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Nonlinear filamentation instability driven by an inhomogeneous current in a collisionless plasma
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Beams of fast electrons in a cold electron background play a key role in the generation of a magnetic field
in the wake of an ultrashort ultraintense laser pulse propagating in an underdense plasma. Here we study the
linear and nonlinear evolution of the electromagnetic beam-plasma instability in a collisionless inhomogeneous
plasma by using a set of two-fluid electron equations in the nonrelativistic and relativistic regimes. We show
the characteristic spatial structures in the current and magnetic field distributions that are generated by this
instability. These structures can be used as a signature of the physical mechanism at play in the analysis of the
numerical and experimental results of the laser-plasma interaction.@S1063-651X~98!05412-9#

PACS number~s!: 52.35.Qz, 52.35.Mw, 52.65.2y, 52.40.Nk
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I. INTRODUCTION

Large-amplitude strongly nonlinear plasma waves m
provide a very efficient mechanism for generating stro
electron momentum anisotropies in plasmas as they prod
beams of fast electrons. The currents associated with t
fast electrons should give rise to very large magnetic fie
which, however, are not observed at such high intensi
either in laboratory experiments or in numerical simulatio
This is due to the rapid reaction of the cold electron com
nent present in the plasma which generates oppositely
rected currents consisting of slow dense electron beam
order to maintain quasineutrality. The total net current in
plasma is then zero, but the free kinetic energy stored in
electron beams can now be partly converted into electrom
netic energy by means of beam-plasma instabilities. For
turbations perpendicular to the initial beam direction the r
evant instability is the current filamentation~CF! instability
@1–12#. This instability is similar to the Weibel instability
@13# which occurs in a collisionless plasma with an anis
tropic temperature. The CF instability is driven by the rep
sion of the two oppositely directed currents which tends
reinforce any initial transverse perturbation. As a result
magnetic field is generated and grows exponentially in ti
in the direction perpendicular to the wave vector of the p
turbation and to that of the electron beams. This instability
electromagnetic with a purely imaginary frequency. In re
tivistic conditions, when the speed of the fast electron be
approaches the velocity of light, the CF instability is ve
efficient with a growth rate comparable to the electro
plasma frequency. Ions can thus be assumed to be immo
and to provide a uniform neutralizing background. In t
case of strictly longitudinal perturbations, the excited mo
is a purely electrostatic beam-plasma~BP! instability with a
real and imaginary part of the frequency.

Particle in cell~PIC! numerical simulations@14–17# and,
more recently, Vlasov-Maxwell simulations@18# of laser-
plasma interactions have shown that quasistatic magn
fields are generated in the wake of laser pulses. These m
PRE 581063-651X/98/58~6!/7837~9!/$15.00
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netic fields play a key role in the nonlinear dynamics of t
plasma, and have important consequences regarding the
ergy transport and the pulse propagation and focalization
these simulations@15,17,19,20# strong electron beams ar
generated at the breaking of the Langmuir wake plas
waves produced by the laser pulse. These beams are
thought to drive the instability responsible for the observ
quasistatic magnetic fields. The spatial structure of the fie
observed in the simulations is essentially dipolar and
magnetic field vanishes along the symmetry axis of the la
pulse propagation. In two-dimensional~2D! simulations of a
linearly polarized laser pulse with its electric field direct
perpendicular to the simulation plane, the quasistatic m
netic field is also perpendicular to this plane. In these sim
lations the spatial structure of the magnetic field, e.g.,
number of different polarity domains, depends on the plas
and pulse parameters and evolves behind the pulse@19,20#.

In the present paper we investigate the evolution of
electromagnetic beam-plasma~EMBP! instability, by which
we denote the mode resulting from the coupling between
CF and BP instabilities. In the limit of two symmetric beam
the BP instability is also known as the two-stream instabili
see, e.g.,@21# and@22#. We use a two-fluid electron approac
with immobile ions. We consider a 2D inhomogeneous co
figuration with two initial counterstreaming electron beam
localized in a finite width region with a width comparable
the electron skin depth. Such an initial configuration is r
evant for the interpretation of the results of the PIC simu
tions. Our aim is to investigate the transition between diff
ent physical regimes and to identify the typical magnetic a
current structures that can be used as characteristic signa
of the development of the EMBP instability and as mark
of the different regimes, in the comparison with the nume
cal simulations of the laser-plasma interaction. Special at
tion is given to the case of strongly asymmetric beam
which is the most relevant in this comparison.

