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Considering a propagation of electromagnéfi!) waves through overdense homogeneous plasmas, a new
regime of amplification of EM waves with frequencies below the plasma frequency has been found. An
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I. INTRODUCTION homogeneous, overdense plasmas. For the sake of simplicity
we limit ourselves to a one-dimensional model, and take into
A large-amplitude electromagnetiEM) wave propagat- account interaction with electrons only. Developing the ideas
ing through plasmas is known to be subject to different nonof coherence effects in plasmas, we show a possibility of
linear effects, such as Raman scattering, modulational instd&&M-wave propagation and amplification in overdense plas-
bility, and self-focusind1-3]. These nonlinear effects have Mas and propose application of the effects to the FEL. These
great importance for fusion physics, laser-plasma accelergffects result from the modulation of the plasma density by
tion, and EM-field harmonic generation. In particular, Comp-Coherent electromagnetic fields.

ton and Raman scattering are intensively utilized in the con- W€ consider the strict dispersion relation for the EM
cept of free electron lasef§EL) waves in plasmas in the presence of the strong EM field

Usually, EM-wave—plasma interactions are investigatecill’la’ including both the Stokes and anti-Stokes waves,

in underdense plasmas. It is interesting to consider the bea-nd investigate the stability of an overdense plasma — EM-
) . ave compound. We show the dependence of the system
havior of overdense plasmas in the presence of the EM

fields, because it can lead to the increasing of nonlinear efgtablmy on the drive intensity and find the threshold behav-

f The basis of such : : h ¢ ior of the plasma instability. The plasma has only a relativ-
ects. The basis of such expectations Is an enhancement of 4y mqqulational instability(RMI) for a sufficiently low

amplitude of nonlinear plasma oscillations, driven by a pon-yjye intensity. In this region we find the EIT effect and
deromotive force, with the increasing of plasma density. ltgo\w that the EIT gap is much narrower than has been pre-
seems that the main obstacle to utilizing the plasma oscillagjcted in[9]. We show that there exist unstable Stokes EM
tions is the impossibility for weak EM waves to propagatewaves with frequencies smaller than the plasma frequency
through plasmas if their frequencies are less than the Langyhen the drive intensity is above the instability threshold.
muir plasma frequenchl]. However, the presence of an EM The differences between these instabilities and underdense
field drastically changes the properties of plasmas. For explasma instabilities are found and analyzed. The dependence
ample, it has been predicted theoretically and demonstratesf the instabilities and the EIT on the temperature in warm
experimentally{5—7] that an overdense plasma can be madeoverdense plasmas is discussed. Finally, we apply our analy-
transparent due to the hole-burning effect and due to theis for the intense electron beams and using the Lorentz
effect of increasing of the relativistic mass of the particles.transformation investigate dispersion relations for a FEL-like
These effects need incredibly high intensity of the EM field,system. We find a new regime of amplification for such a
and consequently, the realization of these effects looks posystem.
sible only in the pulsed regime.

The coherent effects in the atoms are known to give rise
to new phenomena such as quenching of spontaneous emis- Il. EQUATIONS FOR WAVES IN PLASMAS
sion, electromagnetic induced transparen®&IT), lasing i . )
without population inversion, and high index of refraction An interaction of EM waves with a cold, homogeneous,
without absorption[8]. For example, the EIT allows the collisionless plasma is described by the set of self-consistent

