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Nonlinear filamentation instability driven by an inhomogeneous current in a collisionless plasma
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Beams of fast electrons in a cold electron background play a key role in the generation of a magnetic field
in the wake of an ultrashort ultraintense laser pulse propagating in an underdense plasma. Here we study the
linear and nonlinear evolution of the electromagnetic beam-plasma instability in a collisionless inhomogeneous
plasma by using a set of two-fluid electron equations in the nonrelativistic and relativistic regimes. We show
the characteristic spatial structures in the current and magnetic field distributions that are generated by this
instability. These structures can be used as a signature of the physical mechanism at play in the analysis of the
numerical and experimental results of the laser-plasma intera¢8d063-651X98)05412-9

PACS numbses): 52.35.Qz, 52.35.Mw, 52.65y, 52.40.Nk

I. INTRODUCTION netic fields play a key role in the nonlinear dynamics of the
plasma, and have important consequences regarding the en-
Large-amplitude strongly nonlinear plasma waves mayergy transport and the pulse propagation and focalization. In
provide a very efficient mechanism for generating stronghese simulation$15,17,19,20 strong electron beams are
electron momentum anisotropies in plasmas as they produaenerated at the breaking of the Langmuir wake plasma
beams of fast electrons. The currents associated with theseaves produced by the laser pulse. These beams are then
fast electrons should give rise to very large magnetic fieldshought to drive the instability responsible for the observed
which, however, are not observed at such high intensitieguasistatic magnetic fields. The spatial structure of the fields
either in laboratory experiments or in numerical simulations.observed in the simulations is essentially dipolar and the
This is due to the rapid reaction of the cold electron compomagnetic field vanishes along the symmetry axis of the laser
nent present in the plasma which generates oppositely dpulse propagation. In two-dimensior(@D) simulations of a
rected currents consisting of slow dense electron beams iimearly polarized laser pulse with its electric field directed
order to maintain quasineutrality. The total net current in thegperpendicular to the simulation plane, the quasistatic mag-
plasma is then zero, but the free kinetic energy stored in theetic field is also perpendicular to this plane. In these simu-
electron beams can now be partly converted into electromadations the spatial structure of the magnetic field, e.g., the
netic energy by means of beam-plasma instabilities. For pemumber of different polarity domains, depends on the plasma
turbations perpendicular to the initial beam direction the rel-and pulse parameters and evolves behind the Q.
evant instability is the current filamentatig@F) instability In the present paper we investigate the evolution of the
[1-12]. This instability is similar to the Weibel instability electromagnetic beam-plasn@&MBP) instability, by which
[13] which occurs in a collisionless plasma with an aniso-we denote the mode resulting from the coupling between the
tropic temperature. The CF instability is driven by the repul-CF and BP instabilities. In the limit of two symmetric beams
sion of the two oppositely directed currents which tends tahe BP instability is also known as the two-stream instability;
reinforce any initial transverse perturbation. As a result, asee, e.g[21] and[22]. We use a two-fluid electron approach
magnetic field is generated and grows exponentially in timewith immobile ions. We consider a 2D inhomogeneous con-
in the direction perpendicular to the wave vector of the perfiguration with two initial counterstreaming electron beams
turbation and to that of the electron beams. This instability idocalized in a finite width region with a width comparable to
electromagnetic with a purely imaginary frequency. In rela-the electron skin depth. Such an initial configuration is rel-
tivistic conditions, when the speed of the fast electron beanevant for the interpretation of the results of the PIC simula-
approaches the velocity of light, the CF instability is very tions. Our aim is to investigate the transition between differ-
efficient with a growth rate comparable to the electron-ent physical regimes and to identify the typical magnetic and
plasma frequency. lons can thus be assumed to be immobitirrent structures that can be used as characteristic signatures
and to provide a uniform neutralizing background. In theof the development of the EMBP instability and as markers
case of strictly longitudinal perturbations, the excited modeof the different regimes, in the comparison with the numeri-
is a purely electrostatic beam-plasitizP) instability with a  cal simulations of the laser-plasma interaction. Special atten-

real and imaginary part of the frequency. tion is given to the case of strongly asymmetric beams,
Particle in cell(PIC) numerical simulation§14—17 and,  which is the most relevant in this comparison.
more recently, Vlasov-Maxwell simulationd 8] of laser- The formation of spatial structures due to the develop-

plasma interactions have shown that quasistatic magnetiment of the CF instability, which we recall is analogous to
fields are generated in the wake of laser pulses. These matiie Weibel mode, was first reported for an inhomogeneous
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plasma in[7], where it was shown both analytically and nu- an, _

merically that in a plasma with inhomogeneous beams the 7=V'Ja, 1)
instability develops, already in its linear phase, a spatial