The formation of spatial structures due to the develo
ment of the CF instability, which we recall is analogous
the Weibel mode, was first reported for an inhomogene
7837 © 1998 The American Physical Society
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7838 PRE 58CALIFANO, PRANDI, PEGORARO, AND BULANOV
plasma in@7#, where it was shown both analytically and n
merically that in a plasma with inhomogeneous beams
instability develops, already in its linear phase, a spa
‘‘resonant’’-type singularity. This singularity occurs at th
spatial location where the instability growth rate in the inh
mogeneous configuration matches the growth rate, in
limit of large wave numbers, evaluated with the local valu
of the beam velocities. The largest magnetic field was fou
to be generated around this singularity and to have oppo
polarities. In the case of transverse perturbations, a cur
layer was formed very rapidly at the resonance position,
most independent of the characteristic scale of the initial p
turbation. On the other hand in a homogeneous plasma it
shown in@10,11# that, within the two-fluid description, trans
verse perturbations develop singularities in the electron b
densities and in the magnetic field in a finite time. The
singularities correspond to compressional and/or rarefac
wave breaking and are due to a nonlinear energy cascad
smaller and smaller scales that, in a collisionless plasm
relativistic regime, is interrupted at the electron skin de
length scale by the kinetic effects considered in@10#. Again
the magnetic field was found to be largest around these
gularities and to have a dipolar structure.

This paper is organized as follows. In the next section
introduce the governing equations and the physical mo
used in this paper. In Sec. III we recall the main resu
concerning the linear evolution of two initial homogeneo
and nonhomogeneous counterstreaming electron beam
particular we show that in this phase the perturbations t
naturally to align themselves in the direction of the fast el
tron beam. This effect is strongest for relativistic beams.
Sec. IV we discuss the nonlinear inhomogeneous evolu
and show that the spatial structures that are formed are
sentially independent of the initial conditions on the pert
bations. Conclusions follow in Sec. V.

II. THE TWO-FLUID ELECTRON EQUATIONS

In the linear phase and during the initial stage of the n
linear phase, before the development of the resonant-
singularity and/or wave breaking during which the stro
nonlinear interactions generate very small spatial scales
netic effects are negligible in the case of cold beams. Th
before such scales are generated, we may study the evol
of two counterstreaming electron beams in the framework
the two-fluid electron equations where the ions are assu
to be at rest and to provide a uniform neutralizing ba
ground. This is consistent with the characteristic time of
development of the EMBP instability which, for velocitie
comparable to the speed of the light, is of the order of
inverse of the electron-plasma frequency. We recall that
role of kinetic effects in saturating the development of t
CF instability and the formation of small scales was recen
analyzed in@10# in the case of two homogeneous count
streaming electron beams by numerically integrating
Vlasov-Maxwell equations.

We normalize all quantities by using a characteristic d
sity n̄, the speed of lightc, and the electron-plasma fre
quencyv̄p5(4pn̄e2/m)1/2. Then, the dimensionless equ
tions read
e
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where

va5
pa

~11pa
2!1/2

, ja52nava , a51,2.

Notice that the normalized electron skin depth is equal to
At the initial time the two electron beams are directed

opposite directions along thex axis and are localized in the
central region around they50 point,

v0,15v0,1cosh22~y/ l !ex , v0,252v0,1n0,1/n0,2, ~5!

wheren0,11n0,251 and the initial total net current is zero
n0,1v0,11n0,2v0,250. For the sake of simplicity, in the fol
lowing we assume that the initial densities are homogene
i.e., n0,1(t50),n0,2(t50) do not depend onx andy. In Eq.
~5! the subscript zero refers to zero-order~equilibrium! quan-
tities andl is the typical width of the beams. This equatio
models the two initially interpenetrating currents discuss
in the Introduction: the current of the fast electrons genera
by the breaking of plasma wake waves and the denser re
current carried by the cold plasma.

We limit our analysis to a magnetic field with a sing
component parallel to thez axis,B5(Bz), while the electric
field E5(Ex ,Ey) and the electron momentapa5(p0,a
1pa,x ,pa,y) are in thex-y plane.

III. LINEAR REGIME

First we recall some analytical results on the evolution
small disturbances before nonlinear interactions due to
growth of the unstable modes become important. Relativi
effects are explicitly taken into account.

A. Homogeneous beams

In the ‘‘ideal’’ case of two homogeneous electron beam
corresponding tol→` in Eq. ~5!, and of periodic distur-
bances of the form

f ~x,y,t !;eı~kxx1kyy2vt !, ~6!

the dispersion relation of the counterstreaming instability c
be derived analytically@7# ~see also@22#! by solving the
algebraic system obtained by linearizing Eqs.~1!–~4!:

~12V2
22!@kx

2~11V4
22!2v2~12V1

22!22vkxV3
22#

1ky
2@~12V1

22!~11V4
22!1V3

24#50, ~7!
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FIG. 1. The growth rate of the CF instability,kx50, vs v0,1 and, top left corner, vsky . The solid lines refer to the symmetric cas
n0,15n0,250.5 dot-dashed lines to the nonsymmetric casen0,150.167 andn0,250.833. CurvesC,D,G,H are multiplied by 3, 11, 5, 30,
respectively. The parameters of all the curves are given in Table I.
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andVa5v2kxv0,a , Ga5(12v0,a
2 )21/2. Notice that Eq.~7!

is fully general since, as remarked in Ref.@7#, in a nonmag-
netized, homogeneous plasma there are only two prefere
directions, that of the electron beams and that of the w
vector of the perturbation.