propagation of EM waves without absorption in the mediumeduationg11], which consists of the equations of motion of
which possesses losses for a single weak field. a single charged particle in the EM field, the continuity equa-
Recently it has been shown that there are several types §PN: and the wave equations for fields. _
coherent effects in plasmas which are similar to coherent 1he equation of continuity and the wave equations for the
effects in atomic media. The EIT in cold overdense plasma&€lds have the forms
[9] and a new concept of FE[10] has been proposed. These
effects are nonrelativistic and need a moderate level of EM- 5
wave intensities. n
) . L e—+V.J=0, 1
In this paper we consider an EM-wave propagation in ot @
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1 52 The wave equation for EM field®) can be rewritten as
— ——A|p=4mwen, 3
(c2 at? ) ¢ 1 42 w?
. _ _— 22 AT
wheree is an electron charge,is the speed of light] is the ct at Y2
density of the electron current 5 2n2 0 0
oy n eA) ,U2(vz— v, A
J=(ng+n)eyv, 2y,\ Mo 2m2ct Yz 2 y
v=(vx,vy,v;) IS an electron velocityn, is the density of )
the plasman is the electron density of longitudinal plasma
oscillations, ¢ is the electric potential connected with thesewherew§=4wnoe2/m is the plasma frequency.
plasma oscillations, and is a vector potential of EM field. The relation between the electron densitynd the lon-
These potentials obey the Lorentz gauge condition gitudinal velocityv, can be obtained from the modified con-
tinuity equation
1d¢
——+V.A=0. 4
c dt . J o
n=—n0£(vz—vz). (8

Classical dynamics of electrons in the external fields can

be described by the Hamiltonian Equations(6)—(8) form the complete set describing the
EM-wave—plasma interaction. Obtained from relativistic in-

H=ymd=c \/( p— EA 2+ m2c2+ed, variant equation$l)—(5), the set is relevant in any frame of
c reference. For example, it can be used for investigation of
] EM-wave scattering by plasmas or by electron beams.
wherey is referred to as a Lorentz factor, In the case of underdense plasmas, Ejsand(7) can be
o\ —172 simplified by neglecting the terms, which are proportional to
y= ( 1— V_) the plasma frequency, in the left sides of the equations. This
c2 ' simplification corresponds to a consideration of an interac-

tion between EM waves via a single electron. The interaction
m is an electron mass, amais a canonical momentum of between the electrons is neglectéthis is the so-called
electron. Compton regimg For the dense and overdense plasmas the
To proceed further we choogeas (0A,,A,). The set of collective effects play an important role and such a simplifi-
equations of motion for an electron in the external fields hasation is no longer valid.

the form
JG 0, 4H py—eA//c I1l. DISPERSION RELATION FOR PLASMAS
*op, my YT apy T my To analyze a possibility of wave amplification we make a
harmonic analysis of Eq$6)—(8) and obtain the dispersion
. 0H p,—eAlc . JH ) JH relation for plasmas. Such an analysis has been provided in a
z= = P =0, py=——==0,  large number of papergor example, se¢11-13), and we
P, my IX ay )
5 do not repeat it here.
5 Let us use the vector potential of EM waves in plasmas in
dH p,— eAlc e dA, . P,—eAlcedsA, ¢  theform
pZ:__:—__ —___e_l
9z my ¢z my ¢z oz A(z,)={Ag+Aexi(k-z— wt)]
d 10A 1 0A T S
:ymCZZ—EUZ(a—f-i-Ea—tX)—evyEa—ty. +ASeXF[ (k" -z-w t)]}
Xexdi(kg-z—wet)]+c.cC. 9

Using the equations of motiai®d) together with the equa- ] ] )
tion of continuity (1), and assuming the small relativistic W& assume that the sideband amplitudes (anti-Stokes

change of the electron mass due to interaction with the EMND As (Stokes are much smaller compared with carrier-

waves, we obtain the equation for the plasma oscillations Wave amplitudeA,, and thatAs, A,, andA, are linearly
polarized, parallel to each other, and perpendicular to the

d’n o} eny dfvya 4\, carrier-wave vector.
+ n= — —+ —|A 6 . . .
"B "oz 2wt az) ™y (6) For the Stokes and anti-Stokes sideband amplitudes the

next set of equations can be obtairjad]:

wherevg is the mean longitudinal velocity of plasma relative ~> . .
to the laboratory frame of reference DAt opl'o(1-ck/D)(Ay+Ag) =0, (10
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D_A%+w2lo(1—cK¥D)(A,+A%)=0, (1D 002 |

where T'y=e?|Ag|2/m?c* is the nonlinear coupling coeffi- —
cient, 001 |
) -
\ “

\ /// \\
DR =?—a? & [y
p—

P
is the Langmuir-wave dispersion function, = -
= 001 |
D.(0,k)=w?+2(wqw—c?k-kq) —cZk?
002 |

are the light-wave dispersion functions, angl,k, andw are

the plasma frequency, wave vector, and frequency of the
plasma wave in the moving frame of reference where the
plasma is at rest,
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From Egs.(10) and(11) we obtain the dispersion relation
for plasma oscillation$11,12:

