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Modeling of nonlocal electron kinetics in a low-pressure afterglow plasma
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The electron kinetics in a low-pressure afterglow plasma is studied by means of the time- and space-
dependent Boltzmann~kinetic! equation. A method based on the nonlocal approach is presented, which enables
the nonlocal nature of the electron distribution function~EDF! to be accounted for in a simple manner, without
solving a complicated kinetic equation. Simplified kinetic equations are derived, as well as some analytic
solutions, for obtaining the EDF in terms of its energy-averaged parameters, such as the electron density and
temperature. This allows an energy-balance equation to be used to describe the electron-energy decay at the
kinetic level. To validate the proposed method, the full time- and space-dependent kinetic equation is solved
numerically for an afterglow in Ar. It is observed that under nonlocal conditions the EDF is strongly non-
Maxwellian. As a consequence, the values of the wall potential predicted using the kinetic approach differ
drastically from those obtained on the premise of a Maxwellian EDF. Another striking nonlocal effect mani-
fests itself in a strong spatial inhomogeneity of the electron temperature. The derived energy-balance equation
coupled with the simplified nonlocal kinetic equations reproduce accurately both the spatial profiles and
absolute values of the electron temperature obtained from the full kinetic simulations. An interesting phenom-
enon, obtained numerically and explained in terms of the nonlocal EDF, is that the radial fluxes of different
portions of the EDF have opposite directions. A direct comparison between the fluid and kinetic approaches is
carried out, and it is concluded that the fluid approach fails to describe correctly the essential properties of a
low-pressure afterglow plasma, such as the temporal and spatial evolution of the electron temperature. It is
further demonstrated that the volume-averaged~zero-dimensional! kinetic models can also lead to erroneous
results in describing such plasmas. It is shown that superthermal electrons produced in processes involving
metastables can have a great influence on the plasma decay, particularly on the wall potential and the diffusion-
cooling rate. The present method has the advantage of being simple and semianalytic, and thus can be very
useful in solving complex self-consistent problems.@S1063-651X~98!02312-5#

PACS number~s!: 52.80.2s, 52.65.2y, 52.25.Dg
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I. INTRODUCTION

There has been continuous interest in the afterglow~post-
discharge! plasma during the past several decades. B
monatomic and molecular electropositive, as well as e
tronegative, afterglow plasmas have been intensively inv
tigated. Recently, low-pressure afterglow plasmas have
ceived increased attention owing to the development
power-modulated plasma sources~e.g., Refs.@1,2#! which
offer a number of advantages for plasma processing.
formation of an ion-ion~‘‘electronless’’! plasma has been
observed in a low-pressure electronegative post-disch
plasma~e.g., Ref.@3#!, which is also interesting from a prac
tical point of view.

Owing to the fundamental and practical importance of
afterglow plasma, a great number of simulation models
been developed. The fluid models~also referred to as the
continuum models! have been widely used to simulate th
afterglow~e.g., Refs.@4–6#! and power-modulated~e.g., Ref.
@2#! plasmas. The so-called global~volume-averaged! mod-
els of high-density, low-pressure discharges both for c
tinuous wave and for pulsed-time excitation have recen

*Electronic address: Robert.Arslanbekov@sci.monash.edu.au
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been proposed by Lieberman and co-workers~e.g., Refs.
@1,7#!. In both the fluid and global models, anad hoc as-
sumption of a Maxwellian electron distribution functio
~EDF! is made. There also exists a number of models
which a volume-averaged kinetic treatment is employed
order to predict zero-dimensional EDFs~e.g., Refs.@8,9#!.

We present a kinetic study of a low-pressure aftergl
plasma. In such a plasma the electron kinetics is essent
‘‘nonlocal’’ and so knowledge of the spatial~and temporal!
evolution of the EDF is of vital importance. In fact, estim
tions show that, for typical discharge conditions in Ar, t
EDF at energies of interest is already ‘‘nonlocal’’ when t
gas pressure is less than a few Torr~for a 1-cm-radius dis-
charge!. Since this study requires the solution of a comp
cated time- and space-dependent kinetic equation, it is hig
desirable to develop a method that allows one to account
the nonlocal nature of the EDF in a simple and transpar
manner. With this in mind, we take advantage of the pow
ful nonlocal approach proposed by Bernstein and Holst
@10# and Tsendin@11#, which has recently received renewe
attention~e.g., Refs.@12–17#! due to its physical clarity and
simplicity and numerical efficiency. We also use techniqu
which we have developed for a negative-glow plasma wh
is similar in nature to the afterglow plasma~e.g., Ref.@18#!.

The formulation of the problem is presented in Sec.
7785 © 1998 The American Physical Society
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and the electron Boltzmann equation is introduced. We
the nonlocal approach to obtain simplified kinetic equatio
and some analytic solutions, for describing the nonlocal E
in terms of its energy-averaged parameters, namely, the e
tron density and temperature~mean energy! ~Sec. II B!. This
represents a great advantage since these energy-averag
rameters can be found from the particle- and energy-bala
equations, and thereby the need to solve the full kinetic eq
tion is avoided~Secs. II C and II D!. In Sec. III, we present a
comparison between the fluid and kinetic approaches.
numerical results and discussion are presented in Sec
Section V gives the summary and conclusions.

II. PROBLEM FORMULATION

We consider a low-pressure afterglow plasma. As in
cent papers on nonlocal electron kinetics~e.g., Refs.
@14,13,17#!, a plasma is termed ‘‘low pressure,’’ when th
electron energy-relaxation lengthle exceeds the discharg
chamber characteristic dimensionL ~e.g., L'R/2.4 for a
cylindrical geometry, whereR is the tube radius!, i.e., le
.L. We assume that the gas pressurep is not too low, so
that the electron mean free path for momentum transferla is
small compared toL, i.e., la,L ~collisional regime!. In
principle, the analysis can be applied to describe the deca
any weakly ionized plasma after the input power has b
turned off; such as the positive-column, microwave, R
negative-glow, or other plasmas. Although we conside
collisional plasma, the present methodology and results
be extended to the~nearly! collisionless high-density plas
mas~e.g., Refs.@1,7,2#!. We assume a one-dimensional~1D!
cylindrical geometry. The discharge wall is taken to be
electric, so that the net flux of charges~electrons and ions! at
the wall is zero. We restrict ourselves to the case of a ra
gas~electropositive! discharge. The plasma is considered
consist of two regions, namely,~i! the extensive quasineutra
region, in which the space-charge~ambipolar! potentialF(r )
dominates andn5ni5ne @wheren is the plasma density an
ne (ni) is the electron~ion! density# and ~ii ! the confined
space-charge boundary sheath, which is not resolved
tially, and the presence of which is taken into account
using the appropriate boundary conditions. In the bound
sheath, a steep change~jump! DFw in the potential takes
place which is necessary to confine most of the electrons
to balance total electron and ion currents to the~dielectric!
wall.

A. Electron Boltzmann equation

In this section, we present the electron Boltzmann eq
tion. The details of the kinetic formulation can be found
works by Tsendin~e.g., Refs.@11,19#! and in recently pub-
lished papers~e.g., Refs.@12–17#!. In what follows, we give
a brief description only.

Since we consider a collisional plasma (la,L), the con-
ventional two-term expansion for the EDF can be employ
f (v,r ,t)5 f 0(v,r ,t)1(v/v)•f1(v,r ,t), where f 0 is the iso-
tropic part of the EDF,f1 its directed part (uf1u! f 0), v the
electron velocity (v5uvu), and r the spatial coordinate (r
5ur u). It is then convenient to use the total energye5w
1eF(r ) ~the sum of kinetic energyw5 1

2 mv2 and potential
e
,
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energyeF) as an independent variable.
In the two-term expansion, the isotropic part of the ED

f 0 describes energy transfer in all kinds of collisional pr
cesses, whereas its directed partf1 describes momentum
transfer in collisions with atoms. It is then possible to co
sider thatf1 is quasistationary since its relaxation time
very short, i.e., of the order ofna

21 ~wherena is the electron-
atom collision frequency for momentum transfer!. All
plasma characteristics are assumed to be time depen
such as the EDF itself, as are the electron density and
electron temperature, as well as the space-charge pote
profile, etc., i.e., f 05 f 0(e,r ,t), ne5ne(r ,t), Te
5Te(r ,t), F5F(r ,t), etc. For convenience, in most formu
las that follow the indext is dropped. By representing th
electron-electron (e-e) collision term and the electron-atom
(e-a) elastic-recoil term in the Fokker-Planck form, one c
write the time- and space-dependent kinetic equation
f 0(e,r ,t) as

] f 0

]t
52

1

Aw
¹•AwJr1

1

Aw

]

]e
AwJe1q* , ~1!

where

Jr~e,r !5
1

3
vf152Dr¹ f 0~e,r ! ~2!

is the differential~i.e., energy- and space-resolved! flux in
configuration space andDr5

1
3 lav the electron diffusion co-

efficient,

Je~e,r !5Ve f 01De

] f 0

]e
~3!

is the differential flux in energy space,Ve5Ve1Va andDe
5De1Da are, respectively, the total dynamic-friction an
diffusion coefficients,Va (Ve) and Da (De) represent, re-
spectively, the dynamic-friction and diffusion coefficients
energy space due toe-a (e-e) collisions,Ve52newA1 and
De52newA2 with

A15
1

ne
E

0

w

f 0Aw8dw8, ~4a!