“resonant’-type singularity. This singularity occurs at the 9Pa

spatial location where the instability growth rate in the inho- r +v,-Vp,=—(E+v,XB), 2
mogeneous configuration matches the growth rate, in the

limit of large wave numbers, evaluated with the local values JE

of the beam velocities. The largest magnetic field was found VXB=— + 2 ja, V-B=0, ®)
to be generated around this singularity and to have opposite gt 3

polarities. In the case of transverse perturbations, a current B

layer was formed very rapidly at the resonance position, al- _ _

most independent of the characteristic scale of the initial per- VXE=-7r V-E=1- ; Na “)
turbation. On the other hand in a homogeneous plasma it was

shown in[10,11] that, within the two-fluid description, trans- where

verse perturbations develop singularities in the electron beam

densities and in the magnetic field in a finite time. These Pa
singularities correspond to compressional and/or rarefaction Va= " 5 1
wave breaking and are due to a nonlinear energy cascade to (1+pa)

sma[lgr gnd smaller spales that, in a collisionless plasma 'Notice that the normalized electron skin depth is equal to 1.
relativistic regime, is interrupted at the electron skin depth At the initial time the two electron beams are directed in

length scalg by the kinetic effects considered1f]. Again . opposite directions along theaxis and are localized in the
the magnetic field was found to be largest around these SiNentral region around thg=0 point

gularities and to have a dipolar structure.
This paper is organized as follows. In the next section we Vo1=00.COSH 2(y/1)€,, Voo=—VoiNo1/Noass (5)
introduce the governing equations and the physical model ' ' ’ o '
used in this paper. In Sec. Il we recall the main resultswheren,,+n,,=1 and the initial total net current is zero,
concerning the linear evolution of two initial homogeneousn, ;v ,+ny v, ,=0. For the sake of simplicity, in the fol-
and nonhomogeneous counterstreaming electron beams. |wing we assume that the initial densities are homogeneous:
particular we show that in this phase the perturbations tengle No1(t=0),ny t=0) do not depend ox andy. In Eq.
naturally to align themselves in the direction of the fast elecs) the'subscript zero refers to zero-ordequilibrium) quan-
tron beam. This effect is strongest for relativistic beams. Inities and| is the typical width of the beams. This equation
Sec. IV we discuss the nonlinear inhomogeneous evolutiofodels the two initially interpenetrating currents discussed
and show that the spatial structures that are formed are efy the Introduction: the current of the fast electrons generated
sentially independent of the initial conditions on the pertur-py the breaking of plasma wake waves and the denser return
bations. Conclusions follow in Sec. V. current carried by the cold plasma.
We limit our analysis to a magnetic field with a single
component parallel to theaxis,B=(B,), while the electric
Il. THE TWO-FLUID ELECTRON EQUATIONS field E=(E4,Ey) and the electron moment@,=(Pga

In the linear phase and during the initial stage of the non—+ Pax:Pay) are in thex-y plane.

linear phase, before the development of the resonant-type
singularity and/or wave breaking during which the strong

nonlinear interactions generate very small spatial scales, ki- First we recall some analytical results on the evolution of
netic effects are negligible in the case of cold beams. Thussma|| disturbances before nonlinear interactions due to the

before such scales are generated, we may study the evolutigiowth of the unstable modes become important. Relativistic
of two counterstreaming electron beams in the framework okffects are explicitly taken into account.

the two-fluid electron equations where the ions are assumed
to be at rest and to provide a uniform neutralizing back-
ground. This is consistent with the characteristic time of the
development of the EMBP instability which, for velocities  In the “ideal” case of two homogeneous electron beams,
comparable to the speed of the light, is of the order of thecorresponding td —o in Eq. (5), and of periodic distur-
inverse of the electron-plasma frequency. We recall that th®ances of the form

role of kinetic effects in saturating the development of the (ko Ky — o)

CF instability and the formation of small scales was recently Oy ) ~ eI mer, ®)
analyzed in[10Q] in the case of two homogeneous counter-

streaming electron beams by numerically integrating th%e derived analytically7] (see also[22)) by solving the

Vlasov-Maxwell equations. ; ’ : = )
We normalize all quantities by using a characteristic den_algebralc system obtained by linearizing EQ5—(4):

sity n, the speed of light, and the electron-plasma fre- (1-Q, K21+, )~ 0?(1- Q1 %) —2wk057]

quency w,= (4mne?/m)¥2 Then, the dimensionless equa- - - -
tions read +K(1-0;2)(1+0,2)+054=0, @

ja=—Nuva, a=1.2.

lll. LINEAR REGIME

A. Homogeneous beams

the dispersion relation of the counterstreaming instability can
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FIG. 1. The growth rate of the CF instabilitik,=0, vsvg, and, top left corner, v&, . The solid lines refer to the symmetric case
Np1=Ng=0.5 dot-dashed lines to the nonsymmetric cagg=0.167 andn, ,=0.833. Curve<C,D,G,H are multiplied by 3, 11, 5, 30,
respectively. The parameters of all the curves are given in Table I.