I

|
\
A

~

(=1
T

Re(a)S /% )

D(w,k)=D,D_+wil'o(1-c%k?D)(D,+D_)=0.
(12)

It should be mentioned here that the dispersion relati@ 3t ~
is valid independent of the frame of reference. This result is T
rather obvious because E@L2) is based on the equations 0 04 08 12 16 2 24 28 32 36
which are invariant relative to the Lorentz transformations. ~ o~

We consider a rather weak interaction plasma fidlg ( (b) kSC/ (Dp

<1), so the carrier-wave dispersion relation has the form

~y o~y 2 FIG. 1. (a) The temporal growth rate of the Stokes EM wave
wp=wp(1=To)+ckp. (13 (the relativistic modulational instabiliyim wslw, as a function of

In this case the unstable solutions of E(®~(8) automati- the r_eal Iopgitudinal wave l’em&s(i/z’p’ obtained f(_)r the drive
cally mean the instability of sideband waves. Analyzing theEM field with the frequencyw,=1.7w, and the coupling constant
roots of Eq.(12) we investigate amplification and generation I'o=0.02. (b) The dispersion of the Stokes EM wave d¢wy,
of the Stokes and anti-Stokes waves in plasmas. corresBon(ﬁng tqa), as a function of the real longitudinal wave
vectorksc/ wp, .
IV. ANALYSIS OF STABILITY IN COLD PLASMAS .
nary part of the wave vector which corresponds to the wave
To consider an amplification or an attenuation of EM attenuation or amplification. This approach is valid for the
waves propagating through plasmas we analyze the dispegonvective instabilities[2]. For absolute instabilities the
sion relation(12) obtained in the preceding section. It is problem is more complicated. There is a situation when there
instructive to remember that there are two approaches to anaxist complex frequencies for real wave vect@esmporal
lyze the propagation of the EM wave in plasmas. Let uspicture while for real frequencies we have only real wave
suppose that the initial distribution of the field in the inter- vectors[4]. To find an amplification in this case one should
action region is known, and the task is to find the time-know the geometry of the system.
dependent behavior of the EM field. In this case the disper- We numerically solve the dispersion equatid?), which
sion equation should be solved with respect to the frequencig fourth order of the wave vector and sixth order of the

regarding the wave vector to be real. An appropriate imagifrequencyw, and investigate the dependence of the plasma
nary part of complex frequency, that is a root of E#§2),  instabilities on the driving field intensity. For simplicity, we
indicates thaF there is an instabili;y of the plasma wave, an@imit ourselves to copropagation and contrapropagation
EM waves with the real part of this f_reque_ncy_can be g_ener-(RHEO) of the carrier and sideband waves.
ated by the system. Temporal consideration is useful in the |, Figs. 1—4, we depict the solutions of E42) for the
case of infinite uniform plasmas or finite plasmas with peri- . - , . ~
odic boundary conditions. mono~chrom.at|c driving field with .t.he Trequencyuo

In the other case, when the EM fields on the plasma=1.7@p. Itis clear that for such a driving field the Stokes
vacuum boundary are known, the task is finding the propasideband has frequency smaller than plasma frequepcy
gation of the EM waves through plasmas using these bound- To begin with, we demonstrate that the low intensity of
ary conditions. Solving the dispersion equation with respecthe driving field (for example, we set the parametEg
to the wave vector for the real frequencies gives us an imagi= 0.02) there exists only an instability due to a near-resonant
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25 FIG. 3. (8 The temporal growth rate of the Stokes EM wave

Im w/w, as a function of the real longitudinal wave veckec/w, ,

obtained for the drive EM field with the frequenay=1.70, and
the coupling constarit,= 0.04, which lies above the thresholt)

The dispersion of the Stokes wave B/tmp, corresponding tda),
as a function of the real longitudinal wave veckac/, .