A25
2

3ne
S E

0

w

f 0w83/2dw81w3/2E
w

`

f 0dw8D , ~4b!

where ne is the frequency ofe-e Coulomb collisions,Va
5dnaw and Da5TaVa , d52m/M the fraction of electron
energy lost in a single~quasi!elastice-a collision, andTa the
atom temperature. Other types of quasielastic collisions, s
as collisions with ions~e.g., Ref.@20#! and molecules~e.g.,
excitation of vibrational or rotational states! ~e.g., Ref.@21#!,
can also be included in the kinetic equation in the simi
fashion.

The last termq* (w,r ) in Eq. ~1! describes the production
of energetic~referred to as superthermal! electrons withw
@Te in processes involving metastables, such as metasta
metastable~Penning! ionization and electron-metastable s
perelastic collisions. Under the plasma conditions of inter
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the q* energy spectrum is very narrow and can adequa
be approximated by ad function ~see Ref.@22# for details!,
which gives

q* ~w,r !5Q* ~r !d~w2w* !/Aw, ~5!

whereQ* (r ) is the integral rate at which superthermal ele
trons are generated andw* is their energy; e.g., for the
Penning-ionization process,Q* (r )5bPnm

2 and w* 52em

2e i , wherenm is the metastable density,em the metastable-
state energy,e i the ionization potential, andbP the corre-
sponding rate constant@22#.

The boundary conditions for Eq.~1! in a cylindrical ge-
ometry can be written as

] f 0~e,r !

]r U r 50
r 5r acc~e!,e<eFw

50. ~6!

Here, the first condition takes account of the radial symm
try, and the second condition describes reflection of electr
with e<eFw at the r 5r acc(e) boundary determined by
w(e,r )50; Fw is the ~full ! wall potential, Fw5Fsh
1DFw , with Fsh5F(R) being the space-charge potent
at the boundary sheath. As such,r acc(e)5R for e>eFsh.
For those electrons which can overcome the space-ch
potential barrier (e.eFw) the boundary condition at th
wall can be written as

S v f 0~e,r !
DV

4p D U
r 5R

5S 2Dr~e,r !
] f 0

]r D U
r 5R

, ~7!

where

DV~e!52p
12eDFw /w

11~eDFw /w!3/2
~8!

is the effective loss cone withw5e2eFsh ~see Refs.@23,16#
for details!.

It is straightforward to include inelastic processes invo
ing ground-state atoms~such as direct excitation and ioniza
tion! into the kinetic equation Eq.~1! ~e.g., Refs.@11,15#!.
However, an inelastic process can be important for~trapped!
electrons withe<eFw only provided that its thresholde* is
lower than the wall potential energyeFw ; ~free! electrons
with e.eFw are affected by inelastic processes to a les
degree since they escape rapidly to the wall. Hence, w
eFw,e* , we can ignore such processes, while retainin
good approximation. Inelastic processes involving me
stables~such as stepwise excitation and ionization!, which
typically have low thresholds, can be neglected in the kine
equation compared withe-e and e-a collision processes
~whennm /ne&20, see Ref.@22#!.

The EDF in Eq.~1! is normalized according to

ne~r !5E
eF~r !

`
Ae2eF~r ! f 0~e,r !de. ~9!

It is conventional to define the electron temperatureTe as
2
3 of the mean kinetic energy:
ly

-

-
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ge

-
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Te~r !5
2

3ne
E

eF~r !

`

w3/2f 0~e,r !de. ~10!

Although Te can be introduced only when the EDF is Ma
wellian, we adopt the definition of Eq.~10! in the present
paper. In fact, in a low-pressure afterglow plasma, the E
is close to Maxwellian only at thermal energies~where the
rate ofe-e Coulomb collisions is high! and can be strongly
non-Maxwellian at higher energies~see below!.

The total spatial electron flux can then be calculated a

Ge~r !52E
eF~r !

`
AwDr~e,r !¹ f 0~e,r !de. ~11!

It is appropriate to mention the following concerning th
coefficientsA1 andA2 of Eq. ~4!. These coefficients signifi-
cantly complicate the kinetic equation~1! by making this
equation nonlinear integrodifferential. However, some a
proximations are possible, which can be useful for analy
developments. It can be seen from Eq.~4! that A1→1 and
A2→Te(r ) when w→`. More precisely, numerical result
showed that these coefficients can be approximated as

A1~w,r !5H Aw/Te~r !, w/Te~r !<B,

1, w/Te~r !.B,

A2~w,r !5Te~r !A1~w,r !, ~12!

where the constantsA andB are determined by the shape
the EDF; for a Maxwellian EDF withTe , A'0.385, and
B'2.6 ~e.g., Ref.@24#!.

At this point, the kinetic equation~and its boundary con-
ditions! has been specified and can be solved numerica
However, the direct solution of the full~nonlinear integro-
differential! time- and space-dependent kinetic equation~1!
is a computationally intensive task especially when a s
consistent problem is to be treated. Hence, it is highly de
able to simplify the problem of finding the EDF. At the low
pressures of interest, the key simplification is to use the n
local approach@10,11#. The nonlocal approach can be a
plied provided thatle.L. The following estimate ofle can
be obtained from the kinetic equation~1!:

le'H la /Ad, for Maxwellian electrons,

laAna /~2ne1dna!, otherwise.
~13!

Here, we take into account that for Maxwellian electrons,
e-e dynamic-friction term is~almost! balanced by thee-e
diffusion term, i.e.,Vef 01De] f 0 /]e'0; this is an equiva-
lent condition for the zero Coulomb frequency (ne50).

B. Nonlocal electron distribution function

The so-called nonlocal conditions are realized whenle
.L @11#. Under these conditions, the electrons transit ra
ally without experiencing significant changes in total ener
e. The electrons can then be separated into two dist
groups, namely,trapped ~with e<eFw) and free ~with e
.eFw), as described in the two following paragraphs.

The trapped electrons with a total energye can move only
within a restricted~accessible! volume in the plasmaVacc(e),
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which is determined bye<eF(r ). The explicit dependence
of the trapped EDF on the spatial coordinater is weak and
hence the EDF can be expanded asf 0(e,r )5 f 0

(0)(e)
1 f 0

(1)(e,r ), wheref 0
(1)! f 0

(0) . A kinetic equation in total en-
ergy e can be obtained for trapped electrons by using t
expansion and performing spatial averaging of the kine
equation~1! @11,15#. The trapped electrons transport a ne
ligible current~spatial flux!, despite the fact that they com
prise the majority of electrons. Therefore, it should
stressed that the electron current~spatial flux! cannotbe ex-
pressed in terms of the trapped EDF parameters, namelyne

andTe ~see discussion in Sec. III!. Moreover, under nonloca
conditions, different portions of the electron spectrum mo
radially almost independently (e'const), and their radia
~spatial! fluxes may even have opposite directions~see Sec.
IV and also Ref.@17#!.

The free ~also referred to as untrapped or unconfine!
electrons are able to climb the space-charge potential ba
(e.eFw) and leave the plasma, thereby carrying the el
tron current. The free electrons cannot be described usi
space-averaged kinetic equation, but their kinetic equa
can also be simplified significantly. The reason is that
free electrons can be treated, with high accuracy, using
linear coefficients of Eq.~12!, i.e., in terms ofne and Te .
Under nonlocal conditions, the free electrons escape qui
to the wall; consequently, their EDF is strongly depleted~the
free-electron density is low,nf!ne) and is essentially non
Maxwellian. One can show that even in the situation wh
ne.dna at w'eFw5hTe ~where h is the wall potential
energy in units ofTe), the free EDF is nonlocal~and hence
non-Maxwellian! up to relatively high pressures. Indeed, t
condition thatle'laAna /(2ne).L is satisfied for Ar when
pR2ne,5.731011hTe ~hereinafter,p is expressed in Torr,R
in cm, ne in cm23, andTe in eV!. For typical conditions in
which ne51011 cm23, h53 –4, R51 cm, andTe51 eV,
the above condition for nonlocality of the free EDF is fu
filled for p&10 Torr.

