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The influence of motion of ions and electron temperature on nonlinear one-dimensional plasma waves with
velocity close to the speed of light in vacuum is investigated. It is shown that although the wave-breaking field
weakly depends on the mass of ions, the nonlinear relativistic wavelength essentially changes. The nonlinearity
leads to the increase of the strong plasma wavelength, while the motion of ions leads to the decrease of the
wavelength. Both the hydrodynamic approach and kinetic one, based on Vlasov-Poisson equations, are used to
investigate the relativistic strong plasma waves in a warm plasma. The existence of relativistic solitons in a
thermal plasma is predictef51063-651X98)12611-9

PACS numbdss): 52.35.Mw, 52.35.Fp

[. INTRODUCTION tude[5-8]. In the ultrarelativistic casey>1), for the wave
amplitude E,,,=E,., the wavelength is approximately
Strong plasma waves passing through a plasma witlequal to[5] 4(2y)?\,. One can see that for large the
phase velocity slightly smaller than the velocity of light have wavelength is essentially more than the usual linear plasma
been the subject of much interest during the past two dewavelength.
cades. Such waves can be excited in plasma by relativistic In the previous studies the plasma ions, in the process of
bunches of charged particles or laser pulses. The excitegscillations, including the nonlinear relativistic waves, were
plasma waves can be used both to accelerate charged paually assumed to be immobile due to their large mass. In
ticles and to focus charged bunclé$ Plasma-based accel- Ref.[9] it is shown that whery<(M/16m,)® (hereM is the
erator concepts are currently under intensive developmenhass of an ion; for example, for hydrogen plasma, consisting
(see overview in Refl2] and numerous references thejein of protons and electrons, this condition gives<5), the
Accelerating gradients in the plasma wave can reach th@ave-breaking amplitude is approximately equaFEtg, and
value of tens of GeV/n(notice that in conventional linacs the motion of ions can be neglected. However, the dispersion
accelerating gradients are on the order of tens of MeV/mproperties of the relativistic strong plasma waves, which take
that is confirmed in recent experimen®. Also, the value into consideration the motion of ions, have not been eluci-
of the focusing field can be much greater than that reached iflated up to now. This problem has been considered in Sec. II
conventional focusing magnetic systems. The acceleration @n the basis of cold hydrodynamics equations for the arbi-
charged particles by relativistic strong waves also is undefrary y and mass of particles forming the plasma. The neces-
consideration as a possible mechanism of ultrahigh energsity of taking into account the ion motion is conditioned by
(up to 1G° eV) cosmic ray generation in astrophysical the following reasons. First, because the maximum relativis-
plasma. tic wavelength and amplitude grow in proportiony4?, the
In a cold plasma the amplitude of a one-dimensionalplasma ions(even heavy ionsin such a strong field can
plasma wave is limited by the wave-breaking field. In thereach a velocity that is sufficient to make an essential con-
nonrelativistic case, when the wave phase velooily is  tribution in the process of charge separation in the wave. On
much less than the velocity of lightv(,<c), the wave- the other hand, in a semiconductor plasma positively charged
breaking amplitude is equal t¢3] E,=mew,ev ph/|e|, particles(holes have a mass similar to or less than that of an
where wpe=(47Tner/me)1’2 is the electron plasma fre- electron. The problem also has an astrophysical aspect. The
guency,ng is the density of electrons in unperturbed plasma,pole region of the pulsars is considered to be filled with an
m, ande are the electron rest mass and their charge; the ionslectron-positron plasma in which the strong plasma waves
assumed to be immobile. In the relativistic case the waveean be excited and high-energy charged particles generated
breaking field is equal t§4] E,;=[2(y—1)]¥%B; here  [10]. It is obvious that in the plasma wave passing through
=vpn/C, y=(1—B?)~12is the relativistic factor ané, is  an electron-positron plasma, neither electrons nor positrons
normalized onE, . The one-dimensional relativistic strong may be considered as a neutralizing background.
waves(RSW's) can be excited in a plasma by wide relativ- ~ Another important problem is the influence of plasma
istic bunches of charged particles or intensive laser piiBes temperature on RSW'’s. Finite plasma temperature has deci-
(whenk,a>1, wherek,=wpc/v,,, ais the characteristic  sive significance for a description of RSW's near wave-
transverse sizes of bunches or pulses breaking. Actually, according to the one-dimensiofiHD)
Another important characteristic of nonlinear plasmatheory of relativistic plasma waves in a cold plasma, at the
waves is the dependence of the wavelength on the wave arbreaking point hydrodynamic plasma electron velocity is
plitude. Both in the linear case and in the nonlinear nonrelequal to the phase velocity and the density of electmns
ativistic one, the plasma wavelength in cold plasmajs tends to infinity[5—7,1] (in this case the spatial behavior of
=2mvpnlwpe. In the relativistic nonlinear regime, when the density is similar to thé function). On the other hand, in
plasma electrons get a relativistic velocity in the process of thermal plasmdeven when the temperature is [pwhe
oscillations, nonlinear wavelength increases with the amplipressure tends to infinity when—o. Thus, in this case, the
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pressure, as well as the plasma temperature, should be taken
into consideration. In Ref12] the finite plasma temperature
effect on the nonrelativisticu(,,<c) wave-breaking field is
considered using a 1D waterbag model for the distribution
function. In this model it is assumed that the electron distri-
bution function during oscillations is constant in a limited
interval of velocities and is equal to zero outside of this
interval. It is showr{12] that the maximum amplitude of the
plasma waves decreases with temperature. In [R&]. the