RMI leads to growth of forward scattered Stokes and anti-
Stokes waves because the corresponding wave vekfors
=ko+k andks=ko,—k have the same signs. As usually oc-

-25 ¢ >
- - - - curs for the RMI,[K] is much less thatk|. It is clearly seen
0 04 o8 12 1.6 in Fig. 1(b) that there is no Raman instability in the over-
© Mg /(Dp dense plasmdsee, for example[14]) for such a driving

field.
FIG. 2. (a) The imaginary part of the wave vector ﬁ*gc/Z)p as Let us now consider the solution of the dispersion relation

a function of the real frequency of the Stokes wayg/wp The W|th respect to wave vectofls keeping the real frequencies
relativistic modulatlonal instabilityb) corresponds to the branch . Imaginary and real parts fdr are shown in Fig. 2. Close
close tows=w,. The other branches characterize the evanescerto the pointo=0 one finds the branch of spatial instability
field. The EIT gap is clearly seen at the vicinity of the plasma[Fig. 2(a)], which corresponds to the temporal RMI growth
resonance(c) The dispersion of the Stokes EM wave, correspond-rate[Fig_ 1(a)]. The real part of the wave vector correspond-
ing to (a), (b), RekgC/w, as a function of the real frequency of the ing to the spatial instability is depicted in Fig(t®. A com-
Stokes EM wave?oslfup. parison of Fig. 1 with Fig. 2 shows that, for the case of the
RMI, it is possible to use either a temporal or a spatial pic-
interaction of a carrier wave and its Stokes and anti-Stoke8ire. The results of such considerations are the same inde-
sideband$11], a so-called relativistic modulational instabil- Pendent of the manner of investigation, because the RMI is
ity in plasmas. In Fig. (8 we depict the temporal growth convective.
rate of the plasma wavéand, consequently, the sideband It is easily seen in Fig. (@) that there are other complex
fields) as a function of the real wave vector. The real part ofrootsk of Eq. (12). These wave vectors do not correspond to
the plasma oscillation frequencies is shown in Figp)1The  the RMI. Therefore one can conclude that these branches
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(a) a)s /a)p FIG. 5. The scheme of three-level atomAnconfiguration.Q)

and ag are the Rabi frequencies of the driving and probe coherent
fields, respectively. The dispersion relati¢l6) is obtained for the
probe field having the wave vectkg and frequencyws.

rower[see Fig. 2a)]. Moreover, taking into account the anti-
Stokes wave leads to the substantial changing of the opposite
to the EIT effect, predicted if@]. There is a region near the
anti-Stokes frequencywell above the plasma frequency,
usually it is a transparent region in the linear regimdere
the probe field is reflected from the plasmas. The physical
cause of this effect is the same as for the EIT. A high fre-
quency field reflects from the plasma due to a dynamical
diffractional lattice, which is formed by the ponderomotive
force, which acts on the charged particles in the presence of
~ e~ the EM fields. We found that this region is much wider com-
(o) s / (Dp pared with the result obtained [8].
o Let us consider now the situation of a larger drive than in
FIG. 4. (8 The imaginary part of the wave vector kit/wyas a  the previous case. For the intensity of the driving EM field
function of the real frequency of the Stokes EM wa]vg/Z)p. The  being higher than some threshold value we get the temporal
relativistic modulational instability corresponds to the branch closeinstability (the parametel ,=0.04, see Fig. 8 This thresh-
to ws= wg. The other branches correspond to the evanescent fiel®ld value depends on the plasma and drive frequencies. This
There is no branch which corresponds to the temporal plasma irthreshold value can be easily estimated in the limitDof
stability (@). (b) The dispersion of the Stokes EM wave, correspond->D _ . The dispersion relatioil2) in this case can be re-
ing to (a), Reks/w, as a function of the real frequency of the written as

Stokes EM waveaos/w,,.