Having introduced the trapped and free electrons, we
derive their simplified kinetic equations. Before doing so
is necessary to refer to the temporal behavior of the co
sponding EDFs. The situation is straightforward for the fr
EDF since the relaxation time of a free electron withe
.eFw is very short, i.e., of the order of the free-diffusio
time, t fd5L2/Dr;1027–1026 s, which is much faster than
the slow time of variation ofne(t) andTe(t). Hence, one can
assume that the free EDF is quasistationary fort*t fd ~where
t50 corresponds to the start of the afterglow!, i.e., its time
dependence is via the slow variation ofne(t) andTe(t) @and
also nm(t), F(t), etc.#. Strictly speaking, the trapped ED
cannot be treated as being quasistationary. However, s
the time of the formation~shaping! of the trapped EDF
@;(2ne1dna)21# is shorter than the slow time of variatio
of ne andTe , as a first approximation it is possible to assum
that the shape of the trapped EDF is determined by the
stantaneous values ofne(r ) and Te(r ). Since we are mos
interested in the shape of the trapped EDF and calculat
energy-averaged parameters (ne and Te) from the particle-
and energy-balance equations~see Secs. II C and II D!, the
above assumption of ‘‘quasistationarity’’ of the trapped ED
is justified.
s
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Accordingly, we write the ~quasistationary! space-
averaged kinetic equation for the trapped electrons~see Refs.
@11,13# for details!:

d

de
AwS Ve

~0! f 0
~0!~e !1De

~0!
d f0

~0!~e !

de D 50, ~14!

where Ve
(0)(e)5AwVe/Aw and De

(0)(e)5AwDe/Aw; the

barred quantitiesX̄(e) designate spatial averages perform
over the accessible volumeVacc(e). This equation can be
solved subject to the boundary conditions ate5eFw , which
can be found in terms of the free EDF. In order to find t
free EDF f 0f(e,r ) for e.eFw , a quasistationary kinetic
equation with the linear coefficientsA1 andA2 (nf!ne) can
well be employed:

1

r

]

]r
AwrDr

] f 0f

]r
1

]

]e
AwS Ve f 0f1De

] f 0f

]e D1Awq* 50,

~15!

whereVe5w(2ne1dna) andDe5w(2neTe1dnaTa). This
equation, subject to the boundary conditions~6! and~7!, can
be easily solved at any instantt5t0.0 during the afterglow,
givenne(r ,t0), Te(r ,t0), F(r ,t0), Fw(t0), andq* (w,r ,t0).

The coupled nonlocal kinetic equations for the trapp
@Eq. ~14!# and free@Eq. ~15!# electrons enable one to solv
the problem of finding the complete EDF. The solution
this problem can be simplified by assuming that the free E
for eFw<e&eFw1Te also depends only one. This can be
done since the wall loss cone at these energies is yet s
enough~i.e., DV!4p) for these electrons to be ‘‘almos
trapped.’’ Introducing a wall loss term into the spac
averaged kinetic equation~14! gives ~see Refs.@13,16# for
details!

2
d

de
AwS Ve

~0! f 0
~0!1De

~0!
d f0

~0!

de D 5
Aw f0

~0!

tw
, ~16!

wheretw5tw(e) is the characteristic time of escape to t
wall for electrons withe>eFw :

tw~e!'
L2

Dr
1

R

2v̄
S DV

4p D 21

. ~17!

It is straightforward to solve numerically the ordinary di
ferential equation~16! in order to find the EDFf 0

(0)(e), and
thus the differential energy fluxJe(e,r ) at e5eFw . We can,
however, simplify the problem even further by using a
proximate analytic solutions for the trapped and free el
trons. Such a solution of Eq.~14! is

f 0
~0!~e !5Cn$exp@C~e!#1C0%, ~18!

whereCn is the normalization constant,C0 is an arbitrary
constant, andC(e)52*0

ede8/T(e8) with

T~e!5
De

~0!~e !

Ve
~0!~e !

'
T̃ew

3/2A12ne1Taw3/2dna

w3/2A12ne1w3/2dna

~19!
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being the characteristic temperature of an electron with
energye and T̃e being the temperature~local slope! of the
Maxwellian part of the EDF~henceforward, we will use the
‘‘tilde’’ over a quantity X, i.e., X̃, to denote that this quantity
is related to the Maxwellian part of the EDF!. Since the
trapped EDF of Eq.~18! is a function only ofe, T̃e is spa-
tially uniform, i.e., T̃e5const. Given the nonlocal EDF
f 0

(0)(e), it is possible to establish the link betweenTe(r ) and

T̃e when the EDF is close to MaxwellianTe(r )'T̃e .
It readily follows from Eq.~19! that, in the energy region

where e-e Coulomb collisions are dominant (2ne@dna),
T(e)'T̃e and, hence, the trapped EDF of Eq.~18! in this
region is Maxwell-Boltzmann

f̃ 0~e!5
2

Ap

ne0

T̃e
3/2

exp~2e/T̃e!, ~20!

where the constantC0 @being important only at energie
close toeFw , see Eq.~23! below# is neglected andne0 is the
electron density at the position of zero reference poten
(r 50 for a cylindrical geometry!.

In order to find the constantC0 in Eq. ~18!, one can apply
a zero boundary conditionf 0

(0)50 at e5eFw , which yields
C052exp@C(eFw)#. However, since in reality the EDF
does not vanish fore.eFw , this approximation allows only
very crude estimates of the EDF and the energy fl
@Je(e,r ), see Eq.~25! below# at e'eFw . In order to im-
prove the accuracy of the calculations, one can use a non
boundary condition ate5eFw , in terms of the free EDF
Since the free EDF fore.eFw falls off sharply with in-
creasing energy, the dynamic-friction termVe

(0)f 0
(0) in Eq.

~16! is smaller than the diffusion termDe
(0)d f0

(0)/de and, as a
first approximation, can be neglected. We can then write
estimate of the free EDF as

f 0f~e!'Cfexp~2e/Tf!. ~21!

Here, Cf is the normalization constant andTf5
1
2 De is the

free-electron ‘‘temperature,’’ whereDe is the energy change
experienced by an electron withe5eFw during the timetw
@see Eq.~17!# it escapes to the wall:

De'A4De
~0!tw. ~22!

A total electron energy ofe'eFw1De must be substituted
into the right-hand side of Eq.~22!, thus yielding an alge-
braic equation forDe. We can now find the desired consta
C0 in Eq. ~18! by matching the EDFs, and the energy fluxe
for e<eFw @Eq. ~18!# ande>eFw @Eq. ~21!#, which gives

f 0
~0!'CnH exp@C~e!#2Fexp~C!S 12

Tf

T D G
eFw

J . ~23!

Given the nonlocal EDFf 0
(0)(e), the small perturbation

term f 0
(1)(e,r ), and thus the differential spatial flu

Jr
(1)(e,r ), can be found from a quasistationary kinetic equ

tion for the trapped electrons~see Ref.@11# for details!
n

al

x

ro

n

,

-

Jr
~1!52Dr¹ f 0

~1!5
1

r E0

r ]

]e
~AwJe

~0!!r 8dr8, ~24!

whereJe
(0)(e,r ) is the differential energy flux of Eq.~3! in

terms of the nonlocal EDFf 0
(0)(e):

Je
~0!~e,r !5Ve~e,r ! f 0

~0!~e !1De~e,r !
d f0

~0!~e !

de
. ~25!

The total electron flux consists of two fluxes, namely,

Ge~r !5Ge
~ t!~r !1Ge

~ f!~r !, ~26!

whereGe
(t)5Ge(e<eFw) is the trapped-electron flux~inte-

gral of Jr
(1)) andGe

(f)5Ge(e>eFw) is the free-electron flux.
The free-electron flux, in its turn, also consists of two flux

Ge
~ f!~r !5Ge

~e!~r !1Ge
~s!~r !, ~27!

whereGe
(s)5(1/r )*0

r Q* (r 8)r 8dr8 is the flux of supertherma
electrons withe.eFw andGe

(e) is the electron flux out of the
potential well (e<eFw)

Ge
~e!~r !5

1

r E0

r
AwJe

~0!~e,r 8!ue5eFw
r 8dr8, ~28!

where we approximatedJe(e,r )'Je
(0)(e,r ).

In the nonlocal approach, the differential energy fl
Je(e,r ) at e5eFw has the physical meaning:Je(e,r ) ~and
so Ge

(e)) determines the rate of the electron flow out of t
trapped ‘‘reservoir’’ (e<eFw) into the ‘‘sink’’ region (e
.eFw) via the ‘‘orifice’’ in energy space ate5eFw . Pro-
vided that the fluxes of trapped and superthermal electr
are small, all the electron current is due toGe

(e) , i.e., Ge

'Ge
(e) . To quantify the contribution of superthermal ele

trons to the total electron flux, it is convenient to introdu
the ratiog5Ge

(s)/Ge , e.g.,g→1 when almost all the electron
flux is transported by superthermal electrons~see Sec. II E!.

C. Description of the ions and the space-charge
potential profile

In the present paper, the plasma is considered to con
only positive ions. The ions can be satisfactorily described
the fluid approximation by employing the continuity equ
tion

]ni

]t
1¹•G i5Qi* , ~29!

where Qi* represents the ion production rate in proces
involving metastables~e.g., Penning ionization! and the ion
~particle! flux is

G i52Di¹ni2nim iE. ~30!

Here,E52¹F is the space-charge electric field,Di the ion
diffusion coefficient, andm i the ion mobility;Di /m i5Ti /e
with Ti being the ion temperature~here,Ti5Ta).