where field E, with a growth rate obtained by solving the equation
1—92‘2=0. No magnetic field is produced in this case. In
9‘2—2 Noa Q_Z_E Noa the opposite limitk,= 0, the dispersion relatiof¥) (see also
1 = Faﬂg, 2 = Fgﬂg [6]) reduces to
2 -~ - - -~ AnLA
;2= Noavoa 2.y Noaloa ® 08— (Q+05+k) 0~ [K5(Q5—0F) — Q0] w?
P4 r,02’ ‘A r,02’ RN
+KkZ(0205-0%=0, €)

andQ,=w—Kwoa, I'a=(1-v§,) Y2 Notice that Eq(7)
is fully general since, as remarked in REf], in a nonmag- T P > i )
netized, homogeneous plasma there are only two preferentiginere Q= w°Q; < with ;" defined by Eq.(8) with k,
directions, that of the electron beams and that of the wave 0. Equation(9) contains two oscillatory solutions and one
vector of the perturbation. purely growing mode which corresponds to the CF instabil-
Equation(7) describes electromagnetic or purely electro-

static modes depending on the angle between the perturba- TABLE I. Physical parameters of the results shown in Fig. 1.
tion wave vector and the stream direction, i.e., depending on
the values ok, andk,. We notice that in Eq(7) the solu- ~ Curve No,1 No,2 Ky
tion is invariant with respect to the sign k§ and to the sign

of the pair @, Kky), wherew= w,+iy is the mode complex 8'2 8'2 31'104
frequency, but in general not with respect to the signs of 0'5 0'5 0'1
and of k, independently. Sincek(,k,,o,,y) and (—ky, b 0'5 0'5 0'01
—ky,— w,,vy) label the same mode, Ey) describes modes : : :
with a dispersion relation that depends on their direction of 0.167 0.833 .14
propagation(on the sign of their phase velocjtalong thex 0.167 0.833 1.0
axis, while their frequency and growth rate are independen@ 0.167 0.833 0.1
0.167 0.833 0.01

of the sign ofw/k, . In addition growing and damped modes H
appear in pairs with the same value|gf. Whenk,=0 and, Curve Noa No2 Vo
for arbitrary k,, in the special symmetric case wherg;

. s a 0.5 0.5 0.95

= —vo,2, EQ.(7) is quadratic inw and leads to purely grow- 05 0.5 05
ing instabilities or to purely oscillatory modes. c 05 05 0.995
1. One-dimensional dispersion relation d 0.167 0.833 0.95

e 0.167 0.833 0.5
When the wave vector is parallel to the electron beams; 0.167 0.833 0.995

k,=0, the BP instability amplifies the longitudinal electric
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ity and generates a magnetic fieB} perpendicular to the In the nonrelativistic regimé& =1, Eq.(10) can be reduced,
plane §,y) of the electron streams and of the wave vector ofin the small and large wave number limits, to the well-known

the perturbation. expressions
In Fig. 1 we plot the growth rater of the CF instability,
k=0, vs the beam velocity, ; and, in the top left corner, vs ys~lvolky,  ky<1, (13)
the transversal wave numbgy. In both figures the solid
lines refer to the symmetric casg ;=ng,=0.5, while dot- n~lvol,  ky>1, (12)

dashed lines refer to the nonsymmetric cage=0.167 and ) . N
no,=0.833. The parameters are given in Table I. For reasond agreement with the main features observed in Fig. 1. By
of presentation, curve€,D,G,H, which correspond to €quiring ys~7, we obtain the value ok, beyond which
small values ok, and thus to small values of, are multi-  the growth rate saturates, =Ke~1, or in dimensional
plied by the numerical factors 3,11,5,30, respectively. units, Kgii~1/d. In the relativistic limit|vo|~1, Eq. (10)

We note that in both the symmetric and nonsymmetriccan be reduced, in the small, intermediate, and large wave
cases the growth rates increases with the beam velogity = number limit, to
reaches a maximum, and then decreases in the relativistic

regime due to the increase of the effective electron mass. In ys~lvollky, k,<1T5? (13
the symmetric caséequal beam densities and opposite ve-

locities) the position of the maximum moves towards larger yi~(lvolk, /TYHY2 1>k, >11%2, (14)
values of the beam velocity as the wave number decreases,

curvesA-D. On the other hand, in the nonsymmetric case n~lvollT Y2, ky>1, (15

the position of the maximum and the qualitative behavior of . ) i _
the growth rate depend only weakly on the wave numberin agreement with the results of Fig. 1. An intermediate re-
curvesE-H. In Sec. Il B we will see that the nonmonotonic gion appears between the small wave number and the satu-
behavior of the growth rate has important consequences réated, large wave number regions, characterized by a sublin-
garding the development of the CF instability in the inhomo-€ar slope. This intermediate interval is clearly shown by
geneous case. curve c where a linear increase of the growth rate with

