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Ion motion and finite temperature effect on relativistic strong plasma waves

Arsen G. Khachatryan
Yerevan Physics Institute, Alikhanian Brothers Street 2, Yerevan 375036, Armenia

~Received 15 April 1998; revised manuscript received 17 July 1998!

The influence of motion of ions and electron temperature on nonlinear one-dimensional plasma waves with
velocity close to the speed of light in vacuum is investigated. It is shown that although the wave-breaking field
weakly depends on the mass of ions, the nonlinear relativistic wavelength essentially changes. The nonlinearity
leads to the increase of the strong plasma wavelength, while the motion of ions leads to the decrease of the
wavelength. Both the hydrodynamic approach and kinetic one, based on Vlasov-Poisson equations, are used to
investigate the relativistic strong plasma waves in a warm plasma. The existence of relativistic solitons in a
thermal plasma is predicted.@S1063-651X~98!12611-9#

PACS number~s!: 52.35.Mw, 52.35.Fp
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I. INTRODUCTION

Strong plasma waves passing through a plasma w
phase velocity slightly smaller than the velocity of light ha
been the subject of much interest during the past two
cades. Such waves can be excited in plasma by relativ
bunches of charged particles or laser pulses. The exc
plasma waves can be used both to accelerate charged
ticles and to focus charged bunches@1#. Plasma-based acce
erator concepts are currently under intensive developm
~see overview in Ref.@2# and numerous references therein!.
Accelerating gradients in the plasma wave can reach
value of tens of GeV/m~notice that in conventional linac
accelerating gradients are on the order of tens of MeV!
that is confirmed in recent experiments@2#. Also, the value
of the focusing field can be much greater than that reache
conventional focusing magnetic systems. The acceleratio
charged particles by relativistic strong waves also is un
consideration as a possible mechanism of ultrahigh ene
~up to 1020 eV! cosmic ray generation in astrophysic
plasma.

In a cold plasma the amplitude of a one-dimensio
plasma wave is limited by the wave-breaking field. In t
nonrelativistic case, when the wave phase velocityvph is
much less than the velocity of light (vph!c), the wave-
breaking amplitude is equal to@3# E* 5mevpevph /ueu,
where vpe5(4pn0e2/me)

1/2 is the electron plasma fre
quency,n0 is the density of electrons in unperturbed plasm
me ande are the electron rest mass and their charge; the
assumed to be immobile. In the relativistic case the wa
breaking field is equal to@4# Erel5@2(g21)#1/2/b; hereb
5vph /c, g5(12b2)21/2 is the relativistic factor andErel is
normalized onE* . The one-dimensional relativistic stron
waves~RSW’s! can be excited in a plasma by wide relati
istic bunches of charged particles or intensive laser pulses@2#
~when kpa@1, wherekp5vpe /vph , a is the characteristic
transverse sizes of bunches or pulses!.

Another important characteristic of nonlinear plasm
waves is the dependence of the wavelength on the wave
plitude. Both in the linear case and in the nonlinear non
ativistic one, the plasma wavelength in cold plasma islp
52pvph /vpe . In the relativistic nonlinear regime, whe
plasma electrons get a relativistic velocity in the process
oscillations, nonlinear wavelength increases with the am
PRE 581063-651X/98/58~6!/7799~6!/$15.00
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tude@5–8#. In the ultrarelativistic case (g@1), for the wave
amplitude Emp>Erel , the wavelength is approximatel
equal to@5# 4(2g)1/2lp . One can see that for largeg the
wavelength is essentially more than the usual linear plas
wavelength.

In the previous studies the plasma ions, in the proces
oscillations, including the nonlinear relativistic waves, we
usually assumed to be immobile due to their large mass
Ref. @9# it is shown that wheng!(M /16me)