The link between the plasma-density and space-cha
potential profiles,n(r )5n@F(r )#, can be established by Eq
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~9! via the nonlocal EDFf 0
(0)(e). Only when the relationship

between these profiles has the Boltzmann form, i.e.n
}exp(2eF/Te), does the expression~30! for the ion flux re-
duce to its familiar form

G i52Di~11Te /Ta!¹ni52Damb¹ni , ~31!

whereDamb is the ambipolar-diffusion coefficient. Provide
that Eq.~31! is satisfied, Eq.~29! is a linear diffusion equa-
tion. In general, Eqs.~29! and ~30! coupled with Eq.~9!
result in a nonlinear equation forn(r ,t) @and F(r ,t)# ~see
Ref. @11# for details!. Since we do not solve a self-consiste
problem, we assume that Eq.~31! is satisfied.

The Bohm boundary condition can be used for Eq.~29!:
G iw5niwvB , where vB5ATew /M is the Bohm velocity
@hereinafter, the subscript w inXw will denote thatX(r ) is
evaluated at the wall, i.e.,Xw5X(r 5R)#. This condition
yields the ratiox of the plasma density at the dischar
center (n0) to that at the wall (nw) as x5n0 /nw

'(2L/l i)ATa /Tew, wherel i is the ion mean free path.
In order to calculate the space-charge potential pro

F(r ), a self-consistent problem must be solved. This can
done by coupling the Boltzmann equation for the electro
the continuity equation for the ions, and Poisson’s equat
To avoid having to solve the space-dependent Boltzm
equation, e.g., in the fluid approach, the electron flux (Ge) is
represented in terms ofne and Te . However, since such a
representation cannot be employed~see Sec. III!, the prob-
lem cannot be simplified by this means. Moreover, the dir
solution of Poisson’s equation is complicated by the fact t
it involves a small difference between two large values (ne
and ni), which requires high-precision~and high-stability!
numerical schemes~e.g., Ref.@2#!. It is thus far more conve-
nient to divide the discharge volume spatially into
quasineutral plasma and a space-charge boundary shea
the quasineutral plasma, Poisson’s equation is redundan
space-charge potential profileF(r ) can be found from the
continuity equation for the ions@Eqs.~29! and~30!#, and the
plasma-density profilen(r ) can then be calculated from Eq
~9! ~see Refs.@11,13# for details!. The boundary sheath~in
which the potential jumpDFw occurs! can be considered to
be infinitely thin and fully collisionless for the electrons, an
hence does not have to be resolved spatially.

For the purposes of studying the electron kinetics, kno
edge of the exact, self-consistent space-charge potential
file F(r ) is not necessary. Moreover, the nonlocal trapp
EDF ~being a function only ofe) should not be sensitive to
the exact shape ofF(r ). This is also true for the free elec
trons with e.eFw.eF(r ). Hence, a modelF(r ) can be
used, for which an approximate expression can be obta
by assuming that the EDF is close to Maxwellian withTe
and that the plasma-density profile is Bessel-like, wh
gives

F~r !5~Te /e!ln@x1~12x!J0~2.4r /R!#, ~32!

whereJ0 is the zeroth-order Bessel function. As such,Fsh
5(Te /e)ln x.

The wall potential jumpDFw , or the~full ! wall potential
Fw5Fsh1DFw , can be calculated by equating the electr
flux at the wall@Gew of Eq. ~11!# to the ion flux@G iw of Eq.
t

le
e

s,
n.
n

t
t

. In
the

l-
ro-
d

ed

h

~30!#. Using the complete definitions of these fluxes comp
cates findingDFw . In order to avoid a complicated solution
we can use the approximate expression for the ion flux@Eq.
~31!# and the nonlocal approach for finding the EDF~see
Sec. II B! to obtain the following equation forFw :

G iw5
1

~12gw!RE0

R
AwJe

~0!~e,r 8!ue5eFw
r 8dr8. ~33!

Here, the differential energy fluxJe
(0) is given by Eq.~25! in

which the nonlocal EDFf 0
(0)(e) can be found by using the

techniques derived in Sec. II B. The simplest technique c
sists in employing the analytic EDFf 0

(0)(e) of Eq. ~23! in
Eq. ~33!, which thus gives a simple transcendental equat
for Fw . In order to obtain an estimate ofFw , one can apply
a zero boundary condition ate5eFw for the EDF of Eq.
~18! @i.e., f 0

(0)(e5eFw)50#, which yields@25#

Fw'
T̃e

e
lnF S eFw

T̃e
D 3/2

~tambne!~12gw!21G
eFw

, ~34!

where the right-hand side is to be evaluated ate'eFw , ne

5^ne&1dnaTa /(2T̃e), and tamb5L2/Damb is the
ambipolar-diffusion time.

One can now see from Eq.~34! thatFw ~and henceDFw)
is a function of the plasma parameters, i.e.,Fw

5Fw(ne ,T̃e ,p,gw ,R, . . . ). Since typically ne'^ne&, the
value of Fw is determined essentially by the produ
tamb̂ ne& at w'eFw ; provided that this product is not large
the values of the potential jumpDFw5Fw2Fsh can be as
low as ;Te /e ~for gw50), as has been predicted in Re
@26#. Conversely, whengw5g(R)→1 @see Eq. ~34!#,
anomalously high potential jumpsDFw can occur~see Refs.
@25,22# and Sec. II E!. These results contradict those o
tained on the premise of a Maxwellian EDF, which yield n
dependence ofDFw on the major plasma parameters a
predict thatDFw@Te /e @see Eq.~49! and discussion in Sec
III below#.

D. Energy balance of the trapped electrons

In order to find the electron temperature~or the mean
energy!, an energy-balance equation can be derived. Ho
ever, this equation can be obtained and used only when
EDF ~or its shape! is known via its parametric dependenc
on Te ; otherwise, when no such knowledge is available,
energy-balance equation cannot be used and a full kin
equation must be solved. Since we have derived techniq
for obtaining the trapped EDF in terms ofTe ~andne) ~see
Sec. II B!, we can indeed use an energy-balance equatio

Since under nonlocal conditions the electron ensem
consists of two distinct groups~namely, trapped-free! which
exhibit different behaviors both in energy and in configu
tion spaces, an energy balance of all electronscannotgive Te
~see also discussion in Sec. III!. Instead, an energy balanc
of the trapped electrons must be considered, for which
associated equation can be obtained by multiplying the
netic equation~1! by w(e,r ) and integrating over the energ
interval e<eFw . Under nonlocal conditions (le.L), the
whole plasma volume contributes to the electron tempera
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formation, and it is useful to perform spatial averaging o
space-dependent energy-balance equation. Keeping onl
main terms, one then gets

]

]tS 3

2
^neTe& D5^Hdc&1^Hea&1^Hs&, ~35!

where ^•••& denotes spatial~volume! averaging andHs is
the heating rate of the trapped electrons in Coulomb co
sions with superthermal electrons~see Sec. II E!. The two
remaining terms in Eq.~35!, together with the two terms
which were neglected, are described below.

In Eq. ~35!, Hdc5Hdc
(0) is the diffusion-cooling term:

Hdc
~0!~r !5w3/2Je

~0!~e,r !ue5eFw
. ~36!

Conceptually,Hdc represents the rate of transport of ener
to the wall by those electrons which can overcome the sp
charge potential barrier. For the trapped electrons, diffus
cooling thus occurs due to the energy outflow inenergy
space ate5eFw , and not due to spatial diffusion against th
space-charge field in the plasma and in the boundary she
The latter mechanism is a result of the spatial inhomogen
of the trapped EDF (} f 0

(1)) and its rate is

Hdc
~1!~r !5E

eF~r !

eFw
w¹•~AwDr¹ f 0

~1!!de. ~37!

It can be shown that this term is small compared withHdc
and hence can be neglected. Indeed, as an upper esti
^Hdc

(1)&'^eGe
(t)E&, whereas^Hdc

(0)&'^eGeE& @see Eq.~38!
below#, hencê Hdc

(1)&/^Hdc
(0)&'Ge

(t)/Ge!1. It is interesting to
note that the diffusion cooling as a result of spatial motio
i.e., Hdc

(1) , may become the ‘‘diffusion heating’’ when th
trapped-electron flux is inwardly directed, i.e.,Ge

(t),0. By
contrast, the diffusion cooling resulting from motion in e
ergy space is always cooling, i.e.,Hdc

(0),0. Taking into ac-
count thatHdc(r )52w(eFw ,r )¹•Ge

(e) , one can obtain the
diffusion-cooling rate in a more explicit form:

^Hdc&52~2/R!eDFwGew
~e!1^eGe

~e!E&, ~38!

where the first and second terms can be identified with,
spectively, energy losses resulting from diffusion against
space-charge field in the boundary sheath and in the pla
(E,0); in other words,Hdc represents the work that th
~trapped! electrons do on this electric field. It can be se
from Eq. ~38! that the diffusion-cooling rate is sensitive
the amount of electron flux carried by superthermal electr
sinceHdc}(12g)Ge ; e.g., wheng51, Hdc50 ~see discus-
sion in Sec. II E!. Only when the contribution of superthe
mal electrons toGe is small ~i.e., g50) doesHdc reduce to
its familiar form

^Hdc&52~2/R!DFwj w1^ jE&, ~39!

where j 5 j e5 j i with j e5eGe ( j i5eG i) being the electron
~ion! current density.