As it is well known, the growth rate of the CF instability only occurs for very small wave numbers. The growth rate
(curvesa-b-c-d-e-f) increases linearly with the wave num- dependence on the Lorentz factochanges fromy, to v, in
ber k, in the small wave number cagtong wavelength agreement with Fig. 1, curves—c, where we see thay
ky<1, and saturates in the large wave number litsinall  increases monotonically with ; in the small wave number
wavelength, k,> 1. Of importance for the following analysis |imit, while in the opposite case the maximum growth rate
is the fact that in the nonsymmetric case, curdes-f, the  (curvea) does not correspond to the maximum beam veloc-
critical wave number at which the growth rate of the CFity (curvec). The transition from thevs regime to they; and
instability saturatesk;;, remains unchanged going from the y, regime is also shown by curvels-D where we see that

nondrgalativistidc to I;he;elati\;ir?tic regim?.. On Itht(_a _oE[.her hand, e increasing and decreasing regions of the growth rate vs
as discussed in Ref7], in the symmetric relativistic case, vo.1 Strongly depend on the wave number.

curvesa-b-c, the instability growth rate saturates at lower By requiring y;~ v, we obtain, in agreement with Fig. 1,

and lower values oky, an effect due to the relativistic in- at in the relativistic regime the value b{, beyond which

crease of the effective electron skin depth. The saturation ottﬂe growth rate saturates becomes lower and lovgy
he growth r. with r he wave numberk v
the growth rate with respect to the wave numberkat ~vol "¥2 (we recall thajvo|~1), an effect due to the rela-

=Kery 1S relevant to the development of the instability in the ivistic increase of the effective electron skin depth. The dif-

1D inhomogeneous case where, as mentioned in the Intr erent behavior observed in the nonsymmetric dase Fi
duction, the characteristic spatial scale of the growing mod . y 9-
curvesd,e,f), wherek,; is independent of the beam ve-

i ner resonant mechanism. As di in Ref. ;
s generated by a resonant mechanis s discussed ocity, can be explained as follows. When the initial beams

[7], the characteristic wave numbley=ks of the growing e NonSVIMMeia. «<n S nd the fast one |
resonant mode is fixed by the value at which the growth rat&r€ NONSYMMEtralo ;1 <No2, vor*>vo2, a € fastone s
relativistic, [vg 4 ~1, I';~1 andl';=1">1, we can expand

saturatesk,.s=Kit, regardless of the wave numbleg, of T . : :

the initial perturbation(assumingko,<Kgif). In additio?l\, in ;[he d(_:oefflcollents in Eq(9) in powers ofno,, and obtain, to
2D, the value of the wave number of the resonant modecadnd Order,
Kres=Keiit, determines not only the value of the growth rate, -,
but also the nature of the mode since whether the instability 1
is dominated by the CF or by the BP instability depends on

the angle between the resulting wave number and the eleq-hen, to leading order, the growth rate is given by
tron beams, i.e., the ratio betwekpandk, .

If the initial beams are symmetric, th§t§= 0, and one of
the two oscillatory solutions of Eq9) reduces to purely
electrostatic Langmuir waves decoupled from the two other

branches. In this limit the CF growth rate is given by from which we obtain the following asymptotic behaviors of
1 \/ T k2,2 1 112 the homogeneous CF instability for strongly nonsymmetric
=— —| = +k2
! ﬁ[ r ( ) “

%Q§~ 1, Q‘3‘~ ng,lvg,la sztz Nowo(vo1/T— Uc(),z)-)
16

B kino,lvg,l
(1+Kk)r

w2~

(17)

initial beams:

I"3

ys~(Nowd/T)¥%,, ky<1, (18
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7|~(“0,1US1/F)1/2a ky>1, (19 of the beam velocityq,. Thus we can expect that in the
’ relativistic regime the CF instability dominates with respect
wherev ~1. to the BP; i.e., the typica] magnetic stru.cturt_es becqme more
By reduiring s~ 1, we find that the value dk, beyond and more homoge_ne_:ous in the stream q”ectlon: This is easily
which the growth rate saturatee,= ke~ 1, is independent gnder;'good by noticing that the dispersion relation of the_ BP
of the beam initial velocity, in agreement with the resultNSt@bility shows that only the long wavelength modes, i.e.,

shown in Fig. 1. modes with smalk, , are unstable. In the homogeneous sym-
These different scalings of the saturation of the CFMELNC casenog1=no 2, the BP instability condition gives
growth rate with respect to the wave numbgrderived in ko< 32 (20)

this section will determine how the characteristic width of

the current channels and of the magnetic field generated byhich becomes more and more stringent as relativistic con-
the instability depend on the properties of the accelerateditions are approached. A similar argument holds in the non-

electron beam and of the return current. symmetric case. However, Fig. 2 shows that the relativistic
stabilization of the BP instability is more effective in the
2. Two-dimensional dispersion relation symmetric case, curvé, than in the nonsymmetric case,

In the general case when bdthandk, are different from curves E-G. By comparing curvesE,F,G with curves
zero, the CF instability and the BP instability are part of a
single branch which we denote as the EMBP instability.