0 0.4 0.8 12 1.6

correspond to evanescent wayé$ and cannot be useful to c’kE— wit+ w5 —Tow
amplification. The EM waves with frequencies correspond-

ing to suchk are usually reflected by the plasma. However,

o.ne can seen F|~g.(2)~, thit some low frequency Stokes and the threshold nonlinearity of interaction is determined by
sidebands g =|wo—w|<w,) may propagate through ihe value
plasmas without reflection or attenuati¢so-called electro-
magnetically induced transparency, $6@ in the presence ~p g~ e~ omp o~
of a driving field. We have revisited this effect and found T [p (“:(’ ~“)S) J(wp w3)
that the EIT window in the plasmas looks different from that wi(wh— w3
obtained earlier. This difference appears due to the Stokes

and anti-Stokes wave interaction, which has been omitted irherefore for the drive EM field with the intensity higher
[9]. Consideration restricted by three wave interactitie  than the thresholdl{,>T"l) there exists a plasma instability.
Stokes wave, the plasma wave, and the drive wawerks |t should be mentioned here that there is no corresponding
well for describing Raman scatterings, but in our case ispatial instability(see in Fig. 4 for this temporarily unstable
leads to incomplete results. Really, if we consider only threeyranch.

wave interactionthis means that in the dispersion relation | et us note here that the similarity between plasmas and
we should seD,>D_ and therefore omiD_ where it is  driven three-level systems can be established on the base of
possible, we obtain the wide EIT gap in plasmas. The widththe simplified dispersion relatiofl4). In the case of three-

of this gap is about to BOZ)p [9]. Taking the anti-Stokes level atoms driven by a coherent field the dispersion relation
sideband into account, one can make the inference that thmnsists of two part&o be certain we refer to th&é system,

EIT exists in cold plasmas, but the width of the gap is nar-see Fig. 5[8]:

(14

p

c2(kg—ke)?
1 Cok9) )

~—~,2
wp_(wo_wS)

(15



PRE 58 ELECTROMAGNETIC WAVE PROPAGATION AND . .. 7851

Na—Np
1_‘ab

,, NNy A
-9 v .0 (19 A

Ko | ws £
IKg— Il ——
s c achaFcb

wheren,, n,, andn. are the populations of the leveds b,

andc; TI'jj=y;+iAj;, v; is the relaxation of coherence wiggler

between levels andj, A;; is the detuning for the transition [v] [STNTSTN] SLN_

between levels andj; £ is a coupling constant between a P PT—v— e 4 \>
radiation and a matter which is equal to (83)8.2N for the q = —
case of the radiative broadening transition, &hi$ the den- :| N[s[N][s|N]sS] [N]

sity of atoms. The first part in parentheses is the linear ab-
sorption and dispersion which exists without the driving field !
as well as in the case of the plasifi#) the term withoutl’ laser | |
is a linear dispersion of the EM waves in plasmas. The sec- beam 1
ond part is the driving term. It is this term that leads to the
electromagnetically induced transparency and the Iasinﬁ
without inversion(LWI) [8]. The first one allows the propa- N
gation without absorption of the two EM waves which have
the frequency difference being equal to the splitting of the ] ] o ~
ground levels. The second one leads, under certain condi-andau damping,, is negligible in our case due to small
tions (for example, the driving field intensity should exceed This modification changes the order of the dispersion rela-
some threshold valygto the amplification of one of the EM tion for the wave vectok and does not change the order for
waves without population inversion. In the case of plasmashe frequencyw.

the role of the second, driving term, is similar. The plasma The main Changes of the wave properties between the
oscillations play the role of the low frequency coherence inwarm and cold plasmas are as follows. The temporal picture
the case of the\ atoms. As has been shown[i8] the driv-  and corresponding part of the spatial pict(ttee RMI branch

ing term leads to the EIT in plasmas, and, as we have jugbr I';=0.02) do not change much uniik is less than 04,
shown, to the instability of the plasma. Therefore the CO”eCWherec is the Speed of ||ght in vacuum, whereas the other

tive plasma effects are similar to the atomic coherent effectsyranches of the spatial picture display significant changes for
It is important to determine the nature of the instability in ;. >0.0z.