In Eq. ~35!, Hea represents the rate of exchange of ene
as a result of elastic-recoil collisions between the trap
the

i-

e-
n

th.
ty

ate,

,

e-
e

ma

s

y
d

electrons and atoms; this term can be calculated using
trapped EDFf 0

(0)(e) of Eq. ~23!:

Hea~r !52E
eF~r !

eFw AwS Vaf 0
~0!1Da

d f0
~0!

de D de. ~40!

Only when the trapped EDF is close to Maxwellian@i.e.,
f 0

(0)5 f̃ 0 of Eq. ~20!#, does this expression forHea reduce to
its familiar form @see Eq.~46! below#; otherwise Eqs.~40!
and~46! may differ significantly. It is then possible to sho
that for heavy gases~such as Ar, Kr, etc.!, in which the
thermal contact between electrons and atoms is ‘‘poor’’~due
to the small values ofd andna at low energies!, the rate of
cooling ine-a collisions becomes smaller than the diffusio
cooling rate~i.e., Hea!Hdc), when Te is not high and the
pressure is low. This fact was invoked in the literature
describe the situation in whichTe falls below Ta in a low-
pressure afterglow plasma~see Refs.@5,26# for details!.

In writing Eq. ~35! we also neglected cooling of th
trapped electrons that arises from Coulomb collisions w
free electrons, for which the rate is

H f~r !5E
eFw

`
AwS Vef 0f1De

] f 0f

]e Dde. ~41!

It is easy to calculate this rate in terms of the free ED
f 0f(e,r ) from Eq.~15!. However, due to fact that the densi
of free electrons,nf , is low @they escape to the wall ver
quickly, nf'(t fd /tamb)ne!ne#, H f is small. Indeed, one can
show thatH f'2ne(eFw)eFwnf(12Te /Tf), where Tf,Te
and so H f,0. Since Gew'(R/2)nf /t fd , one obtains
H f /Hdc'22ne(eFw)t fd(12Te /Tf)!1 since 2ne(eFw)t fd
!1 under nonlocal conditions. Hence, for the sake of s
plicity, we have neglected this term. Note that in a stea
state negative-glow plasma in the presence of an ioniza
source, there exists a substantial hot-electron population
Tf@Te ~for w<e* ), and trapped electrons can be heat
efficiently (H f.0), instead of being cooled, in Coulomb co
lisions with these hot electrons~e.g., Ref.@18#!.

Other mechanisms to be included into the energy-bala
equation~35! are inelastic processes involving ground-sta
atoms~e.g., direct or stepwise excitation and ionization! ~see
also Sec. II E!. However, only inelastic processes with~low!
thresholdse* ,eFw are to be considered; those withe*
>eFw do not affect the energy balance of the trapped el
trons withe<eFw .

E. Influence of the superthermal electrons

The processes involving metastables result in the prod
tion of energetic~superthermal! electrons withw@Te . The
importance of superthermal electrons in electron-energy
cay has been pointed out already in early studies~e.g., Refs.
@27,24#!. More recently, it has been concluded that the
electrons can have a vital influence on the wall potential a
the diffusion-cooling rate@25,22#. The heating rate@Hs in
Eq. ~35!# of the trapped electrons by superthermal electro
can be calculated as~see Refs.@24,25,22,18# for more de-
tails!
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Hs~r !'E
eFw

`
AwVef 0sde5Q* ~r !eeff* ~r !, ~42!

where f 0s5 f 0s(e,r ) is the superthermal EDF@}q* in Eq.
~1!# and eeff is the effective energy~in units of eV! trans-
ferred to the trapped electrons in Coulomb collisions w
superthermal electrons; it can be estimated as~when w*
.eFw)

eeff* 'w* ~2net fd!uw5w* . ~43!

Hence, only a fraction~determined by the product 2net fd at
w5w* ) of the superthermal energyw* goes into heating of
the trapped electrons. For example, the higherne is ~or ne),
the larger this fraction is; whereas the quicker the supert
mal electrons escape to the wall~the shortert fd), the smaller
this fraction is. Therefore, correct values forHs can be ob-
tained only at the kinetic level~see Ref.@18# and Sec. II F!.

Let us now discuss briefly the influence of supertherm
electrons on the wall potential (Fw) and the diffusion-
cooling rate (Hdc) ~see Refs.@25,22# for details!. It can be
seen from the expressions forFw @Eq. ~34!# and ^Hdc& @Eq.
~38!# that they both contain the factor (12gw): Fw}
2 ln(12gw) and^Hdc&}(12gw). Hence, account was take
of the fact that the fluxGe

(e) out of the potential well is less
than the total electron fluxGe (5G i) by an amount equal to
the flux of ~free! superthermal electronsGe

(s) @see Eq.~27!#
~note thatGe

(t)50 at the wall!. When gw is increased, the
diffusion-cooling rate is reduced@despite the increase in th
wall potentialFw , see Eq.~34!# and asgw→1, ^Hdc&→0.
Physically this means that asgw→1, eFw increases to a
value (;w* ) at which most of the bulk electrons are trapp
inside the discharge volume. In this case the~free! superther-
mal electrons ensure equality of the ion and electron fluxe
the wall, as well as energy expenditures in maintaining
space-charge field in the plasma and the potential jump in
boundary sheath. Since the superthermal electrons obtain
ergy from excited states, diffusion cooling of the trapp
electrons ‘‘shuts off’’ under these conditions. During th
transition from gw!1 to gw51, the diffusion cooling is
gradually reduced, since the part of the work required
maintain the space-charge field comes from potential ene
stored in excited atoms.

Finally, it should be mentioned that, although it is po
sible to neglect the processes involving metastables in
kinetic equation~see Sec. II A!, these processes, such
stepwise excitation~and de-excitation! and ionization, can be
important in the energy balance of the trapped electr
~e.g., Refs.@22,9#!. Typically for rare gases, the lowest met
stable state is the most populated, and stepwise excita
from this state to the nearest metastable or resonance s
may represent an efficient cooling mechanism. Note also
heating produced by recombination, in which an energy
lease of the order ofTe per electron occurs, can be ruled o
owing to the low gas pressures.

F. Comparison with the volume-averaged kinetic models

The importance of the nonlocal nature of the electr
spectrum in describing low-pressure plasmas is now well
derstood~e.g., Refs.@11–14,17,19,18#!. There exists, how-
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ever, a number of models which employs a volume-avera
kinetic treatment to obtain spatially uniform~zero-
dimensional! EDFs~e.g., Refs.@8,9#!. In order to account for
the removal of electrons to the wall, the spatial-diffusi
term in a volume-averaged~zero-dimensional! kinetic equa-
tion is often written in thet approximation~e.g., Refs.@8,9#!:
¹•(Dr¹f 0)'2 f 0 /tchar. Some models~e.g., Ref.@9#! take
the ambipolar-diffusion timetamb, as the characteristic re
moval time tchar, i.e., tchar(w)'tamb ~see also Ref.@5#!.
Thus, such models assume thatall electrons diffuse to the
wall at thesamerate}tamb. In reality, however, free elec
trons diffuse to the wall in a free-diffusion time (t fd) which
is shorter thantamb by orders of magnitude~i.e., t fd!tamb);
by contrast, the lifetime of a trapped electron can be subs
tially lower thantamb. Only on average does the diffusio
time of an electron ensemble matchtamb. Attempts to intro-
duce more complicated~energy-dependent! expressions for
tchar(w) ~e.g., Ref.@8#! do not improve the accuracy of suc
models. The volume-averaged kinetic treatment under n
local conditions may lead to erroneous results, as illustra
in the two following examples.

The first example is that a volume-averaged kinetic mo
does not allow one to obtain correct values for the heat
rate Hs in Eq. ~35!. Indeed, such a model predicts that t
removal of superthermal electrons takes place in a slow t
of tamb, and so thateeff* 'w* (2netamb) @see Eq.~43!#. Spe-
cifically, a volume-averaged kinetic model is used in Ref.@9#
to study the plasma decay at rather low gas pressures, an
obtain reasonable agreement with experiment~for Te val-
ues!, the energy of superthermal electrons (w* ) had to be
reduced by a factor of;20, from 11 to 0.5 eV~in Ne!. Most
likely, this can be explained by the energy-transfer r
(}eeff* ) being significantly overestimated.

The second example is that a volume-averaged kin
model fails to describe correctly the diffusion-cooling ra
Indeed, the model of Ref.@9# predicts that Hdc'
2neTe /tamb, which is significantly lower compared with
that obtained using the nonlocal kinetic description, name
Hdc'2neeFw /tamb @see Eq. ~38!#. Since the diffusion-
cooling mechanism is very important at low gas pressu
~see Sec. II D!, this may also explain the discrepancies~too
high values ofTe predicted! between the model prediction
and experimental data observed in Ref.@9#.