Equation~7! describes electromagnetic or purely elect
static modes depending on the angle between the pertu
tion wave vector and the stream direction, i.e., depending
the values ofkx andky . We notice that in Eq.~7! the solu-
tion is invariant with respect to the sign ofky and to the sign
of the pair (v, kx), wherev5v r1 ig is the mode complex
frequency, but in general not with respect to the signs ov
and of kx independently. Since (ky ,kx ,v r ,g) and (2ky ,
2kx ,2v r ,g) label the same mode, Eq.~7! describes modes
with a dispersion relation that depends on their direction
propagation~on the sign of their phase velocity! along thex
axis, while their frequency and growth rate are independ
of the sign ofv/ky . In addition growing and damped mode
appear in pairs with the same value ofugu. Whenkx50 and,
for arbitrary kx , in the special symmetric case wherev0,1
52v0,2, Eq. ~7! is quadratic inv and leads to purely grow
ing instabilities or to purely oscillatory modes.

1. One-dimensional dispersion relation

When the wave vector is parallel to the electron bea
ky50, the BP instability amplifies the longitudinal electr
ial
e

-
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n

f

nt

s,

field Ex with a growth rate obtained by solving the equati
12V2

2250. No magnetic field is produced in this case.
the opposite limit,kx50, the dispersion relation~7! ~see also
@6#! reduces to

v62~V̂1
21V̂2

21ky
2!v42@ky

2~V̂4
22V̂1

2!2V̂1
2V̂2

2#v2

1ky
2~V̂1

2V̂4
22V̂3

4!50, ~9!

where V̂ j
2[v2V j

22 with V j
22 defined by Eq.~8! with kx

50. Equation~9! contains two oscillatory solutions and on
purely growing mode which corresponds to the CF insta

TABLE I. Physical parameters of the results shown in Fig.

Curve n0,1 n0,2 ky

A 0.5 0.5 3.14
B 0.5 0.5 1.0
C 0.5 0.5 0.1
D 0.5 0.5 0.01
E 0.167 0.833 3.14
F 0.167 0.833 1.0
G 0.167 0.833 0.1
H 0.167 0.833 0.01
Curve n0,1 n0,2 v0,1

a 0.5 0.5 0.95
b 0.5 0.5 0.5
c 0.5 0.5 0.995
d 0.167 0.833 0.95
e 0.167 0.833 0.5
f 0.167 0.833 0.995
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ity and generates a magnetic fieldBz perpendicular to the
plane (x,y) of the electron streams and of the wave vector
the perturbation.

In Fig. 1 we plot the growth rateg of the CF instability,
kx50, vs the beam velocityv0,1 and, in the top left corner, vs
the transversal wave numberky . In both figures the solid
lines refer to the symmetric casen0,15n0,250.5, while dot-
dashed lines refer to the nonsymmetric casen0,150.167 and
n0,250.833. The parameters are given in Table I. For reas
of presentation, curvesC,D,G,H, which correspond to
small values ofky and thus to small values ofg, are multi-
plied by the numerical factors 3,11,5,30, respectively.

We note that in both the symmetric and nonsymme
cases the growth rates increases with the beam velocityv0,1,
reaches a maximum, and then decreases in the relativ
regime due to the increase of the effective electron mass
the symmetric case~equal beam densities and opposite v
locities! the position of the maximum moves towards larg
values of the beam velocity as the wave number decrea
curvesA-D. On the other hand, in the nonsymmetric ca
the position of the maximum and the qualitative behavior
the growth rate depend only weakly on the wave numb
curvesE-H. In Sec. III B we will see that the nonmonoton
behavior of the growth rate has important consequences
garding the development of the CF instability in the inhom
geneous case.