In Fig. 2 we plot the growth rate of the EMBP instability Curve

TABLE Il. Physical parameters of the results shown in Fig. 2.

vs k, for different values ok, . The parameters are given in foa Moz Yol Ky
Table Il. CurvesA andE—L are relativistic and curveB-D A 0.5 0.5 0.95 1.0
nonrelativistic. CurveA corresponds to the symmetric case; B 0.167 0.833 0.5 3.14
all others are nonsymmetric. Finally, curvBsE-H are ob- ¢ 0.167 0.833 0.5 1.0
tained for a transverse wave veclgrlarger than in the other p 0.167 0.833 05 0.1
cases. In the top right corner we plot the frequency of thes 0.167 0.833 0.95 3.14
instability, curvesb-e-f-g-h, with the same parameters of g 0.167 0.833 0.95 1.0
the corresponding curve in capital letters. G 0.167 0.833 0.95 01
In general, except for the symmetria;=ng ) relativ- 0.167 0.833 0.995 314
istic case shown by curvA, the maximum growth rate is 0.167 0.833 0.995 1.0
reached when the wave vector forms an angle with the di—L 0.167 0.833 0.995 01
rection of the beams different from 0 and2, i.e., fork, Curve n n v K
#0 andk,#0. We observe that the value kf of the most o1 92 o1 Y
unstable mode is practically independentkgffor a given b 0.167 0.833 0.5 3.14
value of the beam velocity,; and that the most unstable e 0.167 0.833 0.95 3.14
mode, curve8-E-H, occurs at values &, smaller thark, , f 0.167 0.833 0.95 1.0
i.e., atk,<k,. Furthermore, the angle between the waveg 0.167 0.833 0.95 0.1
vector of the most unstable mode and the direction of the, 0.167 0.833 0.995 3.14

electron beams decreases significantly for increasing values
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H,I,L, we see that, regardless of the transversal wave nunihese points the coefficient of the second-order derivative

berk, , the growth rate in the relativistic limit decreases for yanishes. In a homogeneous p|asnfiv0,1/z(y),72)=0
increasing velocitiegat least for velocities greater than a gives the instability growth rate in the limi,—. We no-
ity v conclose e i CE ety domnes 2 1L 1 he nomelasic symmetr (72
. ) . e A, ) reduces toy“— , in agreement witl{7] [here
with respect to the BP instability in the relativistic regime, -0 ——vyj vo(¥) g 7l vo(y)
=V01= ~ Vo2l

which implies that the typical magnetic structures become In the case of an even equilibrium such as the one given

more and more homogeneous in the stream direction. ; R :
by Eqg. (5), two symmetric resonant pointsy are present in

the nonrelativistic case. As a consequence, regardless of the
initial wavelength, the perturbation is rapidly concentrated in

In the laser-plasma simulations the electron beams genethe inhomogeneous region between the two singularities. In
ated by the laser pulse are concentrated in a central region efder to find the position of the singularities in the relativistic
finite width which is represented in our model by the param-55¢ je., the solutions G 1o(y),72)=0, we consider,
eterl in Eq. (5). Here we limit our investigation to electron ., example, the case of two nonsymmetric, relativistic
beams with typical width somewhat larger than the p|asm%eams,no =1/6, ny,=5/6, andvy,=0.95, and use as an
electron skin depth and take-4. This choice is consistent ansatz a value of the growth rate close to that obtained from

with thfe ‘r’]alLl‘eS of tlhe laser pulse width usefsinltr;ezsimula’[he corresponding 1D homogeneous case for large values of
tions of the laser plasma interacti¢see, e.g.[15-17,20). ky. Then, f(vo1/Ay), ¥ =0 shows the presence of four