1/3 ~hereM is the
mass of an ion; for example, for hydrogen plasma, consis
of protons and electrons, this condition givesg,5), the
wave-breaking amplitude is approximately equal toErel and
the motion of ions can be neglected. However, the dispers
properties of the relativistic strong plasma waves, which ta
into consideration the motion of ions, have not been elu
dated up to now. This problem has been considered in Se
on the basis of cold hydrodynamics equations for the a
trary g and mass of particles forming the plasma. The nec
sity of taking into account the ion motion is conditioned b
the following reasons. First, because the maximum relati
tic wavelength and amplitude grow in proportion tog1/2, the
plasma ions~even heavy ions! in such a strong field can
reach a velocity that is sufficient to make an essential c
tribution in the process of charge separation in the wave.
the other hand, in a semiconductor plasma positively char
particles~holes! have a mass similar to or less than that of
electron. The problem also has an astrophysical aspect.
pole region of the pulsars is considered to be filled with
electron-positron plasma in which the strong plasma wa
can be excited and high-energy charged particles gener
@10#. It is obvious that in the plasma wave passing throu
an electron-positron plasma, neither electrons nor positr
may be considered as a neutralizing background.

Another important problem is the influence of plasm
temperature on RSW’s. Finite plasma temperature has d
sive significance for a description of RSW’s near wav
breaking. Actually, according to the one-dimensional~1D!
theory of relativistic plasma waves in a cold plasma, at
breaking point hydrodynamic plasma electron velocity
equal to the phase velocity and the density of electronsne
tends to infinity@5–7,11# ~in this case the spatial behavior o
the density is similar to thed function!. On the other hand, in
a thermal plasma~even when the temperature is low!, the
pressure tends to infinity whenne→`. Thus, in this case, the
7799 © 1998 The American Physical Society
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7800 PRE 58ARSEN G. KHACHATRYAN
pressure, as well as the plasma temperature, should be
into consideration. In Ref.@12# the finite plasma temperatur
effect on the nonrelativistic (vph!c) wave-breaking field is
considered using a 1D waterbag model for the distribut
function. In this model it is assumed that the electron dis
bution function during oscillations is constant in a limite
interval of velocities and is equal to zero outside of th
interval. It is shown@12# that the maximum amplitude of th
plasma waves decreases with temperature. In Ref.@13# the
1D relativistic waterbag model is used to investigate RSW
in a warm plasma. Using the relativistic equation of moti
with the pressure term for plasma electrons, in Ref.@11# it is
shown that in the caseg@mevph

2 /3T ~whereT is the tem-
perature of electrons! the wave-breaking field is proportiona
to T21/4. The authors of Ref.@14# have analyzed the influ
ence of low temperature (T!mec

2) on excitation of nonlin-
ear wake fields by relativistic charged bunches. They con
ered the equation of motion obtained using second mom
of the distribution function. In the present paper~Sec. III! the
hydrodynamics equations are used to study dispersion p
erties of RSW’s in a warm plasma. The dispersion corre
tion for the weakly nonlinear case is obtained. In Sec. IV
strong plasma waves are investigated on the basis of
relativistic Vlasov kinetic equation and the Poisson equati

II. ION MOTION EFFECT ON DISPERSION PROPERTIES
OF RELATIVISTIC STRONG PLASMA WAVES

In this section we consider a cold uniform plasma cons
ing of positively charged particles~for example, protons or
positrons! with massm1 and electric chargeq1 , and nega-
tively charged particles~electrons or negatively charge
ions! with massm2 and chargeq2 . The relativistic equation
of motion, the continuity equation for each plasma comp
nent, and the Poisson equation for one-dimensional ste
plasma waves are

~b2b6!
d~b6g6!

dz
52

q6

uq2u
b2E, ~1!

b
dN6

dz
2

d~N6b6!

dz
50, ~2!

dE

dz
512N21uq1 /q2uN1 , ~3!

where z5kp(Z2vpht), kp5vp /vph , vp5(4pn02q2
2 /

m2)1/2, n02 is the density of negatively charged particles
equilibrium, b65v6 /c are dimensionless velocities,g6

5(12b6
2 )21/2, and densitiesN6 are normalized on the

equilibrium values. The electric field strength is normaliz
on the nonrelativistic wave-breaking fieldm2vpvph /uq2u
and obeys the formula

E~z!52~1/b2!dF/dz, ~4!

whereF[F2511uq2uw/m2c2>1/g, w is the electric po-
tential. From expressions~1!, ~2! and ~4! we have

b65@b2~F6
2 2g22!1/2#/~b21F6

2 !, ~5!
ken
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dy

N65bg2@F6 /~F6
2 2g22!1/22b#. ~6!