As it is well known, the growth rate of the CF instabilit
~curvesa-b-c-d-e-f ) increases linearly with the wave num
ber ky in the small wave number case~long wavelength!,
ky!1, and saturates in the large wave number limit~small
wavelength!, ky@1. Of importance for the following analysi
is the fact that in the nonsymmetric case, curvesd-e-f , the
critical wave number at which the growth rate of the C
instability saturates,kcrit , remains unchanged going from th
nonrelativistic to the relativistic regime. On the other han
as discussed in Ref.@7#, in the symmetric relativistic case
curvesa-b-c, the instability growth rate saturates at low
and lower values ofky , an effect due to the relativistic in
crease of the effective electron skin depth. The saturatio
the growth rate with respect to the wave number atky
[kcrit is relevant to the development of the instability in t
1D inhomogeneous case where, as mentioned in the In
duction, the characteristic spatial scale of the growing m
is generated by a resonant mechanism. As discussed in
@7#, the characteristic wave numberky[kres of the growing
resonant mode is fixed by the value at which the growth r
saturates,kres.kcrit , regardless of the wave numberk0y of
the initial perturbation~assumingk0y,kcrit). In addition, in
2D, the value of the wave number of the resonant mo
kres.kcrit , determines not only the value of the growth ra
but also the nature of the mode since whether the instab
is dominated by the CF or by the BP instability depends
the angle between the resulting wave number and the e
tron beams, i.e., the ratio betweenky andkx .

If the initial beams are symmetric, thenV̂3
250, and one of

the two oscillatory solutions of Eq.~9! reduces to purely
electrostatic Langmuir waves decoupled from the two ot
branches. In this limit the CF growth rate is given by

g5
1

A2
H FAS 1

G3
1ky

2D 2

1
4ky

2v0
2

G
2S 1

G3
1ky

2D G J 1/2

.
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In the nonrelativistic regimeG51, Eq. ~10! can be reduced
in the small and large wave number limits, to the well-know
expressions

gs;uv0uky , ky!1, ~11!

g l;uv0u, ky@1, ~12!

in agreement with the main features observed in Fig. 1.
requiring gs;g l , we obtain the value ofky beyond which
the growth rate saturates,ky5kcrit;1, or in dimensional
units, k̃crit;1/de . In the relativistic limit uv0u'1, Eq. ~10!
can be reduced, in the small, intermediate, and large w
number limit, to

gs;uv0uGky , ky,1/G5/2, ~13!

g i;~ uv0uky /G1/2!1/2, 1.ky.1/G5/2, ~14!

g l;uv0uG21/2, ky.1, ~15!

in agreement with the results of Fig. 1. An intermediate
gion appears between the small wave number and the s
rated, large wave number regions, characterized by a su
ear slope. This intermediate interval is clearly shown
curve c where a linear increase of the growth rate withky
only occurs for very small wave numbers. The growth ra
dependence on the Lorentz factorG changes fromgs to g l in
agreement with Fig. 1, curvesa–c, where we see thatg
increases monotonically withv0,1 in the small wave numbe
limit, while in the opposite case the maximum growth ra
~curvea) does not correspond to the maximum beam vel
ity ~curvec). The transition from thegs regime to theg i and
g l regime is also shown by curvesA–D where we see tha
the increasing and decreasing regions of the growth rate
v0,1 strongly depend on the wave number.

By requiringg i;g l we obtain, in agreement with Fig. 1
that in the relativistic regime the value ofky beyond which
the growth rate saturates becomes lower and lower,kcrit
;v0G21/2 ~we recall thatuv0u'1), an effect due to the rela
tivistic increase of the effective electron skin depth. The d
ferent behavior observed in the nonsymmetric case~see Fig.
1, curvesd,e, f ), wherekcrit is independent of the beam ve
locity, can be explained as follows. When the initial bea
are nonsymmetric,n0,1!n0,2, v0,1@v0,2, and the fast one is
relativistic, uv0,1u'1, G2;1 andG15G@1, we can expand
the coefficients in Eq.~9! in powers ofn0,1 and obtain, to
leading order,

V̂1
2'V̂2

2'1, V̂3
4'n0,1

2 v0,1
2 , V̂4

2.n0,1v0,1~v0,1/G2v0,2!.
~16!

Then, to leading order, the growth rate is given by

v2'2
ky

2n0,1v0,1
2

~11ky
2!G

, ~17!

from which we obtain the following asymptotic behaviors
the homogeneous CF instability for strongly nonsymme
initial beams:

gs;~n0,1v0,1
2 /G!1/2ky , ky!1, ~18!



to
-
e

PRE 58 7841NONLINEAR FILAMENTATION INSTABILITY DRIVEN . . .
FIG. 2. The growth rate of the
EMBP instability and, top right
corner, its frequency vskx . The
solid lines refer to the relativistic
case, and the dot-dashed lines
the nonrelativistic case. The pa
rameters of all the curves ar
given in Table II.
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2.
g l;~n0,1v0,1
2 /G!1/2, ky@1, ~19!

wherev0,1'1.
By requiringgs;g l , we find that the value ofky beyond

which the growth rate saturates,ky5kcrit;1, is independent
of the beam initial velocity, in agreement with the res
shown in Fig. 1.

These different scalings of the saturation of the
growth rate with respect to the wave numberky derived in
this section will determine how the characteristic width
the current channels and of the magnetic field generated
the instability depend on the properties of the accelera
electron beam and of the return current.