III. THE FLUID APPROACH AND ITS COMPARISON
WITH THE KINETIC DESCRIPTION

The fluid approach is widely used to model dischar
plasmas in general, and the afterglow plasma in particu
~e.g., Refs.@4–6,2#!. The details of the fluid approximation
can be found in a number of textbooks on plasma phys
~e.g., Refs.@20,28#!; here we give only a brief description.

In the fluid approach, the whole electron ensemble~i.e.,
from w50 to w5`) is replaced by an ‘‘average’’ electron
to which unique and unidirectional~i.e., not energy-resolved!
particle and energy fluxes are assigned, and the contin
equations are used. Moreover, it is assumed that the ED
Maxwellian. The electron spatial flux is resolved into th
diffusion and drift components:

Ĝe52D̂e¹ne1nem̂eE, ~44!
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where D̂e5T̂e /(m^na&̂) and D̂e /m̂e5T̂e /e, and ^••• &̂ de-
notes averaging over a Maxwellian EDF withT̂e ~hencefor-
ward, we will use the ‘‘hat’’ over a quantityX, i.e., X̂, to
denote that this quantity is obtained in the fluid approach!.

The energy-balance equation takes the well-known fo
~e.g., Refs.@5,20,28#!

]

]tF3

2
ne~r !T̂e~r !G52¹•q̂e1eĜeE1Ĥea1Ĥ inel , ~45!

whereĤ inel represents the cooling rate in inelastic collision
such as direct~or stepwise! excitation and ionization,Ĥea is
the rate of energy exchange between electrons and atom

Ĥea~r !52ne~12Ta /T̂e!^wdna&̂, ~46!

where a Maxwellian EDF withT̂e is assumed and Eq.~40! is
employed,q̂e is the electron heat flux which is expressed
terms of the conduction and convection fluxes

q̂e~r !52K̂e¹T̂e1
5

2
ĜeT̂e , ~47!

where K̂e5K̂e(ne ,T̂e)55neT̂e /(2m^na&̂) is the thermal
conductivity. The boundary condition at the wall for Eq.~45!
becomes

q̂ew5~2T̂e1DF̂w!Ĝew , ~48!

whereĜew is the electron flux at the wall (5nwvB , accord-
ing to the Bohm boundary condition, see Sec. II C!. The first
term (2T̂e) in Eq. ~48! is the mean kinetic energy lost b
Maxwellian electrons to the wall. The second term (DF̂w) in
Eq. ~48! is the mean kinetic energy lost due to the poten
difference between the plasma and the wall; the outward
flux related to this term represents the diffusion-cooli
mechanism resulting from diffusion against the space-cha
field in the boundary sheath@see the first term in Eq.~39!#.

In order to calculate the potential jump in the bounda
sheathDF̂w , anad hocassumption of a Maxwellian EDF i
usually employed, which leads to the familiar expression

DF̂w5~ T̂e/2e!ln@MT̂e /~mTa!#. ~49!

The wall potential is nowF̂w5F̂sh1DF̂w , where F̂sh

5(T̂e /e)ln x ~see Sec. II C!.
The fluid and kinetic approaches differ in a number

respects. Under nonlocal conditions, these differences are
only qualitative, but also quantitative. Here we give so
examples.

~i! In the fluid approach, the electron fluxĜe is repre-
sented in terms ofne and Te ~and their gradients! @see Eq.
~44!# which are parameters for the trapped electronsnf
!ne). However, under nonlocal conditions, the trappe
electron flux is negligible compared with the total electr
flux, and practically all the electron flux is due to free diff
sion of the unconfined~free! electrons. Moreover, the spatia
fluxes of different portions of the EDF may be in differe
~opposite! directions ~see Sec. IV!, whereas the fluid ap
,
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e
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proach predicts thatall electrons diffuse in the same direc
tion ~towards the wall!. Hence, the representation of Eq.~44!
cannot be justified from a physical point of view.

~ii ! By the same reasoning as for point~i!, the represen-
tation of the electron heat fluxq̂e in terms of the electron
temperature and its gradients@see Eq.~47!# is not justified.
As an example, due to the high thermal conductivity~i.e.,
largeK̂e), the electron temperature is spatially uniform@i.e.,
T̂e(r )5const#, as predicted by the fluid approach; wherea
strong spatial inhomogeneity ofTe can exist, as predicted b
the kinetic approach~see Sec. IV!.

~iii ! Since the assumption of a Maxwellian EDF is mad
the fluid approach fails to predict correct values for the w
potential jumpDFw , and thus forFw . Indeed, the kinetic
calculations show that the EDF can be strongly no
Maxwellian and that the expression forFw involves the de-
pendence on such important plasma parameters as ele
density, pressure, superthermal flux, etc.@see Eq.~34!#. Not
only is DF̂w of Eq. ~49! independent of these paramete
but also its value is, as a rule, excessively high~i.e., DF̂w
@Te /e). One of the direct impacts of this fact is that th
fluid approach significantly overestimates the diffusio
cooling rate (}Fw). Since the diffusion-cooling mechanism
is dominant under low pressures, the latter can lead to e
neous predictions of the energy-decay rate, as will be sho
in Sec. IV.

~iv! Since the fluid energy-balance equation~45! applies
to all electrons~e.g., no distinction is made between trapp
and free electrons!, it involves the termH inel describing
losses of energy in inelastic processes with, in principle,
thresholde* . In the kinetic energy-balance equation~35!,
only inelastic processes with thresholdse* <eFw are to be
included. Since typically~at least for rare gases!, the condi-
tion thateFw,e* is satisfied, inelastic processes do not
fect the energy balance of the trapped electrons. By cont
the contribution of inelastic processes into the fluid ene
balance can be very important~especially in the early after
glow whenTe is high!.

~v! By the same reasoning as for point~iv!, in the fluid
approach, it is not possible to describe correctly the influe
of superthermal electrons~e.g., on the wall potential and th
diffusion-cooling rate!, as well as the heating rate by supe
thermal electrons, since the electron ensemble is not reso
into different groups~see Sec. II E!.

IV. NUMERICAL RESULTS AND DISCUSSION

In order to validate the present method, the full time- a
space-dependent kinetic equation~1! was solved numerically
in a 1D cylindrical geometry, subject to the boundary con
tions ~6! and~7!. The numerical scheme consisted in writin
the kinetic equation in a discrete form and applying
central-difference operator on a 2D~total-energy–radius!
grid. The numbers of energy and radial cells were 200–4
and 30–50. The treatment of thee-e collision integral was
made by using the discretization method proposed by Ro
wood @29# ~see also Ref.@30#!. @Note that the matrix coeffi-
cients corresponding to thee-e collisional integral were ob-
tained by Rockwood for thev f 0 formulation; it is
straightforward~though lengthy! to calculate these coeffi
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cients for thef 0 formulation used in the present work~see
also Ref.@31#!.# A similar technique has been used in Re
@32# for a steady-state positive-column plasma. It should
mentioned that calculations of a steady-state EDF of
trapped electrons have been carried out in Ref.@12# for a 1D
geometry and in Ref.@14# for a 2D geometry by employing a
space-averaged~nonlocal! kinetic equation which also in
cludes thee-e collisional integral. Basically, due to th
strong influence of thee-e collision integral, very small time
stepsDt have to be employed to avoid numerical instab
ties, i.e.,Dt!ne

21 . As in Ref. @30#, an implicitlike scheme
~for the e-e collisional integral! was used which is~in prin-
ciple! unconditionally stable and allows reasonable tim
steps. Such a scheme enabledDt;ne

21(emin) to be used,
whereemin is the minimum energy of thee grid ~typically,
emin5Te/25 andDt;1029–1028 s). The time stepDt was
controlled by verifying at every step that the energy-bala
equation is satisfied within a relative precision of 1023, or
better. Test runs were performed with different time steps
ensure that the chosen precision is sufficient. In order
allow for the increase inne with time (ne}Te

23/2), Dt was
decreased dynamically to follow this dependence. Howe
no special efforts were made to optimize the code and a
kinetic simulation from Eq.~1! of ;50 ms into the after-
glow took about 3 days of CPU time on a medium
performance workstation. The long computational time c
also be explained by the fact that a great number of t
steps had to be performed.

We present here simulations for an afterglow in Ar atp
50.5 Torr and at room temperature (Ta5300 K), for R
51 cm. We tookna51.731010p(w/e* )3/2 s21 from Ref.
@17# and Di540/p cm2 s21. Under the studied conditions
the inequalitiesla,L andle.L are well satisfied at ener
gies of interest ~e.g., at w55 eV, la50.06 cm and
la /Ad510 cm!. Attention is focused primarily on the earl
afterglow, whenTe is relatively high and the influence o
superthermal electrons is not as important as in the late
terglow ~e.g., Refs.@27,24,25,22#!. Hence, the numerica
simulations were performed assuming that there are no m
stables present, i.e.,Q* 50. As discussed previously, in th
simulations of the EDF decay, we used Eq.~32! to calculate
F(r ) and Eq.~33! @in which the analytic EDF of Eq.~23!
was employed# to find Fw . At every time stept1Dt, F(r )
andFw were calculated explicitly, i.e., using the plasma p
rameters from the previous time stept. Since these formulas
involve only the energy-averaged parameters~such asne and
Te), which evolve slowly with time, such a procedure
likely to be correct. The fact thatF(r ) ~and hence the inte
gration domain! changes from one time step to another
sults in a problem of a ‘‘moving grid.’’ However, since ver
small time steps were used (Dt;1029–1028 s), F(r )
hardly changed in one time step and performing simple~lin-
ear! interpolation or extrapolation to update the EDF for ea
new F(r ) proved to be adequate.