Substituting N6(F6) and expression~4! in the Poisson
equation~3! one obtains the following differential equatio
of the second order forF:

d2F

dz2
1b3g2S F1

~F1
2 2g22!1/2

2
F

~F22g22!1/2D 50, ~7!

Here F1512q1w/m1c2511m(12F)>1/g and m
5uq1 /q2um2 /m1 . The electric potentialw is assumed to
be equal to zero when the plasma density is equal to
equilibrium density.

Equation~7! can be rewritten in the form

d2F

dz2
1

dU

dF
50,

~8!
U5b3g2$@b2~F1

2 2g22!1/2#/m1@b2~F22g22!1/2#%.

Here, for convenience,U(F) is chosen to be equal to zero
a pointF51, where it reaches a minimum. Whenm→0, Eq.
~7! reduces to the known equation for nonlinear waves i
plasma with immobile ions@2,7#. Formally, Eq.~8! describes
the one-dimensional motion of a particle in a field with p
tential U(F); the valuesF andE correspond to the coordi
nate and velocity of this fictitious particle, respective
FunctionU determines the characteristic of the field movi
through the plasma. In Fig. 1 this function is presented
g510 (b'0.995) and different values ofm. One can see
that for the arbitrary parameters the solutions of Eq.~8! @or
Eq. ~7!# are the periodic plasma waves~including the wave
with zero amplitude-unperturbed plasma!. Integrating Eq.~8!
we have

dF

dz
52b2E56@2~Umax2U !#1/2, ~9!

whereUmax is maximum value ofU(F) in the process of
oscillations. From Eq.~9! it follows that the plasma wave
amplitude is equal toEmp5(2Umax)

1/2/b2. Substituting the
maximum permissible value ofU(F), reaching the point
F51/g, in this expression, we find the wave-breaking fie

FIG. 1. ‘‘Potential’’ U(F) for the valueg510 ~in dimension-
less units!. 12m50; 22m50.1; 32m51.
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PRE 58 7801ION MOTION AND FINITE TEMPERATURE EFFECT ON . . .
EWB521/2g@11~12j1
1/2j2

1/2!/m#,
~10!

j1511m, j2511m~g21!/~g11!.

In the casem!1, from Eq.~10! follows the expression

EWB'~11m/8!@2~g21!#1/2/b, ~11!

which reduces to the well known relativistic wave-breaki
field for plasma with immobile ions, whenm50 @4#. Figure
2 shows the wave-breaking fieldEWB depending onm ~for
example, for electron-positron plasmam5me /mpos51, for
the hydrogen plasmam5me /mprot'5.45531024) for dif-
ferent values ofg. In both the nonrelativistic case and rel
tivistic one the wave-breaking field weakly increases withm.
For example, according to Eq.~10!, in the nonrelativistic
case (g'1), EWB (m51) only 2(12221/2)1/2'1.08 times
exceeds the wave-breaking amplitude atm50. Proceeding
from the shape of the ‘‘potential’’U(F) ~see Fig. 1! one can
expect that the plasma wavelength undergoes conside
change withm. In Fig. 3 the dependence of the relativist
plasma wavelengthLp @note that, according to the variable
accepted in Eqs.~1!–~3!, the linear plasma wave atm50
corresponds to the valueLp52p# on the amplitude pre-
sented. Curve 1 corresponds to the case of immobile ions

FIG. 2. Normalized wave-breaking field depending onm. 12g
51.01; 22g51.5; 32g53; 42g510.

FIG. 3. Relativistic plasma wavelengthLp depending on the
electric field amplitudeEmp ~in dimensionless units!; g510. 12m
50; 22m50.05; 32m50.1; 42m50.5; 52m51.
ble