2. Two-dimensional dispersion relation

In the general case when bothkx andky are different from
zero, the CF instability and the BP instability are part o
single branch which we denote as the EMBP instability.

In Fig. 2 we plot the growth rate of the EMBP instabilit
vs kx for different values ofky . The parameters are given i
Table II. CurvesA andE–L are relativistic and curvesB–D
nonrelativistic. CurveA corresponds to the symmetric cas
all others are nonsymmetric. Finally, curvesB-E-H are ob-
tained for a transverse wave vectorky larger than in the othe
cases. In the top right corner we plot the frequency of
instability, curvesb-e-f -g-h, with the same parameters o
the corresponding curve in capital letters.

In general, except for the symmetric (n0,15n0,2) relativ-
istic case shown by curveA, the maximum growth rate is
reached when the wave vector forms an angle with the
rection of the beams different from 0 andp/2, i.e., for ky
Þ0 andkxÞ0. We observe that the value ofkx of the most
unstable mode is practically independent ofky for a given
value of the beam velocityv0,1 and that the most unstabl
mode, curvesB-E-H, occurs at values ofkx smaller thanky ,
i.e., at kx,ky . Furthermore, the angle between the wa
vector of the most unstable mode and the direction of
electron beams decreases significantly for increasing va
t

f
by
d

;

e

i-

e
es

of the beam velocityv0,1. Thus we can expect that in th
relativistic regime the CF instability dominates with respe
to the BP; i.e., the typical magnetic structures become m
and more homogeneous in the stream direction. This is ea
understood by noticing that the dispersion relation of the
instability shows that only the long wavelength modes, i
modes with smallkx , are unstable. In the homogeneous sy
metric case,n0,15n0,2, the BP instability condition gives

kxv0,G23/2, ~20!

which becomes more and more stringent as relativistic c
ditions are approached. A similar argument holds in the n
symmetric case. However, Fig. 2 shows that the relativis
stabilization of the BP instability is more effective in th
symmetric case, curveA, than in the nonsymmetric case
curves E–G. By comparing curvesE,F,G with curves

TABLE II. Physical parameters of the results shown in Fig.

Curve n0,1 n0,2 v0,1 ky

A 0.5 0.5 0.95 1.0
B 0.167 0.833 0.5 3.14
C 0.167 0.833 0.5 1.0
D 0.167 0.833 0.5 0.1
E 0.167 0.833 0.95 3.14
F 0.167 0.833 0.95 1.0
G 0.167 0.833 0.95 0.1
H 0.167 0.833 0.995 3.14
I 0.167 0.833 0.995 1.0
L 0.167 0.833 0.995 0.1
Curve n0,1 n0,2 v0,1 ky

b 0.167 0.833 0.5 3.14
e 0.167 0.833 0.95 3.14
f 0.167 0.833 0.95 1.0
g 0.167 0.833 0.95 0.1
h 0.167 0.833 0.995 3.14
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H,I ,L, we see that, regardless of the transversal wave n
ber ky , the growth rate in the relativistic limit decreases f
increasing velocities~at least for velocities greater than
critical value!, as we have already noticed for the ‘‘pure’’ C
instability. We conclude that the CF instability dominat
with respect to the BP instability in the relativistic regim
which implies that the typical magnetic structures beco
more and more homogeneous in the stream direction.

B. Nonhomogeneous beams

In the laser-plasma simulations the electron beams ge
ated by the laser pulse are concentrated in a central regio
finite width which is represented in our model by the para
eter l in Eq. ~5!. Here we limit our investigation to electro
beams with typical width somewhat larger than the plas
electron skin depth and takel 54. This choice is consisten
with the values of the laser pulse width used in the simu
tions of the laser plasma interaction~see, e.g.,@15–17,20#!.

In the numerical integration of the fluid equations~1!–~4!,
we have used periodic boundary conditions in the direct
of the electron streams, along thex axis, and free-slip bound
ary conditions]/]y50, in the transverse direction, along th
y axis. The numerical mesh is non-uniform in the transve
direction with a refined grid in the central region. The typic
time step and grid space are 0.001<dt<0.01, dx.0.025,
and dy.0.01 (dy is calculated in the inhomogeneous r
gion!. A detailed discussion of the numerical code can
found in @7# ~see also@24# for details on the numerical algo
rithm!.

At the initial time we introduce a ‘‘small’’ magnetic per
turbation

Bz5eR~x,y!exp@2y2/~2s2!#, ~21!

where e is the amplitude of the initial perturbation an
R(x,y)exp@2y2/(2s2)# represents its spatial distribution wit
a typical transversal widths.