1D relativistic waterbag model is used to investigate RSW’s
in a warm plasma. Using the relativistic equation of motion
with the pressure term for plasma electrons, in REf] it is
shown that in the case>mev /3T (whereT is the tem-
perature of electronghe wave-breaking field is proportional

to T-Y4 The authors of Ref{14] have analyzed the influ-
ence of low temperatureTm,c?) on excitation of nonlin- FIG. 1. “Potential” U(®) for the valuey=10 (in dimension-
ear wake fields by relativistic charged bunches. They considess unit$. 1-x=0; 2—u=0.1; 3-p=1.

ered the equation of motion obtained using second moments
of the distribution function. In the present pagg&ec. Ill) the (6)
hydrodynamics equations are used to study dispersion prop-

erties of RSW’s in a warm plasma. The dispersion correlaSubstituting N..(®.) and expression(4) in the Poisson
tion for the weakly nonlinear case is obtained. In Sec. IV theequation(3) one obtains the following differential equation
strong plasma waves are investigated on the basis of thef the second order fob:

relativistic Vlasov kinetic equation and the Poisson equation.

8

0 T T T

10 15 20

0]

N.=By(®./[(dL—y A)Y—p].

d?®

dz?

D,
(‘I’i _ ,y—2)1/2_ (D2— 5~ 2)12

+B%y =0, (7)
II. ION MOTION EFFECT ON DISPERSION PROPERTIES
OF RELATIVISTIC STRONG PLASMA WAVES

_ _ _ _ _ Here ®,=1-q,¢/m,c?=1+pu(1-P)=1/y and u
In this section we consider a cold uniform plasma consist— |4, /q_|m_/m, . The electric potential is assumed to

ing of positively charged particledor example, protons or e equal to zero when the plasma density is equal to the

positrong with massm, and electric chargg, , and nega-
tively charged particleqelectrons or negatively charged
ions) with massm_ and chargey_ . The relativistic equation

of motion, the continuity equation for each plasma compo-
nent, and the Poisson equation for one-dimensional steady

plasma waves are

(B_Bt) d_Z _|q7|,32E1 (1)
dN. d(N.B.)

dz  dz =0, )

—>=1-N_+[q./q_|N, ©)

dz

where z=k.p(Z—vpht),. kpzwp/v.ph, wp=(477no,gz,/ .
m_)*2 ny_ is the density of negatively charged particles in
equilibrium, B.=v./c are dimensionless velocitiegy..
=(1-p2%) 2 and densitiesN. are normalized on the

equilibrium values. The electric field strength is normalized

on the nonrelativistic wave-breaking fielth_wv,n/[q_|
and obeys the formula
E(z)=—(1/B%)d®/dz, (4

where®d=®_=1+|q_|¢/m_c?=1ly, ¢ is the electric po-
tential. From expressiond), (2) and(4) we have

B.=[B—(PL—y )YA(B*+DI), (5)

equilibrium density.
Equation(7) can be rewritten in the form

d2<1>+dU_O
az e

(8)
U=pB3y*{[B— (% -y )M u+[B—(P2—y 2)¥7}.