In the numerical integration of the fluid equatidis—(4), ) . : .
we have used periodic boundary conditions in the directio m_gular points, symmetrically Iocated_ W'th. respe_ctyteo.
of the electron streams, along tkexis, and free-slip bound- his doubling of the resonance condition is a direct conse-
’ ' quence of the nonmonotonicity of the growth rate with re-

ary conditionsy/ dy=0, in the transverse direction, along the o 2 . .
y axis. The numerical mesh is non-uniform in the transverS(-i-SpeCt to the beam vglomty in the relativistic regime discussed
in Sec. lll Al. Looking at Fig. 1(curvesA—H), it is clear

direction with a refined grid in the central region. The typ|calthat the conditiorrf(voyl,z,yz)zo at fixed 12 is in general

time step and grid space are 0.80dt<0.01, dx=0.025, - . :
and dyzp0.01 (gy is galculated in the inhomogeneous re- satisfied by two different values of, ;, one of them relativ-
é'stic (and by the two corresponding valueswef,). Since in

gion). A detailed discussion of the numerical code can b he inh the initial b i f d of el
found in[7] (see alsqd24] for details on the numerical algo- € Inhomogeneous case the initial beam IS formed of elec-
trons with different velocities decreasing outwards, we ex-

B. Nonhomogeneous beams

rithm). . S ) . o
At)the initial time we introduce a “small” magnetic per- pect that in the relativistic regime there exist two distinct
turbation resonant points on each side of the beam. The external reso-

nance involves slower and “lighter” electrons and the inter-
B,= eR(x,y)exd —y?/(25)], (22) nal one fully relativistic “heavier” electrons. Thus, when the
electron beams are relativistio{;=0.95), the resulting
where € is the amplitude of the initial perturbation and structure is characterized by two layers on each side of the
R(x,y)exd —y?/(20?)] represents its spatial distribution with beam, each layer being similar to the one observed in the

a typical transversal widthr. presence of nonrelativistic beamsy(;=0.5).
In order to investigate the role of the resonance on the
1. One-dimensional evolution growth rate and on the resulting currents and magnetic field

structure in detail, we performed a humber of 1D runs in the
interval —30<y=30, taking o=7.07, R(y) =sinKoyy+ ¢)
in EqQ. (21), while varying the most relevant physical param-
eters, 0.5v,<0.995, 0.0kxkgp,<1, and O<s¢=m. As
described if 7], the “resonant” CF mode is rapidly excited
with a growth rate independent of the initial wave number
9 IE, koy and of the initial phase of the perturbation. Therefore,
Y fvouaAY), 72)(9_ —0Wo 1Y), Y)E,=0, (22 after the initial(rapid) transient, all the modes with the same
y y beam velocities grow with the same growth rate.
In Fig. 3 we show the results of four nonsymmetric runs,
Ng 1/Ng 2=0.2, before nonlinear effects take place modifying
~ 4 the structure of the resonant mode. In the first three frames
Q3 Y (A)-(B)-(C), we plot the curreni, vsy in the nonrelativis-
(y?+ ()i) 4 tic casepq,=0.5, for three different values of the phage
In the last frame D), we plot the same quantity in the rela-
_ ~o tivistic case,v,=0.95. In the linear nonrelativistic regime
9(vo12,7") = Y(¥*+0Q2), (23 the current structure depends on the initial phase of the per-
- turbation, while it is completely independent in the relativis-
and the coefficients); are defined below Eq(9). A local tic regime(this latter conclusion is supported by a number of
Frobenius analysi§23] analogous to the one performed in runs not presented hereFigure 3 shows that in the nonrel-
[7] for the nonrelativistic case shows that the solution of Eqativistic case the currerias well as the magnetic and electric
(22) is singular at the pointg Wheref(vo,l,z(y),yz)zo. At  field9 is characterized by a single layer central structure,

Let us first consider the pure 1D CF casg=0. By ex-
pressing all quantities in the forf(y,t)=f(y)e”, the lin-
earized system of equationd)—(4) can be cast into a
second-order differential equation for the inductive electric
field E,:

where

f(vo12:77) = ¥*+
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FIG. 3. The total current in the stream direction in the linear
phase for three non-relativistic rung ;=0.5 [(A)-(B)-(C)] with

different initial phasesg=0,7/2,7/4, respectively, and a relativis- FIG. 4. The isocontours of the magnetic figlj and of the
tic run, vy,=0.95[(D)]. All these runs are nonsymmetric, longitudinal electric fieldE, during the linear phase in the nonrel-
Ng1/Ng,=0.2. ativistic case, vg;,=0.5, ng;=0.167, Ny »,=0.833, first two

frames, and in the relativistic casey;=0.95, ng;=0.167, ng 2

. . . =0.833, last two frames.
located between the two singular points, and that this layer