1. One-dimensional evolution

Let us first consider the pure 1D CF casekx50. By ex-
pressing all quantities in the formF(y,t)5 f (y)egt, the lin-
earized system of equations~1!–~4! can be cast into a
second-order differential equation for the inductive elec
field Ex :

]

]yF f „v0,1/2~y!,g2
…

]Ex

]y G2g„v0,1/2~y!,g2
…Ex50, ~22!

where

f ~v0,1/2,g2!5g21
V̂3

4

~g21V̂1
2!

2V̂4
2 ,

g~v0,1/2,g2!5g2~g21V̂2
2!, ~23!

and the coefficientsV̂ i are defined below Eq.~9!. A local
Frobenius analysis@23# analogous to the one performed
@7# for the nonrelativistic case shows that the solution of E
~22! is singular at the pointsȳ where f „v0,1/2( ȳ),g2

…50. At
-

e

r-
of
-

a

-

n

e
l

e

c

.

these points the coefficient of the second-order deriva

vanishes. In a homogeneous plasma,f „v0,1/2( ȳ),g2
…50

gives the instability growth rate in the limitky→`. We no-
tice that in the nonrelativistic symmetric limitf (v0,1/2,g2)
reduces tog22v0(y)2, in agreement with@7# @here v0(y)
5v0,152v0,2].

In the case of an even equilibrium such as the one gi
by Eq.~5!, two symmetric resonant points6 ȳ are present in
the nonrelativistic case. As a consequence, regardless o
initial wavelength, the perturbation is rapidly concentrated
the inhomogeneous region between the two singularities
order to find the position of the singularities in the relativis
case, i.e., the solutions off „v0,1/2( ȳ),g2

…50, we consider,
for example, the case of two nonsymmetric, relativis
beams,n0,151/6, n0,255/6, andv0,150.95, and use as a
ansatz a value of the growth rate close to that obtained f
the corresponding 1D homogeneous case for large value
ky . Then, f „v0,1/2( ȳ),g inh

2
…50 shows the presence of fou

singular points, symmetrically located with respect toy50.
This doubling of the resonance condition is a direct con
quence of the nonmonotonicity of the growth rate with r
spect to the beam velocity in the relativistic regime discus
in Sec. III A 1. Looking at Fig. 1~curvesA–H), it is clear
that the conditionf (v0,1/2,g2)50 at fixedg2 is in general
satisfied by two different values ofv0,1, one of them relativ-
istic ~and by the two corresponding values ofv0,2). Since in
the inhomogeneous case the initial beam is formed of e
trons with different velocities decreasing outwards, we e
pect that in the relativistic regime there exist two distin
resonant points on each side of the beam. The external r
nance involves slower and ‘‘lighter’’ electrons and the inte
nal one fully relativistic ‘‘heavier’’ electrons. Thus, when th
electron beams are relativistic (v0,1>0.95), the resulting
structure is characterized by two layers on each side of
beam, each layer being similar to the one observed in
presence of nonrelativistic beams (v0,150.5).

In order to investigate the role of the resonance on
growth rate and on the resulting currents and magnetic fi
structure in detail, we performed a number of 1D runs in
interval 230<y<30, taking s57.07, R(y)5sin(k0yy1f)
in Eq. ~21!, while varying the most relevant physical param
eters, 0.5<v0<0.995, 0.01<k0y<1, and 0<f<p. As
described in@7#, the ‘‘resonant’’ CF mode is rapidly excited
with a growth rate independent of the initial wave numb
k0y and of the initial phasef of the perturbation. Therefore
after the initial~rapid! transient, all the modes with the sam
beam velocities grow with the same growth rate.

In Fig. 3 we show the results of four nonsymmetric run
n0,1/n0,250.2, before nonlinear effects take place modifyi
the structure of the resonant mode. In the first three fram
(A)-(B)-(C), we plot the currentj x vs y in the nonrelativis-
tic case,v0,150.5, for three different values of the phasef.
In the last frame (D), we plot the same quantity in the rela
tivistic case,v0,150.95. In the linear nonrelativistic regim
the current structure depends on the initial phase of the
turbation, while it is completely independent in the relativ
tic regime~this latter conclusion is supported by a number
runs not presented here!. Figure 3 shows that in the nonre
ativistic case the current~as well as the magnetic and electr
fields! is characterized by a single layer central structu
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located between the two singular points, and that this la
doubles in the relativistic case. This doubling of the curr
structure is in agreement with the previous analytical stu
of the resonance condition, which shows that the numbe
the singular points doubles in the relativistic limit. We noti
that this doubling of the layer structure is a general resul
the relativistic regime, as confirmed by a large number
simulations, not presented here, for a wide range of par
eters, 0.95<v0,1<0.9995, 0.5<n0,1/n0,2<0.1, and 0.1
<k0y<1.