Here, for conveniencé)(®) is chosen to be equal to zero at
a point® =1, where it reaches a minimum. Whan- 0, Eq.

(7) reduces to the known equation for nonlinear waves in a
plasma with immobile iong2,7]. Formally, Eq.(8) describes
the one-dimensional motion of a particle in a field with po-
tential U(®); the valuesb andE correspond to the coordi-
nate and velocity of this fictitious particle, respectively.
FunctionU determines the characteristic of the field moving
through the plasma. In Fig. 1 this function is presented for
v=10 (B8~0.995) and different values qi. One can see
that for the arbitrary parameters the solutions of B).[or

Eq. (7)] are the periodic plasma wavéscluding the wave
with zero amplitude-unperturbed plasmimtegrating Eq(8)

we have

2 — _ 1/2
iy = BE=E[2(Unec U)12

€)

where U ., IS maximum value ofU(®) in the process of
oscillations. From Eq(9) it follows that the plasma wave
amplitude is equal tdy,,= (2U 40" % B2. Substituting the
maximum permissible value dfJ(®), reaching the point
@ =1/y, in this expression, we find the wave-breaking field,
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. ) . ) FIG. 4. Relativistic strong wave in a plasma with immobile ions
FIG. 2. Normalized wave-breaking field dependingonl—y (1-u=0) and in an electron-positron plasrt@-u=1); y=10.
=101} 2-y=1.5; 3-y=3; 4-y=10. The electric field strengtE and coordinate are in the normalized
units.

E :21/2 14+(1— 1/2 1/2)/ ,
we ML+ (=670 k] coincides with that previously obtaingd]; in this caseA,

grows with amplitude due to relativistic velocities of the os-
cillating plasma particlegotice that in the nonlinear nonrel-
ativistic regime the plasma wavelength does not depend on
amplitudg. The motion of positive ions for fixed amplitude
~ _ 12 causes the decrease of charge separation length and, there-

Ewg=(1+u/B)[2(y=D)ITIA, (1) fore, leads to the decrease of ?he wgvelength. Fi%ure 3 clearly
shows the competition between two tendencies. For the small
u the wavelength grows with amplitude due to nonlinearity.
With the increase oE,,, the effect of ion motion becomes
more essential. Whep is not small, the behavior of the
wavelength is caused mainly by ion motion. In electron-
positron plasma £=1), A, monotonically decreases with

(10)
E1=1+u, &H=1+u(y—1)/(y+1).

In the caseu<<1, from Eq.(10) follows the expression

which reduces to the well known relativistic wave-breaking
field for plasma with immobile ions, whea=0 [4]. Figure
2 shows the wave-breaking fiele, gz depending onu (for
example, for electron-positron plasmea= mg/my,s=1, for
the hydrogen plasma =me/mp;~5.455x 10 %) for dif-
ferent values ofy. In both the nonrelativistic case and rela-

tivistic one the wave-breaking field weakly increases with theNincrease OEmp, in contrast to the case of heavy ions
For example, according to E10), in the nonrelativistic (#~0). The results of simulations presented in Fig. 3 con-
case f~1), Ews(n=1) only 2(1-2"13Y2~1 08 times form with the well known result of linear theorye(,,<1;

. _ 1/2
exceeds the wave-breaking amplitudeat 0. Proceeding S€& €0 ReR[18]): Ap=Ayo/(1+u)™, where Ay,

from the shape of the “potentialt) (®) (see Fig. 1one can =A,(n=0). Note also that the results practically did not

expect that the plasma wavelength undergoes considerapfd@nge for arbitraryy>1. A considerable decrease of the
change withu. In Fig. 3 the dependence of the relativistic rélativistic plasma wavelength with is demonstrated in

plasma wavelengtiA , [note that, according to the variables Fig. , i
accepted in Eqs(1)~(3), the linear plasma wave at=0 Previous studies have shown that energy of electfons

corresponds to the valua =27] on the amplitude pre- positrong accelerated in the field of a relativistic nonlinear
p

sented. Curve 1 corresponds to the case of immobile ions ant§2Ve: in @ cold plasma with immobile ions, can reach a value
of 4m.c“y® [7,16]. In the general case the relativistic factor

of a resonant electron passing from a point with the dimen-
sionless potentia®, to a point with®, is equal to[ 7]