doubles in the relativistic case. This doubling of the currentate also becomes of the order of the growth rate of the most
structure is in agreement with the previous analytical studynstable 2D homogeneous mode.
of the resonance condition, which shows that the number of In the nonrelativistic regime the EMBP instability is spa-
the singular points doubles in the relativistic limit. We noticetially characterized by a transversal dipolar magnetic field
that this doubling of the layer structure is a general result inwith an arrowlike structure which becomes almost aligned in
the relativistic regime, as confirmed by a large number otthe stream direction in the relativistic regime, as expected by
simulations, not presented here, for a wide range of paranthe linear homogeneous analysis, Sec. Ill A. This mode be-
eters, 0.95v,,;<0.9995, 0.5<ng,/ny,<0.1, and 0.1 comes completely aligned in the stream direction in the pure
<kgy<1. symmetric relativistic casénot shown herg
In the last two frames of Fig. 4 we see the characteristic
two-layer dipolar magnetic structure already observed in the
1D pure CF case as consistent with the fact that the CF
We integrate the system of equatidii$—(4) in the inter-  instability dominates the 2D relativistic regime.
vals O0=x=27, —30=<y=<30 with 0=7.07 and R(x,y)
=sin(0.3)) = sinkx+¢,), k=0, ...,8, in Eq.(21). IV. NONLINEAR EVOLUTION
In this case where botk, andk, in the initial perturba-
tion are different from zero, the CF instability is coupled to  In Sec. Il B we have discussed the linear evolution of the
the BP instability; we denote the coupled mode as the EMBREMBP instability in the inhomogeneous case. We have seen
instability. As discussed in Sec. Il A, the BP instability am- that the wavelength of the initial perturbation is rapidly re-
plifies the longitudinal electric fiel&, in the beam direction duced by the resonant mechanism to typical lengths of the
for a limited range of long wavelength modes. In the relativ-order of the electron skin depth, regardless of its initial
istic regime, the smallest unstable wavelength becomes insalue. Then, the perturbation amplitude is amplified with a
creasingly large, as shown by E@0). The characteristic growth rate of the order of the maximum growth rate in a
dimensionless length scale of this instability ljg=vT%2 homogeneous plasma as obtained by solving(Bxg.In this
No magnetic field is produced in this case. linear phase, the structure of the current and of the magnetic
The competition between the CF instability, which tendsfield depends, in the nonrelativistic case, on the initial con-
to separate the currents in the transverstirection, and the ditions and, in particular, on the initial phase. However, as
BP instability, which tends to modulate the currents in thesoon as nonlinear interactions become important, the forma-
longitudinal x directions, is shown in Fig. 4 where we plot tion in a finite time of singularities related to wave breaking,
the isocontours of the magnetic field and of the longitudinalas mentioned in the Introduction, strongly modifies the shape
electric field in two nonsymmetric cases: the first is nonrel-of the perturbationgsee alsd10,11]).
ativistic and the second is relativistic. This figure shows the This is illustrated in the 1D cases in Fig. 5 where we show
linear stage of the EMBP instability during the exponentialthe behavior in the nonlinear phase of the same quantities
growth after the resonant mechanism has taken place. As ghown in Fig. 3 in the linear phase. The comparison of these
the 1D case, the resonance rapidly pinches the initial pertutwo figures shows that in all nonrelativistic cases the result-
bation to typical wave vectors comparable to those of thdng current system is now characterized by the presence of a
most unstable 2D homogeneous mode, both in the nonrelaentral “fast” current with two “slow” return currents on
tivistic ky=1.7, ky=m and in the relativistick,=0.7, k, both sides. Therefore, the system becomes practically inde-
=1, casegcurvesB andE in Fig. 2). As a result, the growth pendent of the initial conditions, even if the spatial location

2. Two-dimensional evolution
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FIG. 5. The total current in the stream direction in the nonlinear
phase for three nonrelativistic runsg ;= 0.5 (A)-(B)-(C)] with FIG. 7. The isocontours of the magnetic fiéd, of the electric
different initial phases$=0,m/2,w/4, respectively, and a relativis- field E, transversal to the beams, and of the densitiandn, in
tic run, vo,,=0.93(D)], #=0. All these runs are nonsymmetric, a nonsymmetricng ;=0.167, ny,=0.833, relativistic,vo,=0.95,
No,1/Ng2=0.2. case.

of the fast central _beam depend; §Iig_ht|y on the initial pha,spessentially those generated by the linear resonant mecha-
¢ of the perturbation. In the relativistic nonlinear case, as in,igm, even if much thinnefsee Fig. 4 for a comparisgn
the linear case, the resulting current system does not depe'l\qfother effect, that is also observed in the 1D case, is the
on the initial conditiongthis is seen in a number of simula-

