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The electron kinetics in a low-pressure afterglow plasma is studied by means of the time- and space-
dependent Boltzman(kinetic) equation. A method based on the nonlocal approach is presented, which enables
the nonlocal nature of the electron distribution functi&fF) to be accounted for in a simple manner, without
solving a complicated kinetic equation. Simplified kinetic equations are derived, as well as some analytic
solutions, for obtaining the EDF in terms of its energy-averaged parameters, such as the electron density and
temperature. This allows an energy-balance equation to be used to describe the electron-energy decay at the
kinetic level. To validate the proposed method, the full time- and space-dependent kinetic equation is solved
numerically for an afterglow in Ar. It is observed that under nonlocal conditions the EDF is strongly non-
Maxwellian. As a consequence, the values of the wall potential predicted using the kinetic approach differ
drastically from those obtained on the premise of a Maxwellian EDF. Another striking nonlocal effect mani-
fests itself in a strong spatial inhomogeneity of the electron temperature. The derived energy-balance equation
coupled with the simplified nonlocal kinetic equations reproduce accurately both the spatial profiles and
absolute values of the electron temperature obtained from the full kinetic simulations. An interesting phenom-
enon, obtained numerically and explained in terms of the nonlocal EDF, is that the radial fluxes of different
portions of the EDF have opposite directions. A direct comparison between the fluid and kinetic approaches is
carried out, and it is concluded that the fluid approach fails to describe correctly the essential properties of a
low-pressure afterglow plasma, such as the temporal and spatial evolution of the electron temperature. It is
further demonstrated that the volume-averagesto-dimensionalkinetic models can also lead to erroneous
results in describing such plasmas. It is shown that superthermal electrons produced in processes involving
metastables can have a great influence on the plasma decay, particularly on the wall potential and the diffusion-
cooling rate. The present method has the advantage of being simple and semianalytic, and thus can be very
useful in solving complex self-consistent problerf$1063-651X%98)02312-5

PACS numbeps): 52.80-s, 52.65--y, 52.25.Dg

I. INTRODUCTION been proposed by Lieberman and co-workég., Refs.
[1,7]). In both the fluid and global models, ad hoc as-
There has been continuous interest in the afterdjpest-  sumption of a Maxwellian electron distribution function
discharge plasma during the past several decades. BotfEDF) is made. There also exists a number of models in
monatomic and molecular electropositive, as well as elecwhich a volume-averaged kinetic treatment is employed in
tronegative, afterglow plasmas have been intensively invessrder to predict zero-dimensional EDFsg., Refs[8,9)).
tigated. Recently, low-pressure afterglow plasmas have re- We present a kinetic study of a low-pressure afterglow
ceived increased attention owing to the development oplasma. In such a plasma the electron kinetics is essentially
power-modulated plasma sourcésg., Refs.[1,2]) which  “nonlocal” and so knowledge of the spatiénd temporal
offer a number of advantages for plasma processing. Thevolution of the EDF is of vital importance. In fact, estima-
formation of an ion-ion(“electronless™ plasma has been tions show that, for typical discharge conditions in Ar, the
observed in a low-pressure electronegative post-dischargeDF at energies of interest is already “nonlocal” when the
plasma(e.g., Ref[3]), which is also interesting from a prac- gas pressure is less than a few T@or a 1-cm-radius dis-
tical point of view. charge. Since this study requires the solution of a compli-
Owing to the fundamental and practical importance of thecated time- and space-dependent kinetic equation, it is highly
afterglow plasma, a great number of simulation models hasdesirable to develop a method that allows one to account for
been developed. The fluid modelalso referred to as the the nonlocal nature of the EDF in a simple and transparent
continuum modelshave been widely used to simulate the manner. With this in mind, we take advantage of the power-
afterglow(e.g., Refs[4—6]) and power-modulate.g., Ref.  ful nonlocal approach proposed by Bernstein and Holstein
[2]) plasmas. The so-called glob@lolume-averagedmod-  [10] and Tsendif11], which has recently received renewed
els of high-density, low-pressure discharges both for conattention(e.g., Refs[12—17) due to its physical clarity and
tinuous wave and for pulsed-time excitation have recentlysimplicity and numerical efficiency. We also use techniques
which we have developed for a negative-glow plasma which
is similar in nature to the afterglow plasnia.g., Ref[18]).
*Electronic address: Robert.Arslanbekov@sci.monash.edu.au The formulation of the problem is presented in Sec. Il,
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and the electron Boltzmann equation is introduced. We usenergye®) as an independent variable.

the nonlocal approach to obtain simplified kinetic equations, In the two-term expansion, the isotropic part of the EDF

and some analytic solutions, for describing the nonlocal EDF, describes energy transfer in all kinds of collisional pro-

in terms of its energy-averaged parameters, namely, the elecesses, whereas its directed pértdescribes momentum

tron density and temperatufsmean energy(Sec. IIB. This  transfer in collisions with atoms. It is then possible to con-

represents a great advantage since these energy-averaged gider thatf, is quasistationary since its relaxation time is

rameters can be found from the particle- and energy-balanogery short, i.e., of the order ofa‘l (wherev, is the electron-

equations, and thereby the need to solve the full kinetic equaatom collision frequency for momentum trangferAll

tion is avoidedSecs. I C and I1D. In Sec. lll, we presenta plasma characteristics are assumed to be time dependent,

comparison between the fluid and kinetic approaches. Theuch as the EDF itself, as are the electron density and the

numerical results and discussion are presented in Sec. Nlectron temperature, as well as the space-charge potential