Yacc™ Yaccd 0) + 2'}’2((1)2_ D,), (12

wherevy,..(0)~ vy is the value of the relativistic factor at the
initial point. When u=0, ®,,;,=1/y<®<®~2v [7]
10 1 2 Substituting this maximum and minimum values in EtR),

for the maximum energy of accelerated electrons one obtains

_4 (Yacd ma=47">. With y growth, the maximum energy de-
51 creases due to the decreasabgf,, (see Fig. 1 For the case
\ of electron-positron plasma functiod (d) is symmetric

5 with reference to axi®9=1 and, as it is easy to see, in this
0 j " i " case® ,i,=1/y, ®u=2—1/y. Then, the maximum energy
of accelerated particles isy{.dmax=47 that is, y times
less than that in the cage=0.
FIG. 3. Relativistic plasma wavelength, depending on the If a bunch of charged particles with density(z) and

electric field amplitudeE,, (in dimensionless uniis y=10. 1—u electric chargey,, passes through a plasma, adding to the left
=0; 2-4=0.05; 3-4=0.1; 4~ u=0.5; 5-u=1. side of Eq.(7) the valuea(z) = 8%(qy/|q_|)np(2)/ng_ , we

20
Ap

15 1
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obtain the equation that describes the excitation of steady 75

plasma wake fields by the bunch. In this case the phase ve- Ap

locity is equal to the velocity of the bunch. In this section the 1

properties of RSW's have been investigated by simulation of 71

wake wave generation by charged bunches. 2
Above we have considered the case 1. However, one

can see that the obtained results are valid alsquforl, if 657

we replace E by —E [this new E is normalized to

My wpUpn/dys , @,=(47N0,q%/m, )2, replaceu by 1u, 6_/

replace the subscript by —, and vice versa.
I1l. INFLUENCE OF ELECTRON TEMPERATURE ON 55 : : : ;

RELATIVISTIC NONLINEAR PLASMA WAVES: 0 0.2 0.4 0.6 0.8 1
HYDRODYNAMIC APPROACH E mp

Here we continue to consider the dispersion proper- FIG. 5. Relativistic plasma wavelength in a warm plasma as a
ties of RSW's in the framework of the hydrodynamic function of the wave amplitudéin the dimensionless units y
approach, and investigate relativistic nonlinear waves in a10. 1-7=103% 2—7=10"2; 3—7=4Xx10 2.
warm plasma. Adding the relativistic pressure term
— (¥2INg)(1— BBe)dP/dz[11,14 with P=7(Ng/v¢)° [11]  we obtain
(which is a relativistic generalization of the usual equation of

state for one-dimensional adiabatic compressitm the )\p/Apzagl’Z(lJr bﬁﬁq),
equation of motion of plasma electrons, one can obtain the (16)
equations b= —3/16+37a, }(10—98%+ B*)/8p*
— 2 + 2,-2 2— 2\2/ 26
(’B_Be)d(,iez')’e) =B2E+3ﬂ27'ye(1 ﬁﬁz) ddﬂze' 3778, (2— )71 B°,
(B=Be) where e=8,,/B<<1 is the small parametel = (Be) max:
dE 1 d%d 13 and A, is the wavelength. In the linear cas,af,(—>0) from
T —1-N.. Eqg. (16) it follows that the wavelength decreases with the
dz B? d7? ¢ temperature according to the well known Bohm-Gross dis-