FIG. 6. The FEL-type setup for the demonstration of the ampli-
ation effect for the EM wave with the frequency below the
plasma frequency.

this case. According to the usual criterif2,14], we solve The EIT gap demonstrates a threshold behavior. For the
numerically the set of equations parameters chosen above, it disappears when the thermal
- electron velocity reaches the valug=0.1c.
D(w,k)=0 The threshold for the temporal instability increases with
_ the temperature, as is clearly seen from Bdp),
dD(w,K)
ok

~4

~ = \27T2
(wp— wg) 0y
w

FO(T)=FO(0)+3T<ZU$( 1—

and find a complete set of roots. There are roots of the set of p

equations Wh'cb correspond to unstable plasma behayior Increasing of the plasma temperature leads to vanishing of
=(0.84+0.09) w,. We have an absolute type of a plasmathe nonlinear interaction between the sideband waves and the
instability. This instability is not a Raman one, because theylasma. This is similar to destroying a coherence in atomic
frequency of the Stokes sideband lies beley. However,  systems by the thermal motion. The phase and group veloci-
this instability can be used for EM-wave amplification andties of sideband waves become very large. We would like to

generation. note that without nonlinearity these velocities and the wave-
length of sideband waves go to infinity. This means that
V. ANALYSIS OF STABILITY IN WARM PLASMAS these waves cannot penetrate through plasmas.

To answer the question of whether an experimental imple-
mentation of the results obtained in the preceding section is
possible, we have to reconsider the analysis of stability for |n conventional FELS[16], a linearly polarized static
the case of warm plasmas and determine the role of thermahagnetic wiggler is used to generate stimulated radiation. In
electron motion. laser-pumped FELs, the static periodic magnetic wiggler is

For the most interesting case of sufficiently cold plasmasyeplaced by a counterstreaming intense laser fi&Td (opti-
whenT=0 but still o>kvt, wherev is the thermal elec- cal wiggle. It should be noted that for a relativistic beam
tron velocity, kinetic theory analysis shows that plasma frethe periodic magnetic field of the wiggler appears approxi-

VI. APPLICATION TO FREE ELECTRON LASERS

quency should be changed ZQ)T:ZN_—WL, where mately, using Weiszacker-WiIIiams approximation, as a
plane EM wavd 18]. Due to this fact, we neglect the differ-
le? 2 ence between these types of wigglers for gain calculation.

of=wi+3k%i, = \/:~p 3L p( i 2), We consider the setup presented in Fig. 6. The high den-

8 ksUT 2k20T sity relativistic electron beam passes through the wiggler. In
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the frame of reference moving with the electron beam thdrequency(according td1]) and can be useful for improving
wiggler can be considered as a strong driving field propagatfree electron laser operation, because it broadens the bound-
ing through the plasma. It is similar to the configurationaries of FEL operation to the low frequency region. Such
which we have analyzed above. The weak laser field to beevices have larger gain compared with the Compton and
amplified should be launched onto plasma in the presence ®8aman FELs for the same amplitudes of the driving field.
the strong pump field, as shown in Fig. 6. To calculate theThese devices can be used, for example, for producing infra-
increment of the instability for the weak laser fid#gpropa- red radiation with significantly higher brilliance than usual
gating through the wiggler along the electron beam we uséaboratory sources such as a mercury lamp.
the transformed dispersion relati¢h?). We have found that the EIT window in the plasmas looks
It is known that the moving electrons “see” the wiggler different from that obtained if9]. The width of the gap is
as almost transverse EM wave, the wave vector and frerarrower[see Fig. 28)]. We have shown that a region near
guency of which in the rest frame of the electron beam ighe anti-Stokes frequendyvell above the plasma frequency,

determined as it is usually a transparent region in the linear regiméere
the probe field is reflected from plasmas, is much wider than
~ o (kwvly,\? @2 the region predicted if9].
W= ka(Z)yz, k§=< ) - —2p We should mention here that direct application of the re-
¢ c sults obtained above for plasmas is to be corrected, because

of the inhomogeneity of real plasmas which should be taken
whereky=27/\y, Ay is the wiggler wavelengthy? is the  into account. This inhomogeneity is the source of a set of
mean speed of the electron beam, gndorresponds to the problems. For example, it breaks the phase matching condi-
v? Lorentz factor. Therefore we can consider the wigglertions for the waves in plasmas, which leads to a boundary
field as the carrier wave and use for calculations the aboveeflection of the EM waves in the case of overdense plasmas.
results. The regions with low plasma density experienced all types of