2. Two-dimensional evolution

We integrate the system of equations~1!–~4! in the inter-
vals 0<x<2p, 230<y<30 with s57.07 and R(x,y)
5sin(0.3y)(ksin(kx1fk), k50, . . . ,8, in Eq.~21!.

In this case where bothkx andky in the initial perturba-
tion are different from zero, the CF instability is coupled
the BP instability; we denote the coupled mode as the EM
instability. As discussed in Sec. III A, the BP instability am
plifies the longitudinal electric fieldEx in the beam direction
for a limited range of long wavelength modes. In the relat
istic regime, the smallest unstable wavelength becomes
creasingly large, as shown by Eq.~20!. The characteristic
dimensionless length scale of this instability isl ts.vG3/2.
No magnetic field is produced in this case.

The competition between the CF instability, which ten
to separate the currents in the transversey direction, and the
BP instability, which tends to modulate the currents in t
longitudinal x directions, is shown in Fig. 4 where we plo
the isocontours of the magnetic field and of the longitudi
electric field in two nonsymmetric cases: the first is nonr
ativistic and the second is relativistic. This figure shows
linear stage of the EMBP instability during the exponent
growth after the resonant mechanism has taken place. A
the 1D case, the resonance rapidly pinches the initial per
bation to typical wave vectors comparable to those of
most unstable 2D homogeneous mode, both in the nonr
tivistic kx.1.7, ky5p and in the relativistickx.0.7, ky
5p, cases~curvesB andE in Fig. 2!. As a result, the growth

FIG. 3. The total current in the stream direction in the line
phase for three non-relativistic runs,v0,150.5 @(A)-(B)-(C)# with
different initial phases,f50,p/2,p/4, respectively, and a relativis
tic run, v0,150.95 @(D)#. All these runs are nonsymmetric
n0,1/n0,250.2.
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rate also becomes of the order of the growth rate of the m
unstable 2D homogeneous mode.

In the nonrelativistic regime the EMBP instability is sp
tially characterized by a transversal dipolar magnetic fi
with an arrowlike structure which becomes almost aligned
the stream direction in the relativistic regime, as expected
the linear homogeneous analysis, Sec. III A. This mode
comes completely aligned in the stream direction in the p
symmetric relativistic case~not shown here!.

In the last two frames of Fig. 4 we see the characteris
two-layer dipolar magnetic structure already observed in
1D pure CF case as consistent with the fact that the
instability dominates the 2D relativistic regime.

IV. NONLINEAR EVOLUTION

In Sec. III B we have discussed the linear evolution of t
EMBP instability in the inhomogeneous case. We have s
that the wavelength of the initial perturbation is rapidly r
duced by the resonant mechanism to typical lengths of
order of the electron skin depth, regardless of its init
value. Then, the perturbation amplitude is amplified with
growth rate of the order of the maximum growth rate in
homogeneous plasma as obtained by solving Eq.~7!. In this
linear phase, the structure of the current and of the magn
field depends, in the nonrelativistic case, on the initial co
ditions and, in particular, on the initial phase. However,
soon as nonlinear interactions become important, the for
tion in a finite time of singularities related to wave breakin
as mentioned in the Introduction, strongly modifies the sh
of the perturbations~see also@10,11#!.

This is illustrated in the 1D cases in Fig. 5 where we sh
the behavior in the nonlinear phase of the same quant
shown in Fig. 3 in the linear phase. The comparison of th
two figures shows that in all nonrelativistic cases the res
ing current system is now characterized by the presence
central ‘‘fast’’ current with two ‘‘slow’’ return currents on
both sides. Therefore, the system becomes practically in
pendent of the initial conditions, even if the spatial locati

r

FIG. 4. The isocontours of the magnetic fieldBz and of the
longitudinal electric fieldEx during the linear phase in the nonre
ativistic case, v0,150.5, n0,150.167, n0,2150.833, first two
frames, and in the relativistic case,v0,150.95, n0,150.167, n0,21

50.833, last two frames.
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of the fast central beam depends slightly on the initial ph
f of the perturbation. In the relativistic nonlinear case, as
the linear case, the resulting current system does not de
on the initial conditions~this is seen in a number of simula
tions not presented here!. Notice that the presence of a two
layer structure in the relativistic limit still holds in the non
linear regime.

The 2D nonlinear phase is illustrated by Figs. 6 and
which show the magnetic field, the transverse electric fi
~perpendicular to the beam direction!, and the densities in the
nonlinear regime for a nonrelativistic and for a relativis
simulation, respectively. The main effect observed in
nonlinear regime is a transverse wave break which pinc
all the physical quantities in they direction. Since the plasm
is assumed to be collisionless, this effect leads to the for
tion of smaller and smaller scalesky@ky

res, well below the
electron skin depth~see also@11#! This nonlinear pinching is
a pure transverse effect, so that the typical structures rem

FIG. 5. The total current in the stream direction in the nonlin
phase for three nonrelativistic runs,v0,150.5@(A)-(B)-(C)# with
different initial phases,f50,p/2,p/4, respectively, and a relativis
tic run, v0,150.95@(D)#, f50. All these runs are nonsymmetric
n0,1/n0,250.2.