) _ _ persion correlation:A,=\,(1—-37/5%)Y2 On the other

In Eq. (13) Be=ve/c and 7=T/mcc" are the dimensionless hand, in a cold plasmarE0) the wavelength increases due
velocity and temperature of plasma electrong=(1 {4 nonlinearity (see, e.g., Refl15]): A,~\,(1+382/16).
— B2 ~Y2 d=1+]|e|o/m,c?. The plasma ions are assumed g » dene D i

e P PrMel™. p _ Figure 5 shows the dependence of the wavelength on wave
to be immobile due to their large mass. The density of elecampiitude in thermal plasma obtained by simulation of Egs.
tronsNe=ne/ny normalized to the unperturbed valog, as  (13) and(14). In the case of low temperature this dependence
usual, is obtained from the continuity equation almost coincides with that in a cold plasi@mpare curves

_ B 1in Figs. 5 and 8
Ne=BI(B~Be)- (14) In the caseB— 1 equations(13) and (14) can be easily

When 7—0 equations(13) and (14) describe RSW's in a integrated(see also Ref.11]):
cold plasmd5,6]. Note, that the value= 1 corresponds to a
temperature of about%10° K. For laboratory plasmas the d— 1-Be
temperature changes in the bounds10 ¢+ 10?; for star 1+ 8.
plasmasr~10°—1.
The dispersion correlation can be obtained analytically fotOne can see that the thermal term cannot be neglected near
a weakly nonlinear wave, when= B,(z)/8<1. In this case  the wave breaking #.—1) even for low temperatures. In
from equationg13) and (14) we have thel/Jatter case the wave-breaking field is proportional to
- [11].
u\2 s 3 In the framework of hydrodynamic theory the velocity of
gz TututtuT= 0,  plasma electrons cannot exceed the wave phase velocity. Ac-
tually, if B> B, then, according to expressigid), the den-
(15) sity of electrons becomes negative, which makes no physical
sense. In reality, whep.~ 8 in a warm plasmdeven when
the temperature is lo)va considerable amount of electrons
get velocities more than the phase velocity due to their ther-

1/2
—OT|

l+IBe 1/2

1_:8e

- 1} -0. (17

d2u
(ap—a,u+ azuz)g —(a;—2a,u)

ap=1—37/B%, a;=1+37(3—2B%)/?,

a,=3B%/2—37(6—118%12+ B4 B2.

Looking for a solution of Eq(15) as(see, e.g., Ref17]) mal energy distribution. When the temperature is not low,
the energy distribution effect on plasma waves is essential in
u=eUy(V)+e2uy(¥)+e3ug(W)+---, all cases. Therefore, the strong waves near the wave breaking

and whenr is not low can be described correctly in the
dW/dz=A,/A =Kot K+ e2Kkyt e, framework of the kinetic approach.
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FIG. 6. Plasma electron density normalized on its equilibrium Ne (b)
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IV. KINETIC THEORY 21
OF RELATIVISTIC STRONG PLASMA WAVES
2
As in the preceding section, here we assume plasma ions i
to be immobile. The kinetic approach, for one-dimensional
steady fields passing through a warm plasma, gives the fol- 0 | . :
lowing system, obtained from relativistic Vlasov equation 0 10 15 7 20
and Maxwell equationgsee, e.g., Ref.18)):
p_ ot abat 8 25 )
— — | —— — —=0, <p> c
B (1+p2)12|32 72 op (18) p15__ ©
dzq) 0 5 -
— +B%(1-Ng)=0, 19 ' . .
dzz e T T
05 % 10 15 . 4
+ o0
Ne= | tpdp, 20 st 1
wherep=p, is the plasma electron momentum, normalized 2.5
z

to mec, f(p,2) is the distribution function. In an unperturbed
plasma the distribution function is equal to a 1D relativistic
Maxwell distribution[19]

fo=A[1+(1+pH) Y4 rlexd — (1+p*) V¥ 7],

=0.6575. All quantities are in dimensionless units.

(p?)o=1[K1(1)/Ky(1i7)+47],

A=7/2K,(1l7),

FIG. 8. Electric field strengtlia), plasma electron densitip),
and average electron momentup) in a strong plasma field, ex-
cited by a uniform electron bunchy&3, 7=0.1). The rectangles
show the bunch. Zperiodic waven,/ny=0.4; 2—soliton, n,/ng

(1+p?) Y2 g=27+(1— ?)K(1I7)IKy(1/7),

whereK,(x) is the modified Bessel function of theh or-

6
ES
4 \
2
| x
0 T T T T
0 10* 10°* 102 10"

der. In Eq.(21) we also have written out the average squared
pulse and total energy for the one-dimensional equilibrium
distribution f 5, that may be interesting for future investiga-
tions.