To determine the parameters of the amplified field in theEM-wave scattering, which can significantly diminish the in-

laboratory frame we can use the Lorentz transformation. It igensity of the carrier wave and scatter the low frequency
worthwhile to underline here that forward scattered wavegrobe wave before they penetrate the plasma.
can be backscattered relative to the electron beam in the
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scattered waves the frequency in the laboratory frame is The authors wish to thank C. Bednar, S.E. Harris, and

. o~ T .

higherw=(w+kvz)y,. Thus, even for the Stokes sideband \y 5 "scully for helpful discussions, and gratefully acknowl-
waves with the frequency smaller than the plasma frequencyyge the support from the U.S. Office of Naval Research, the
in the moving frame, in the laboratory frame the frequency iSye|ch Foundation, and the Texas Advanced Research and
in the optical region for largey, . Technology Program. One of ¥u.V.R.) wishes to thank

Let us consider the situation when the wiggler field wave-ihe North Atlantic Treaty Organization for their support.
length is A\y=9 cm, the wiggler field strength B,

=2.7kG (['(=0.04), the Lorentz factor iy,=40, the lon-
gitudinal momentum spread y=10"3y,, and the elec-
tron density is 18 cm 3. Corresponding carrier-wave fre- To derive Eq.(7) we assume a small change of the elec-
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plasma frequency i@ ,=5x10s™%, the thermal velocity © the approximation

APPENDIX A

is vr=Avy/y,c=3x10"cm/s, and the corresponding tem- 2 2\ 12 ) 0 0
perature is 225.0 eV. For the probe laser with the frequency _;_ 1— vytu; — 11 2vy+zvz(vz_vz)
w;=1.7x10"s"1, which in the moving frame corresponds c2 Yz V2 2c2 ’

to the frequencyw=4.2x10"s™ 1, which is less than the (A1)
plasma frequency, the increment of the instability is equal to . _

|m(}1))=o.o§1)p. wherev, is the velocity of the electron beam. For transversal

The above estimation gives us the gain for the optical€locCity Of the electro, we have equations of motion
fields. The limitation of the gain in the optical region comes
from the restriction of the plasma density in the electron y :ﬁ: py—eAlc p :_ﬁzo (A2)
beams, and this limits the applications of the concept under Jpy my Y Iy '
consideration into the generation of opti¢at shorter wave-
length coherent fields. However, the FEL, based on the proSetting the initial transversal momentum of the electron to be
posed effect, looks quite competitive with the Raman FELsgqual to zerop, =0, we obtain from Eq(A2) the expression
also utilizing the collective motion of plasma, to produce
radiation in IR and far-IR regiong3]. . eA
In conclusion, we consider the dispersion relation of over- y= mcy’
dense homogeneous plasmas, and find a new regime of am-
plification EM waves with the frequencies below the plasmaCombining Eq.(A1) with Eqg. (A3) and omitting the terms
frequency. This regime does not involve Raman instabilitywith higher order than E{A},/mC'yZ)S, we can express the
because the pump frequency is lower than the double plasmteansversal velocity of the electron in the form

(A3)



PRE 58

__ A

. , (A IMCy,)?+2v3(v,~v3)
y mcy, '

z 2¢?

(A4)

We plug expressioliA4) into the wave equation foh,,
Eq. (2),
( 1
c2 at?