In order to initiate a simulation of an afterglow plasm
one has to know the EDF at the start of the afterglowt
50. In general, it necessary to start with an EDF wh
corresponds to the ‘‘power-on’’ period of the discharge~e.g.,
Ref. @9#! and which can be obtained from a steady-state
netic equation with a source term~e.g., due to an applied
.
e
e

e

o
to

r,
ll

n
e

f-

ta-

-

-

h

,

i-

electric field, a microwave power, or an external ionizati
source!. Together with the EDF, all other initial plasma p
rameters, such asF(r ) andFw , at t50 can be found and a
smooth transition from the ‘‘power-on’’ period to th
‘‘power-off’’ period can be achieved. Since we do not kno
such a steady-state EDF, we first chose the initialne andTe
and then took the EDF from Eq.~16! ~corresponding to these
initial ne andTe) to be the initial EDF. We also tried othe
types of EDF~with the samene and Te), such as a single
Maxwellian, as well as a bi-Maxwellian fore,eFw and e
.eFw . We then observed that the shape of the initial ED
affects only the beginning of the afterglow fort&t fd;0.1–
1 ms. The reason is that once the free electrons of the in
EDF have escaped to the wall~in a short time of;t fd), a
flow of electrons out of the potential well (e<eFw) into the
free region (e.eFw) appears and the shape of the initi
EDF becomes more or less unimportant. Since our met
assumes a quasistationary free EDF, it cannot be applie
the beginning of the afterglow~say whent&1 ms) and
some discrepancies can be observed during this period. H
ever, since no significant changes inne andTe occur during
this period, such discrepancies are not important. By us
the initial EDF from Eq.~16!, runs with various initialne and
Te were carried out, and the case presented here is for typ
ne0(t50)50.331011 cm23 andTe0(t50)53.1 eV.

Figure 1 depicts the EDFsf 0(e,r ,t) obtained from the
full kinetic calculations from Eq.~1! at different instantst
during the afterglow. One can see that the trapped EDFe
<eFw) depends essentially on total energy only, and so
spatially homogeneous. On the contrary, the free EDFe
.eFw) exhibits significant spatial inhomogeneity and
strongly depleted. The whole EDF is thus essentially n
Maxwellian and is close to Maxwellian only at thermal e
ergies~see Fig. 1!.

The values of the electron current density at the wall (j ew)
obtained from the computed EDFsf 0(e,r ,t) are shown in
Fig. 2. The values of the ion current density (j iw) at the wall
are also plotted for comparison. One can see thatj ew and j iw
are in close agreement, which implies that the values ofFw

FIG. 1. EDFs at different instantst during the afterglow ob-
tained from the numerical solution of the full kinetic equation~1!:
the solid lines represent the EDFs atr 50 and the dashed line
represent those atr 5R. The dash-dot lines indicate the Maxwellia
parts of the EDF. The vertical arrows show the values of the w
potential energye5eFw .
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are predicted by the present method@see Eq.~33!, in which
j ew5 j iw# with good accuracy. Only at the beginning of th
afterglow (t&1 ms!, there is a notable discrepancy betwe
j ew and j iw , the reason for which was discussed above. T
facts that the dependence ofFw on j iw is logarithmic@e.g.,
see Eq.~34!# and that the difference betweenj ew and j iw is
small (,15%, see Fig. 2! suggest that the error in predictin
Fw is even smaller (!15%). Also shown in Fig. 2 are th
values of the potential jumpDFw calculated from Eq.~33!
~the present kinetic method! and from Eq.~49! ~assumption
of a Maxwellian EDF! using the sameTe . One can see tha
the ‘‘kinetic’’ DFw varies little with time despite the fac
that Te drops dramatically~see below!. It is interesting to
note that this temporal behavior ofDFw may provide a plau-
sible explanation for the experimental fact that, during
early afterglow, the plasma potential features little variat
with time, which was observed in a low-pressure~collision-
less! post-discharge plasma@33#. In contrast, the ‘‘Maxwell-
ian’’ DF̂w decreases markedly with time@it follows the Te

evolution, see Eq.~49!# and is much greater than that o
tained in the kinetic approach@Eq. ~33!#. By using these
~excessive! DF̂w to calculate the EDF, no reasonable valu
for j e could be obtained~these j e were several orders o
magnitude lower thanj i).

The full kinetic simulations of the electron-energy dec
were compared with computations from the energy-bala
equation~35!, in which the nonlocal EDFf 0

(0)(e) was simul-
taneously calculated from Eq.~23! to obtain theTe profiles.
The advantage of using the energy-balance equation is
the calculations are simple and very fast, which require C
time of the order of minutes, instead of days, as is the cas
full kinetic simulations. In order to simulate theTe decay
from Eq. ~35!, we took the values ofne(r ,t) and j e(r ,t)
predicted by the full kinetic simulations, as well as the valu
of Te(r ,t50), F(r ,t), and Fw(t) used for these simula
tions. For the purposes of direct comparison between
fluid and kinetic approaches, computations ofT̂e(r ,t) were

FIG. 2. Total electron~solid line! and ion ~short-dashed line!
current densities at the wall as functions of time. The dot-dash
represents the values of the potential jumpDFw computed from Eq.
~33! using the nonlocal EDF of Eq.~23! ~nonlocal kinetic ap-
proach!. The dashed line showsDF̂w calculated from Eq.~49! ~as-
sumption of a Maxwellian EDF!.
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also carried out from the fluid energy-balance equation~45!,
in which DF̂w was calculated from Eq.~49!.

Figure 3~a! depicts the time evolution of the electron tem
perature at the discharge center (Te0) and at the wall (Tew),
as predicted by the full kinetic calculations from Eq.~1!.
About an order of magnitude decrease inTe is obtained,
whereas the electron density is observed to decrease on
one third. One can see that the time evolution ofTe takes
place in two stages. During the first, fast staget
,25 ms), Te drops by more than a factor of 5. A signifi
cant spatial inhomogeneity ofTe is supported throughout th
fast stage; the radial decrease ofTe corresponds to the con
vex EDF in Fig. 1 and of Eq.~23!. The fast stage is followed
by a slow stage (t.30 ms), during which theTe decay rate
is substantially lower, the spatial inhomogeneity is less p
nounced, andTe(r )'T̃e5const. For comparison, the value
of Te0 andTew predicted by the kinetic energy-balance equ
tion ~35! are shown in Fig. 3~a!. One can see that they are
good agreement with the full kinetic results, both in the
absolute values and spatial profiles@see also Figs. 3~b! and
3~c!#. By contrast, the calculations from the fluid energ
balance equation~45! predict a much faster decay ofTe as
compared with the kinetic results, which is mainly due to t
fact that the potential jumpDF̂w @see Eq.~49!#, and thus the
diffusion-cooling rate@}q̂ew of Eq. ~48!#, are significantly
overestimated~see Fig. 2 and Sec. III!. Moreover, the
‘‘fluid’’ radial profiles of Te are very flat, as seen in Figs
3~b! and 3~c!, due to the high thermal conductivity. Henc
the fluid approach fails to reproduce not only the spa
behavior ofTe , but also its absolute values.

The radial profiles of the terms in the energy-balan
equation of the trapped electrons~as discussed in Sec. II D!

e

FIG. 3. ~a! Time evolution of the electron temperature at t
discharge center (Te0) and at the wall (Tew): the solid lines show
the full kinetic results from Eq.~1!, the dash-dot lines represent th
calculations from the kinetic energy-balance equation~35!, and the
dashed line depicts the calculations from the fluid energy-bala
equation~45! ~note that the ‘‘fluid’’ Te profiles feature negligible
radial dependence!. The dotted-line shows the central electron de
sity (ne0) obtained from Eq.~1!. ~b! and ~c! Te radial profiles at
different instantst: line types are consistent.



en

n

full
ap-

rre-

he
f

e

ere

cur-

s.

ry
lec-

-

ly
t-

ux

.
os-
sed

u
if-

ke

7796 PRE 58ROBERT R. ARSLANBEKOV AND ANATOLY A. KUDRYAVTSEV
obtained from the computed EDFsf 0(e,r ,t) are presented in
Fig. 4 for two instantst during the afterglow. At early times
in the afterglow period, whenTe is high,Hea is comparable
with Hdc, whereas later, whenTe has dropped,Hea is lower
thanHdc. Moreover, the cooling rateH f is small throughout
the afterglow period. The rateHdc

(1) is also very small and
features complicated spatial behavior~determined byf 0

(1)).
Figure 5 shows the radial profiles of the electron curr

density j e at different instantst, as predicted by the full ki-
netic calculations. Also plotted are the results of calculatio

FIG. 4. Radial profiles of the terms in the energy-balance eq
tion ~see Sec. II D! obtained from the computed EDFs at two d

ferent instantst. Here,Ht5]( 3
2 neTe)/]t. For clarity, theHdc

(1) val-
ues are multiplied by a factor of 10.