nd

coincides with that previously obtained@7#; in this caseLp
grows with amplitude due to relativistic velocities of the o
cillating plasma particles~notice that in the nonlinear nonre
ativistic regime the plasma wavelength does not depend
amplitude!. The motion of positive ions for fixed amplitud
causes the decrease of charge separation length and, t
fore, leads to the decrease of the wavelength. Figure 3 cle
shows the competition between two tendencies. For the s
m the wavelength grows with amplitude due to nonlineari
With the increase ofEmp , the effect of ion motion become
more essential. Whenm is not small, the behavior of the
wavelength is caused mainly by ion motion. In electro
positron plasma (m51), Lp monotonically decreases wit
the increase ofEmp , in contrast to the case of heavy ion
(m'0). The results of simulations presented in Fig. 3 co
form with the well known result of linear theory (Emp!1;
see, e.g., Ref.@15#!: Lp5Lp0 /(11m)1/2, where Lp0
5Lp(m50). Note also that the results practically did n
change for arbitraryg@1. A considerable decrease of th
relativistic plasma wavelength withm is demonstrated in
Fig. 4.

Previous studies have shown that energy of electrons~or
positrons! accelerated in the field of a relativistic nonline
wave, in a cold plasma with immobile ions, can reach a va
of 4mec

2g3 @7,16#. In the general case the relativistic fact
of a resonant electron passing from a point with the dim
sionless potentialF1 to a point withF2 is equal to@7#

gacc'gacc~0!12g2~F22F1!, ~12!

wheregacc(0)'g is the value of the relativistic factor at th
initial point. When m50, Fmin51/g<F<Fmax'2g @7#.
Substituting this maximum and minimum values in Eq.~12!,
for the maximum energy of accelerated electrons one obt
(gacc)max'4g3. With m growth, the maximum energy de
creases due to the decrease ofFmax ~see Fig. 1!. For the case
of electron-positron plasma functionU(F) is symmetric
with reference to axisF51 and, as it is easy to see, in th
caseFmin51/g, Fmax5221/g. Then, the maximum energ
of accelerated particles is (gacc)max'4g2, that is, g times
less than that in the casem50.

If a bunch of charged particles with densitynb(z) and
electric chargeqb passes through a plasma, adding to the
side of Eq.~7! the valuea(z)5b2(qb /uq2u)nb(z)/n02 , we

FIG. 4. Relativistic strong wave in a plasma with immobile io
~12m50) and in an electron-positron plasma~22m51); g510.
The electric field strengthE and coordinatez are in the normalized
units.
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7802 PRE 58ARSEN G. KHACHATRYAN
obtain the equation that describes the excitation of ste
plasma wake fields by the bunch. In this case the phase
locity is equal to the velocity of the bunch. In this section t
properties of RSW’s have been investigated by simulation
wake wave generation by charged bunches.

Above we have considered the casem<1. However, one
can see that the obtained results are valid also form.1, if
we replace E by 2E @this new E is normalized to
m1vpvph /q1 , vp5(4pn01q1

2 /m1)1/2#, replacem by 1/m,
replace the subscript1 by 2, and vice versa.

III. INFLUENCE OF ELECTRON TEMPERATURE ON
RELATIVISTIC NONLINEAR PLASMA WAVES:

HYDRODYNAMIC APPROACH

Here we continue to consider the dispersion prop
ties of RSW’s in the framework of the hydrodynam
approach, and investigate relativistic nonlinear waves i
warm plasma. Adding the relativistic pressure te
2(ge

2/Ne)(12bbe)dP/dz @11,14# with P5t(Ne /ge)
3 @11#

~which is a relativistic generalization of the usual equation
state for one-dimensional adiabatic compression! to the
equation of motion of plasma electrons, one can obtain
equations

~b2be!
d~bege!

dz
5b2E13b2t

ge~12bbe!
2

~b2be!
3

dbe

dz
,

~13!
dE

dz
52

1

b2

d2F

dz2
512Ne .

In Eq. ~13! be5ve /c andt5T/mec
2 are the dimensionles

velocity and temperature of plasma electrons,ge5(1
2be

2)21/2, F511ueuw/mec
2. The plasma ions are assume

to be immobile due to their large mass. The density of el
tronsNe5ne /n0 normalized to the unperturbed valuen0, as
usual, is obtained from the continuity equation

Ne5b/~b2be!. ~14!

When t→0 equations~13! and ~14! describe RSW’s in a
cold plasma@5,6#. Note, that the valuet51 corresponds to a
temperature of about 63109 K. For laboratory plasmas th
temperature changes in the boundst;102641022; for star
plasmast;102521.