Then, using the definition of the plasma frequen«aﬁ
=4me’ny/m and expressioriA4), we rewrite Eq.(A5) in
the final form(7):

4
—A Ay=?(no+n)evy. (A5)

1 42 sz)
Z A+ A
c? ot? y,c2) Y
wg n N e2A§ 2vg(vz—vg)
= — — 'y .
c?y,\ No 2m’c* % c? Y
(A6)

To derive an equation for the plasma oscillatigfs we
use the equation of continuityB)

an
EJFV (ng+n)v=0.

We consider the one-dimensional case; the vector potential
Ay depends onz andt only. Therefore, assuming small

plasma perturbation<ng, we have

J Jd
V-(ngt+n)v= W(nﬁ nuvy+ &(HO‘F njv,

J J
—Uzazn‘i‘noaz

In this case, the continuity equation has a form

.angn 9 A7
n= F7t vZ 0z - nOEUZ ( )

We applyd/dt to Eq. (A7), and rewrite it as
. aJ. A8
n=—no—v, (A8)

Using the equations of motiofb) we obtain the expres-
sion for a longitudinal electron velocity

e.
myv,=p;— EAZI (A9)
which gives us the convective derivative foy:
: 1 .. e,
UZ:‘y—m —Mmu,y+p,— EAZ (A10)

Using Eq.(A3) and substituting the expressions fer p,
[see Eq.(5)] into Eq. (A10) we rewrite the last one as

ELECTROMAGNETIC WAVE PROPAGATION AND . ..
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vzr9+(9 A
c2at gz V"

(A11)

2
eAy

’}/2m2C2

. e [dp 14A,
= —_— — + —
Y mlaz ot

Then we applyd/dz to (All) and, using expressiofAl),
obtain

J. e (PP 1A,
—U,=— —— 3 _F —
9z y3m\ 922 € 9zdt
€ a2 (a2
'y§m202 az" Y C2 ot 0z v ( )
The Lorentz gauge conditiof®) gives
1 %A, 1 0%¢
can @ gz (AL3)
Taking into account
1 52
— 5 A | p=4men, (Al4)
c? at?

we plug Eq.(A13) into the equation of continuityA8) and
obtain the final form of the equation for plasma oscillations

6

d’n 2 e’n, d/[v° a
p 0 7z 2
i g —|AZ, (a15)

which corresponds to the equation obtainedig].

APPENDIX B

Here we consider the frame of reference connected with
the plasmav2=0. To get the dispersion equatigh2) we
represent the vector potential of EM waves in plasmas in the
form

A(z,t)={Ao+Aexdi(k-z— ot)]+Ag
xexf —i(k*-z—w*t)]lexfi(ky- z— wot)] +c.C.,

assuming that the sideband amplitudes(anti-Stokes and
Ag (Stokeg are small in comparison with,, and thatAg,
A,, andA, are linearly polarized, parallel to each other, and

perpendicular to the carrier wave vecky. o, is the fre-
quency of the carrier wave. We chose the plasma density in
the form

n=ngexdi(k-z—wt)]+c.c.,

wherek and w are wave vector and frequency of plasma
wave.
Using equation for plasma oscillatio)

2
d“n ~5

2 2
LN SO € Ng J 2
dtz p 2 y’

2m?c? 4z
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together with wave equatiofY)

1 wp\  wif n  eA]
R — A =— ——+ ,
c? at? c2)"? ¢\ no 2m2ct)
we get for plasma oscillations
e2n0 T2 * *
Dn=— ——kY(AoA5 T AA7),
2m<c
whereD = 02— w2
For fields we get
~ )
wp €
D+Aa:? —NAg+ m(|Ao|2Aa+A§A§) :
c
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~2 2
DAL= —nrAgt —— |Al2A% +(A})?A
AsT 2 n=Aog 2m204[ ol “As T (Ag)“Aal |,

whereD . = w?* 2 (wow— c%kko) — c%k?.
Finally we come to relations

—
w

D+Aa=C—2pW(l—CZRZ/D)(|AO|2A3+A§A§),
w2 e

D_A’S‘=C—2p mzc4(1—c2R2/D)[|A0|2AS+(Ag)ZAa],

which gives us the dispersion relati¢i?).
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