1 dh ice that th ¢ generation of a strong electrostatic field. In the nonrelativis-
tions not presented hereNotice that the presence of a tWo- i caqe this field is comparable to the magnetic term in the

layer structure in the relativistic limit still holds in the non- Lorentz force and in the relativistic regime it even domi-
Imeahr rezglme. i h i< il d by Fi q nates. We recall that the electrostatic field is negligible dur-
The 2D nonlinear phase is illustrated by Figs. 6 and 7,4 the jinear regime. Again, we notice that in the nonlinear
which Sh_OW the magnetic f|e_ld, the transverse _e_lect_rlc fiel egime, the nonrelativistic EMBP instability is still charac-
(perpendicular to the beam directipand the densities in the oi,04 by 4 modulated structure in the beam direction. It

nonlinear regime for a nonrelativistic and for a relativistic becomes more and more homogeneous in the relativistic case
simulation, respectively. The main effect observed in tthith a double magnetic dipole structure

nonlinear regime is a transverse wave break which pinches 1,4 large gradients observed in Figs. 6 and 7 in the
all the physical quantities in thedirection. Since the plasma direction will change, on longer time scales, the plasma dy-
is assumed to be collisionless, this effect leads to the formaﬁamics, due to the setup of kinetic effects.

tion of smaller and smaller scalég>ky*, well below the

electron skin deptlisee alsg11]) This nonlinear pinching is

a pure transverse effect, so that the typical structures remain V. CONCLUSIONS

Magnetic field generation is a fundamental process in
plasma physics and astrophysics since it provides a very ef-
ficient mechanism for transferring and storing free kinetic
energy into magnetic energy which can then be abruptly re-
leased on fast time scales by some mechanism, as, for ex-
ample, magnetic reconnection. In this process the plasma
dynamics, its transport properties, etc., can be completely
modified and new strong nonlinear magnetic interactions
come into play.

In recent years, self-induced, ultrastrong quasistatic mag-
netic fields have been observed in numerical experiments
involving the interaction of large amplitude, “relativisti-
cally” strong, laser pulses with plasmas. These fields play a
fundamental role in the dynamics of the wake fields gener-
ated by the laser pulse as shown, e.g., in an underdense
plasma in[17]. Instabilities due to beams of counterstream-
ing electrons were invokefll4,15 in order to explain the

FIG. 6. The isocontours of the magnetic fi@¢, of the electric ~ buildup of magnetic energy, since fast electron streams can
field E, transversal to the beams, and of the densitigandn, in be easily generated in relativistic regimes by the breaking of
a nonsymmetric, no,=0.167, ny,=0.833, nonrelativistic,v,;  plasma waves. In this paper, using a relativistic two-fluid
=0.5, case. approach, we have studied the linear and nonlinear evolution

E
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of the EMBP instability in conditions that are directly rel- characterized by the presence of a strong nonlinear interac-
evant for the laser plasma interactions. In particular we havéion and by the presence of very small spatial scales, where
assumed that the initial electron streams are concentrated inkinetic effects cannot be neglected.
narrow region corresponding to the finite transverse dimen- The work presented here is motivated by the attempt to
sion of the laser pulse. identify characteristic magnetic and current structures pro-
In the nonrelativistic linear case, the resulting currentduced by the EMBP instability which can be then used in
structure depends on the initial conditions and in particulaorder to recognize typical signatures of this physical process
on the phase of the perturbation. This is no longer true in thén laser-plasma experiments. This comparison has proved
nonlinear regime where wave breaking generates the sanseiccessful as shown i19,20. However, it should be ob-
structure regardless of the initial conditions. This structure iserved that the occurrence of singularities leading to very
characterized by a central “fast” current and two “slow” small spatial scales cannot be fully described with the fluid
return currents with an arrowlike shape in the stream direcapproximation adopted in this paper. A kinetic description
tion. On the other hand, in the relativistic case the currentshat properly describes this phase is for the moment available
are independent of the initial conditions even during the lin-only for the case of a homogeneous plagb@]. An exten-
ear phase and are practically homogeneous in the stream diion of the present work to the full nonlinear kinetic regime
rection. A double current layer is formed already in the linearafter the formation of the singularities is in progress by nu-
stage. A quasistatic dipolar magnetic field is observed botimerical integration of the Vlasov-Maxwell equations.
in the nonrelativistic and relativistic regimes. In the relativ-
istic regime a doubling of the dipole magnetic field structure
is observed. These results are in very good agreement with
the results obtained in PIC simulatiofs9,20] and support We are pleased to acknowledge the Cineca supercomput-
the conclusion that the current structure and the magnetimg center of Bologna and the Scuola Normale Superiore of
field observed in the wake of a "relativistically strong” Pisa for the use of their Cray T3E and Origin 2000, respec-
laser-pulse impinging on a underdense plasma are generatédely. One of us(F.C) is glad to acknowledge Dr. Marco
by the development of the EMBP-type instability. We may Voli (Cineca and Dr. I. Lisi (SNS for numerical sugges-
speculate that in the full 3D case secondary instabilities fedions. Part of the calculations were performed under an
by the magnetic shear generated by the instability will dedNFM research project at Cineca. This work has been sup-
velop and lead to a full 3D dynamics and/or to collisionlessported by “ex 40%” MURST funds(ltalian Ministry for
magnetic reconnection events. However, this regime will beéJniversity and Scientific Research
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