FIG. 6. The isocontours of the magnetic fieldBz , of the electric
field Ey transversal to the beams, and of the densitiesn1 andn2 in
a nonsymmetric, n0,150.167, n0,250.833, nonrelativistic, v0,1

50.5, case.
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essentially those generated by the linear resonant me
nism, even if much thinner~see Fig. 4 for a comparison!.
Another effect, that is also observed in the 1D case, is
generation of a strong electrostatic field. In the nonrelativ
tic case this field is comparable to the magnetic term in
Lorentz force and in the relativistic regime it even dom
nates. We recall that the electrostatic field is negligible d
ing the linear regime. Again, we notice that in the nonline
regime, the nonrelativistic EMBP instability is still chara
terized by a modulated structure in the beam direction
becomes more and more homogeneous in the relativistic
with a double magnetic dipole structure.

The large gradients observed in Figs. 6 and 7 in thy
direction will change, on longer time scales, the plasma
namics, due to the setup of kinetic effects.

V. CONCLUSIONS

Magnetic field generation is a fundamental process
plasma physics and astrophysics since it provides a very
ficient mechanism for transferring and storing free kine
energy into magnetic energy which can then be abruptly
leased on fast time scales by some mechanism, as, for
ample, magnetic reconnection. In this process the pla
dynamics, its transport properties, etc., can be comple
modified and new strong nonlinear magnetic interactio
come into play.

In recent years, self-induced, ultrastrong quasistatic m
netic fields have been observed in numerical experime
involving the interaction of large amplitude, ‘‘relativisti
cally’’ strong, laser pulses with plasmas. These fields pla
fundamental role in the dynamics of the wake fields gen
ated by the laser pulse as shown, e.g., in an underd
plasma in@17#. Instabilities due to beams of counterstrea
ing electrons were invoked@14,15# in order to explain the
buildup of magnetic energy, since fast electron streams
be easily generated in relativistic regimes by the breaking
plasma waves. In this paper, using a relativistic two-flu
approach, we have studied the linear and nonlinear evolu

r

FIG. 7. The isocontours of the magnetic fieldBz , of the electric
field Ey transversal to the beams, and of the densitiesn1 andn2 in
a nonsymmetric,n0,150.167, n0,250.833, relativistic,v0,150.95,
case.
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of the EMBP instability in conditions that are directly re
evant for the laser plasma interactions. In particular we h
assumed that the initial electron streams are concentrated
narrow region corresponding to the finite transverse dim
sion of the laser pulse.

In the nonrelativistic linear case, the resulting curre
structure depends on the initial conditions and in particu
on the phase of the perturbation. This is no longer true in
nonlinear regime where wave breaking generates the s
structure regardless of the initial conditions. This structure
characterized by a central ‘‘fast’’ current and two ‘‘slow
return currents with an arrowlike shape in the stream dir
tion. On the other hand, in the relativistic case the curre
are independent of the initial conditions even during the
ear phase and are practically homogeneous in the stream
rection. A double current layer is formed already in the line
stage. A quasistatic dipolar magnetic field is observed b
in the nonrelativistic and relativistic regimes. In the relat
istic regime a doubling of the dipole magnetic field structu
is observed. These results are in very good agreement
the results obtained in PIC simulations@19,20# and support
the conclusion that the current structure and the magn
field observed in the wake of a ’’relativistically strong
laser-pulse impinging on a underdense plasma are gene
by the development of the EMBP-type instability. We m
speculate that in the full 3D case secondary instabilities
by the magnetic shear generated by the instability will
velop and lead to a full 3D dynamics and/or to collisionle
magnetic reconnection events. However, this regime will
er
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characterized by the presence of a strong nonlinear inte
tion and by the presence of very small spatial scales, wh
kinetic effects cannot be neglected.

The work presented here is motivated by the attemp
identify characteristic magnetic and current structures p
duced by the EMBP instability which can be then used
order to recognize typical signatures of this physical proc
in laser-plasma experiments. This comparison has pro
successful as shown in@19,20#. However, it should be ob-
served that the occurrence of singularities leading to v
small spatial scales cannot be fully described with the fl
approximation adopted in this paper. A kinetic descripti
that properly describes this phase is for the moment availa
only for the case of a homogeneous plasma@10#. An exten-
sion of the present work to the full nonlinear kinetic regim
after the formation of the singularities is in progress by n
merical integration of the Vlasov-Maxwell equations.
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