FIG. 5. Radial profiles of the electron current densityj e at dif-
ferent instantst ~shown on the left-hand side diagrams!: the solid
lines represent the full kinetic results from Eq.~1!, the dash-dot
lines correspond to the calculations from Eq.~28! ~nonlocal ap-
proach!, in which the analytic EDF of Eq.~23! is used, the dashed
lines depict the trapped-electron current densityj e

(t) . The right-
hand- side diagrams display the differential spatial fluxJr(e,r ) as a
function of total energy atr 5R/2 and the same instantst. The
dashed vertical arrows indicate the values ofe5eFw . The solid
vertical arrows show the energies at which the flux reversal ta
place.
t

s

of j e(r ) from Eq. ~28! using the analytic EDFf 0
(0)(e) of Eq.

~23!. Close agreement~especially at the wall! is observed
betweenj e(r ) from Eq. ~28! and that from the full kinetic
simulations. It is due to this close agreement between the
kinetic results and those obtained using the nonlocal
proach that it becomes possible to calculateFw from Eq.
~33! with good accuracy, and thus observe the close co
spondence betweenj ew and j iw in Fig. 2. This represents a
striking result of the nonlocal approach which allows t
total spatial fluxGe(r ) @or j e(r )# to be calculated in terms o
the differential energy fluxJe(e,r ) at e5eFw @see Eq.~28!#
via the space-independent EDFf 0

(0)(e). Such a relationship
betweenGe(r ) and f 0

(0)(e) is possible becausef 0
(0)(e) con-

tains all required space-resolved information~e.g., Refs.
@11,15#!. The transformation@described by Eq.~24!# from
the energy flux out of the potential well (Je at e5eFw) into
the spatial flux (Ge) occurs in the narrow energy region clos
to eFw , in which the differential spatial fluxJr(e,r ) is
peaked; see the right-hand side diagrams in Fig. 5, wh
Jr(e,r ) is plotted as a function of total energy atr 5R/2 ~its
energy dependence is similar at other radii!. Simple argu-
ments suggest that the main contribution to the electron
rent is due to the free electrons witheFw,e&eFw1De.
Hence, the characteristic width of theJr peak is of the order
of De @see Eq.~22!#, as confirmed by the numerical result

One can next see in Fig. 5 thatJr for the trapped electrons
(e<eFw) is nonnegligible in magnitude and, which is ve
interesting, changes sign. It is clear that the total spatial e
tron flux Ge ~integral of Jr over w from 0 to `) must be
directed outward~to the wall! as is the ion fluxG i , i.e., Ge
.0. For the free electrons withe.eFw ~whose contribution
to Ge is the largest!, indeed,Jr(e,r ).0. For the trapped
electrons, however,Jr is inwardly directed (Jr,0) for some
energies and is outwardly directed (Jr.0) for other ener-
gies. It is due to the~partial! compensation of these oppo
sitely directed fluxes fore<eFw that j e

(t) (5eGe
(t)) is small

~see Fig. 5!. The sign ofj e
(t) depends on whether the inward

directed flux fore<eFw is greater or smaller than the ou
wardly directed flux. We observed thatj e

(t) was oppositely
directed toj e for t&20 ms, while later (t*20 ms), j e and
j e
(t) had the same sign~see Fig. 5 for data att510 ms and

t530 ms!.
One can observe in Fig. 5 that there are actually two fl

(Jr) reversals~changes of sign!, one ate5 ẽ1 close toeFw

and the other at lower~thermal! energies,e5 ẽ2 . In the non-
local approach, the small perturbation termf 0

(1)(e,r ) is re-
sponsible for a nonzero spatial flux of trapped electrons~and
its sign!, and the main termf 0

(0)(e) ~which is responsible for
their energy fluxes! yields a zero spatial flux. By using Eq
~24!, which connects the spatial and energy fluxes, it is p
sible to explain the observed flux reversals, as discus
briefly in the rest of this section.

The first flux reversal occurs at energies close toeFw ,
i.e., e5 ẽ1,eFw . By virtue of Eq. ~24!, the sign of
Jr(e,r ) @[Jr

(1)(e,r ) for e<eFw] is determined~to some
extent! by that of Je5](AwJe

(0))/]e. Since the EDF falls
rapidly in the vicinity ofe'eFw ~see Fig. 1!, its local slope
decreases, and it is possible to show thatuJe

(0)(e)u has a

a-
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maximum ate5 ẽ1'eFw2Te . As such,Je(e) @and thus
Jr(e)# changes sign ate5 ẽ1 ; henceJr(e) for e, ẽ1 be-
comes inwardly directed (Jr,0). Physically, the position o
the first flux reversal,ẽ1 , corresponds to the energy at whic
the trapped electrons start to feel the spatial gradients du
the presence of the wall; at this energy the transforma
from the energy fluxJe to the spatial fluxJr starts to occur
and the magnitude ofJe begins to diminish with increasing
energy.

The second flux reversal occurs at thermal energiee

5 ẽ2&(3 –4)Te . This flux reversal is due to a particula
property of thee-e collision integral at thermal energies
namely, due to the fact that the coefficientA1 ~and A2) of
Eq. ~4! is an increasing function of energy forw&(3 –4)Te .
Indeed, taking into account thatne@dna at thermal energies
ne(w)}w23/2, andA1(w)}w whenw&2.6T̃e @see Eq.~4!#,
one can obtain thatAwJe

(0)}w exp(2e/T̃e). As such, it is
easy to see thatJe(e) @and thusJr(e)# changes sign; henc
Jr(e) for e, ẽ2 becomes outwardly directed again (Jr.0).
As a rough estimate,ẽ2'T̃e1^eF&, which was observed to
be in reasonable agreement with the numerical results.

To conclude, the above results show that a situation
realized, in which the radial fluxes corresponding to th
different portions of the EDF alternate in sign~cf., the fluid
approach in which the electron flux is unidirectional, see S
III !. Large, directionally opposed radial fluxes of trapp
electrons exist, and two flux reversals occur. The flux rev
sal at thermal energies was predicted in terms of the gen
properties of thee-e collision integral. This phenomenon ca
hence be considered to be somewhat universal and like
take place in other plasmas~under nonlocal conditions!
wheree-e Coulomb collisions are effective in maintaining
Maxwellian EDF at thermal energies. Note that we also
served this phenomenon~which was even more pronounce!
in a steady-state negative-glow plasma, on which a sepa
report is under preparation.

V. SUMMARY AND CONCLUSIONS

The nonlocal electron kinetics is studied in a low-press
afterglow plasma. A method based on the nonlocal appro
is reported, which allows one to simplify greatly the proble
and to account properly for the nonlocal nature of the ED
no
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The method consists in solving simplified~nonlocal! kinetic
equations coupled with particle- and energy-balance eq
tions. The applicability of the proposed method was va
dated by the numerical solution of the full time- and spa
dependent kinetic equation in a cylindrical geometry. Go
agreement is found between the full kinetic simulations a
the results obtained from the kinetic energy-balance eq
tion. Since the nonlocal approach reduces a multidim
sional kinetic equation to a 1D nonlocal kinetic equation
~genuine! total energy, the proposed method can be ea
extended to geometries other than cylindrical. Moreover,
proposed method being simple and semianalytic, its com
tational efficiency can be extremely useful in solving co
plex self-consistent problems.

It is shown that under nonlocal conditions the EDF can
strongly non-Maxwellian and that thead hocassumption of a
Maxwellian EDF can lead to significant errors. The results
the direct comparison between the fluid and kinetic a
proaches imply that the fluid approach is physically inapp
priate for describing a low-pressure afterglow plasma. In p
ticular, the fluid approach fails to predict correctly both t
spatial and temporal evolution of the electron temperatu
Moreover, it is demonstrated that the use of the volum
averaged~zero-dimensional! kinetic models may lead to er
roneous results in simulating such a plasma.

The present results for a low-pressure~collisional! after-
glow plasma can be somewhat extended to the high-den
low-pressure~collisionless! afterglow plasmas, which typi-
cally operate at ne;1011–1012 cm23 and p,10– 100
mTorr ~e.g., Refs.@7,1,2#!. At such high densities,e-e Cou-
lomb collisions may become more effective in driving th
EDF to a Maxwellian distribution. On the other hand,
such low pressures, the removal rate of electrons to the
is expected to be much higher. Hence, the high-dens
low-pressure ~collisionless! plasmas are also likely to
feature, among other things, a strong departure from a M
wellian distribution. This subject will be explored in futur
work.
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