Solving Eqg.(18) by the method of characteristi¢see,

FIG. 7. Maximum value of the normalized electric field ampli- €.9., Ref.[20]) and requiring that the functiohreduces to
tude of a nonlinear plasma wave depending on the dimensionledhie equilibrium distribution(21) at ®=1, one obtains the

plasma electron temperature-4=3; 2—y=6; 3—y=10.

following general solution:
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f=A(1+S/m)exp(—S/7), density behind the soliton tends to its equilibrium value
(Ne—1) and the electric field strength tends to zero. How-
S=(1+g)Y2 g=—yBr=(r’—y~3)¥2] (220 ever, in this case the average plasma electron momentum
(p)=[TZpf(p,2)dp/fTZf(p,z)dp tends to a nonzero con-
r=pBp—(1+p?)*+d-1, stant value. This does not seem strange because the solitary
. . wave can be considered as a wave with infinite wavelength.
In the expression fog, the plus sign corresponds to the casepence, hulk motion of plasma electrons behind the solitary
p<pvy and the minus sign t@>pBy; in equilibrium @  \5ye takes place, while the plasma remains neutral. Equa-
=1) we haveg=p. Substituting the expression20) and  ons (18)—(21) have also nonperiodical solutions. However,
(22) in Eqg. (19), one obtains the equation fdr. The plasma  g,ch solutions have no physical seri48] and should be
electron densitN(®) obtained numerically from Eq$20)  considered in the context of nonstationary kinetic theory.
and(22) is presented in Fig. 6. In the case of low tempera-Thys, in a thermal plasma with immobile ions two kinds of

ture, the integral in Eq20) can be calculated by the Laplace sieady waves can exist: periodical waves and solitons.
asymptotic method19]. The value ofN. is at maximum

when®~1/y and is equal to
V. CONCLUSIONS

Nevar=[T(1/4)/4] y( Byl m) Y3 217) ¥~ 0.6y( By) ¥2r ¥4

23) The results presented in this paper supplement the theory
of nonlinear relativistic plasma waves, taking into consider-
According to expressiofi23), in a cold plasmaN,,,—« , ation the motion of ions and finite plasma temperature. It is

which conforms to the previous investigatiofs,6,11.  shown that the nonlinearity leads to the increase of relativis-
When7<1 and®>1/y, the dependencl (®P) is approxi- tic wavelength, while ion motion leads to the wavelength
mately described by expressiod). decrease. For example, in electron-positron plasma the wave-
Simulations of the problem show that the plasma wavelength monotonously decreases as the amplitude increases.
length increases with the wave amplitude and tends to infinThe relativistic wave-breaking field weakly depends on the
ity for a solitary wave(soliton). Figure 7 shows dependence ion mass.
of the maximum value of the amplitudevhich corresponds Contrary to the case of cold plasma, in a warm plasma the
to the maximum of electric field strength in the solitEg) relativistic solitary wavegsolitong can exist. The plasma
on plasma temperature for differept One can see th&,is  wavelength grows monotonously with the amplitude in the
almost constant and equal to the relativistic wave-breakingvarm plasma due to nonlinearity. It has been found that the
field E,¢, for values ofr up to 0.05-0.1 and then decreases maximum electron density in the plasma wave decreases
rapidly. with the temperature &~ Y* and tends to infinity in a cold
As mentioned above, the relativistic plasma waves can bglasma, as was shown by previous investigations.
excited by charged bunches or laser pulses. In order to de-

scribe the excitation of the wake field by a charged bunch, it ACKNOWLEDGMENT
is necessary to add in the left-hand side of B@) the value CKNO G
B?a(z) [the definition ofa(z) seen in Sec. 1l The nonlin- This work has been partially supported by the Interna-

ear periodical wave and the solitary wave excited by uniformtional Science and Technology Center under Project No.
electron bunch are plotted in Fig. 8. The plasma electrorA-013.
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