ~a! v51700 cm21, Im W526.731024, and ImW85
23.331024 and ~b! v51906 cm21, Im W521.431023, and
Im W8527.031024.
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monic amplitudes in Fig. 5 are not periodic functions ofz:
C̄(z) and C̄8(z) oscillate alongz, but the period of these
oscillations also varies slowly along theZ axis and the mini-
mum values ofC̄ andC̄8 increase. If the wave path alongz
exceeds a certain distance, both the period of the variatio
the harmonic amplitudes and the minimum values ofC̄ and
C̄8 become independent ofz. This distance depends on th
mismatch between ReW2k8,k8 and ReWk8,2k8 @i.e., on value
of uu2u8u; see Eq.~32!#. For instance, in Fig. 5~a!, such a
distance is about 40 structure periods. In contrast, for
frequency near the passband edge@Fig. 5~b!#, both minimum
values ofC̄,C̄8 and the period of the variation of the ha
monic amplitudes still depend onz even though the wave
path exceeds several hundreds of periods.

VII. CONCLUSION

The main result of this work is the analysis of the soluti
of the three-wave interaction problem inside a structure w

FIG. 5. Same as in Fig. 4 but for Eq.~24a!: ~a! v
54200 cm21, Im W525.5310242 i1.831023, and ImW85
22.8310242 i9.131024 and ~b! v54260 cm21, Im W521.7
310232 i1.631023, and ImW8527.2310242 i6.531024.
of

e

h

artificial symmetry. Here we present a technique that redu
the problem to a known system of coupling equations@14#.
Our method is based on Green’s formula~15! and allows one
to derive coupling equations for an arbitrary functional d
pendence of the nonlinear dielectric permittivity on the ele
tric field amplitude. This means that not only a well-know
Kerr-like nonlinearity~such asauEu2) but any other depen
dence can be considered~cf. x i jkEjEk ,$ j ,k%5x,y,z). We
assume that the nonlinearity is weak, namely, the nonlin
terms in Maxwell equations are small. For nonlinear opti
materials of interest to us@see the paragraph after Eq.~1!#
this assumption is surely satisfied. Our method allows on
study both the nonlinear processes inside the slabs and t
taking place at the structure interfaces.

It is shown that the translation symmetry of the structu
changes the conservation laws for the transversal wa
vector component~i.e., Bloch wave vector!. In general, the
coefficient of the nonlinear interaction is complex even wi
out dissipation. In contrast, for the TWI processes in a
mogeneous medium, the coefficient of nonlinear interact
is imaginary.

It is stated that, during the generation of the seco
harmonic wave, the laws of energy and pulse conserva
@Eqs. ~17a! and Eqs.~17b! and ~17c!, respectively# of the
interacting waves are associated with the Bragg resona
of either a single layer or the whole period of the structu
The latter type of Bragg resonance implies that the con
vation laws are completed for the structure with an effect
dielectric permittivity given by Eq.~25!. For this case, the
phase matching conditions imply that a traveling wa
propagates in the periodic structure.

The particularities of the nonlinear interaction associa
with the complex character of the matrix elementsW2k8,k8
andWk8,2k8 have been studied. The increase of the coeffici
of the nonlinear interaction is associated with the Bragg re
nant conditions. During the Bragg resonance, one observ
considerable decrease of the wave path associated with
complete energy exchange between the harmonics propa
ing inside a lossless periodic structure.

From our point of view, the present study has both a ba
interest and practical applications for the purposes of sp
troscopy and for the determination of periodic structure
rameters. Specifically, Fig. 3 allows a measurement of
stop band parameters. Therefore, the configuration and
electric characteristics of layers may be determined. A
was mentioned, for a periodic structure, the distance of
complete energy transfer between the harmonics may
shortened significantly. Thus periodic structures may be
fectively used in amplifiers and mixers of optical signals.
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