The dispersion correlation can be obtained analytically
a weakly nonlinear wave, whenu5be(z)/b!1. In this case
from equations~13! and ~14! we have

~a02a1u1a2u2!
d2u

dz2
2~a122a2u!S du

dzD
2

1u1u21u350,

a05123t/b2, a15113t~322b2!/b2, ~15!

a253b2/223t~6211b2/21b4!/b2.

Looking for a solution of Eq.~15! as ~see, e.g., Ref.@17#!

u5«u1~C!1«2u2~C!1«3u3~C!1•••,

dC/dz5lp /Lp5k01«k11«2k21•••,
dy
e-

f

r-

a

f

e

-

r

we obtain

lp /Lp5a0
21/2~11bbm

2 !,
~16!

b523/1613ta0
21~1029b21b4!/8b4

13t2a0
22~22b2!2/b6,

where «5bm /b!1 is the small parameter,bm5(be)max,
andLp is the wavelength. In the linear case (bm

2→0) from
Eq. ~16! it follows that the wavelength decreases with t
temperature according to the well known Bohm-Gross d
persion correlation:Lp5lp(123t/b2)1/2. On the other
hand, in a cold plasma (t50) the wavelength increases du
to nonlinearity~see, e.g., Ref.@15#!: Lp'lp(113bm

2 /16).
Figure 5 shows the dependence of the wavelength on w
amplitude in thermal plasma obtained by simulation of E
~13! and~14!. In the case of low temperature this dependen
almost coincides with that in a cold plasma~compare curves
1 in Figs. 5 and 3!.

In the caseb→1 equations~13! and ~14! can be easily
integrated~see also Ref.@11#!:

F2S 12be

11be
D 1/2

23tF S 11be

12be
D 1/2

21G50. ~17!

One can see that the thermal term cannot be neglected
the wave breaking (be→1) even for low temperatures. In
the latter case the wave-breaking field is proportional
t21/4 @11#.

In the framework of hydrodynamic theory the velocity
plasma electrons cannot exceed the wave phase velocity
tually, if be.b, then, according to expression~14!, the den-
sity of electrons becomes negative, which makes no phys
sense. In reality, whenbe'b in a warm plasma~even when
the temperature is low!, a considerable amount of electron
get velocities more than the phase velocity due to their th
mal energy distribution. When the temperature is not lo
the energy distribution effect on plasma waves is essentia
all cases. Therefore, the strong waves near the wave brea
and whent is not low can be described correctly in th
framework of the kinetic approach.

FIG. 5. Relativistic plasma wavelength in a warm plasma a
function of the wave amplitude~in the dimensionless units!; g
510. 12t51023; 22t51022; 32t5431022.
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IV. KINETIC THEORY
OF RELATIVISTIC STRONG PLASMA WAVES

As in the preceding section, here we assume plasma
to be immobile. The kinetic approach, for one-dimensio
steady fields passing through a warm plasma, gives the
lowing system, obtained from relativistic Vlasov equati
and Maxwell equations~see, e.g., Ref.@18#!:

Fb2
p

~11p2!1/2G] f

]z
2

]F

]z

] f

]p
50, ~18!

d2F

dz2
1b2~12Ne!50, ~19!

Ne5E
2`

1`

f ~p,z!dp, ~20!

wherep5pz is the plasma electron momentum, normaliz
to mec, f (p,z) is the distribution function. In an unperturbe
plasma the distribution function is equal to a 1D relativis
Maxwell distribution@19#

f 05A@11~11p2!1/2/t#exp@2~11p2!1/2/t#,

FIG. 6. Plasma electron density normalized on its equilibri
value as a function of the dimensionless electric potentialF; g
53. 12t51024; 22t51023; 32t51022.

FIG. 7. Maximum value of the normalized electric field amp
tude of a nonlinear plasma wave depending on the dimension
plasma electron temperature. 12g53; 22g56; 32g510.
ns
l
l-

A5t/2K2~1/t!,
~21!

^p2&05t@K1~1/t!/K2~1/t!14t#,

^~11p2!1/2&052t1~12t2!K1~1/t!/K2~1/t!,

whereKn(x) is the modified Bessel function of thenth or-
der. In Eq.~21! we also have written out the average squa
pulse and total energy for the one-dimensional equilibri
distribution f 0, that may be interesting for future investiga
tions.

Solving Eq. ~18! by the method of characteristics~see,
e.g., Ref.@20#! and requiring that the functionf reduces to
the equilibrium distribution~21! at F51, one obtains the
following general solution:
ss

FIG. 8. Electric field strength~a!, plasma electron density~b!,
and average electron momentum~c! in a strong plasma field, ex
cited by a uniform electron bunch (g53, t50.1). The rectangles
show the bunch. 12periodic wave,nb /n050.4; 22soliton, nb /n0

50.6575. All quantities are in dimensionless units.
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7804 PRE 58ARSEN G. KHACHATRYAN
f 5A~11S/t!exp~2S/t!,

S5~11g2!1/2, g52g2@br 6~r 22g22!1/2#, ~22!

r 5bp2~11p2!1/21F21,

In the expression forg, the plus sign corresponds to the ca
p<bg and the minus sign top.bg; in equilibrium (F
51) we haveg5p. Substituting the expressions~20! and
~22! in Eq. ~19!, one obtains the equation forF. The plasma
electron densityNe(F) obtained numerically from Eqs.~20!
and ~22! is presented in Fig. 6. In the case of low tempe
ture, the integral in Eq.~20! can be calculated by the Laplac
asymptotic method@19#. The value ofNe is at maximum
whenF'1/g and is equal to

Nmax'@G~1/4!/4#g~bg/p!1/2~2/t!1/4'0.6g~bg!1/2t21/4.
~23!

According to expression~23!, in a cold plasmaNmax→` ,
which conforms to the previous investigations@5,6,11#.
Whent!1 andF.1/g, the dependenceNe(F) is approxi-
mately described by expression~6!.

Simulations of the problem show that the plasma wa
length increases with the wave amplitude and tends to in
ity for a solitary wave~soliton!. Figure 7 shows dependenc
of the maximum value of the amplitude~which corresponds
to the maximum of electric field strength in the solitonEs)
on plasma temperature for differentg. One can see thatEs is
almost constant and equal to the relativistic wave-break
field Erel for values oft up to 0.0520.1 and then decrease
rapidly.

As mentioned above, the relativistic plasma waves can
excited by charged bunches or laser pulses. In order to
scribe the excitation of the wake field by a charged bunch
is necessary to add in the left-hand side of Eq.~19! the value
b2a(z) @the definition ofa(z) seen in Sec. II#. The nonlin-
ear periodical wave and the solitary wave excited by unifo
electron bunch are plotted in Fig. 8. The plasma elect
ns

iz

o

-

-
-

g

e
e-
it

n

density behind the soliton tends to its equilibrium val
(Ne→1) and the electric field strength tends to zero. Ho
ever, in this case the average plasma electron momen
^p&5*2`

1`p f(p,z)dp/*2`
1` f (p,z)dp tends to a nonzero con

stant value. This does not seem strange because the so
wave can be considered as a wave with infinite wavelen
Hence, bulk motion of plasma electrons behind the solit
wave takes place, while the plasma remains neutral. Eq
tions ~18!–~21! have also nonperiodical solutions. Howeve
such solutions have no physical sense@19# and should be
considered in the context of nonstationary kinetic theo
Thus, in a thermal plasma with immobile ions two kinds
steady waves can exist: periodical waves and solitons.

V. CONCLUSIONS

The results presented in this paper supplement the th
of nonlinear relativistic plasma waves, taking into consid
ation the motion of ions and finite plasma temperature. I
shown that the nonlinearity leads to the increase of relati
tic wavelength, while ion motion leads to the waveleng
decrease. For example, in electron-positron plasma the w
length monotonously decreases as the amplitude increa
The relativistic wave-breaking field weakly depends on
ion mass.

Contrary to the case of cold plasma, in a warm plasma
relativistic solitary waves~solitons! can exist. The plasma
wavelength grows monotonously with the amplitude in t
warm plasma due to nonlinearity. It has been found that
maximum electron density in the plasma wave decrea
with the temperature asT21/4 and tends to infinity in a cold
plasma, as was shown by previous investigations.
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