Section V gives the summary and conclusions. profile, etc., i.e. fo=fo(ert), ne=ng(r,t), Te

=Te(r,t), =®(r,t), etc. For convenience, in most formu-

las that follow the index is dropped. By representing the

electron-electrond-e) collision term and the electron-atom
We consider a low-pressure afterglow plasma. As in re{e-a) elastic-recoil term in the Fokker-Planck form, one can

cent papers on nonlocal electron kineti¢e.g., Refs. write the time- and space-dependent kinetic equation for

[14,13,17), a plasma is termed “low pressure,” when the fy(e,r,t) as

electron energy-relaxation length. exceeds the discharge

chamber characteristic dimension (e.g., A~R/2.4 for a afy 1 1 9 .

cylindrical geometry, wherdR is the tube radius i.e., A, ot ﬁv' YW+ \/_V—VE\/W‘]EJFq ' @

>A. We assume that the gas pressprs not too low, so

that the electron mean free path for momentum transfés  \where

small compared to\, i.e., A\,<A (collisional regime. In

principle, the analysis can be applied to describe the decay of 1

any weakly ionized plasma after the input power has been Ji(er)=zvf1=—D,Vio(er) 2

turned off; such as the positive-column, microwave, RF,

negative-glow, or other plasmas. Although we consider 3s the differential(i.e., energy- and space-resolyeftiix in

collisional plasma, the present methodology and results cagonfiguration space aridl, = 1\ v the electron diffusion co-
be extended to thenearly collisionless high-density plas- efficient,

mas(e.g., Refs[1,7,2]). We assume a one-dimensioiiaD)

cylindrical geometry. The discharge wall is taken to be di- af,

electric, so that the net flux of chargesectrons and ionsat Je(e,r)=V fo+ Deg ©)
the wall is zero. We restrict ourselves to the case of a rare-

gas (electropositivg discharge. The plasma is considered t0jg the differential flux in energy spac¥,=V,+V, andD,
consist of two regions, namelyi) the extensive quasineutral —D.+D, are, respectively, the total dynamic-friction and
region, in which the space-chargembipolay potential®(r) itrysion coefficientsV, (V) andD, (D.) represent, re-
dominates and=n;=n, [wheren is the plasma density and gpectively, the dynamic-friction and diffusion coefficients in
ne (n;) is the electron(ion) density and (ii) the confined energy space due ®a (e-e) collisions,V,=2vwA, and
space-charge boundary sheath, which is not resolved spgy —2, \wA, with

tially, and the presence of which is taken into account by ¢ = ¢ 2

using the appropriate boundary conditions. In the boundary 1 (w

sheath, a steep changemp) Ad,, in the potential takes Al:n_f fovw’dw’, (43
place which is necessary to confine most of the electrons and e’/

to balance total electron and ion currents to (Helectrig

wall, P (

Il. PROBLEM FORMULATION

3ne 0 w

w o
j fow’3/2dw’+w3/2J fodw’), (4b)

A. Electron Boltzmann equation where v, is the frequency of-e Coulomb collisions,V,

In this section, we present the electron Boltzmann equa= §v,w andD,=T,V,, §=2m/M the fraction of electron
tion. The details of the kinetic formulation can be found in energy lost in a singléquasjelastice-a collision, andT, the
works by Tsendine.g., Refs[11,19) and in recently pub- atom temperature. Other types of quasielastic collisions, such
lished paperge.g., Refs[12—17). In what follows, we give as collisions with ionge.g., Ref[20]) and moleculege.g.,

a brief description only. excitation of vibrational or rotational state®.g., Ref[21]),

Since we consider a collisional plasme,&<A), the con- can also be included in the kinetic equation in the similar
ventional two-term expansion for the EDF can be employedfashion.
f(v,r,t)="fo(v,r,t)+(v/iv)-f1(v,r,t), wheref, is the iso- The last termg* (w,r) in Eq. (1) describes the production
tropic part of the EDFf; its directed part |f;|<f,), v the  of energetic(referred to as superthermatlectrons withw
electron velocity ¢=|v|), andr the spatial coordinater( >T, in processes involving metastables, such as metastable-
=|r|]). It is then convenient to use the total energgw  metastablgPenning ionization and electron-metastable su-
+ed(r) (the sum of kinetic energw=3muv?2 and potential  perelastic collisions. Under the plasma conditions of interest,
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the g* energy spectrum is very narrow and can adequately 2 (o "
be approximated by & function (see Ref[22] for details, Te(N =3 wofo(e,r)de. (10
which gives e/ ed(r)

Although T, can be introduced only when the EDF is Max-
g* (W,1)=Q* (r) S(w—w*)/\w, (®  wellian, we adopt the definition of Eq10) in the present
paper. In fact, in a low-pressure afterglow plasma, the EDF
whereQ*(r) is the integral rate at which superthermal elec-js close to Maxwellian only at thermal energi@shere the
trons are generated and™ is their energy; e.g., for the rate ofe-e Coulomb collisions is highand can be strongly
Penning-ionization proces*(r)=Bn5 and w*=2e,  non-Maxwellian at higher energidsee below:

— €, wheren,, is the metastable density,, the metastable- The total spatial electron flux can then be calculated as
state energyg; the ionization potential, an@, the corre-
sponding rate constah22]. o

The boundary conditions for Eq1) in a cylindrical ge- Ie(r)=— VWD, (€,1)Vfg(e,r)de. 1D

. ed(r)
ometry can be written as

It is appropriate to mention the following concerning the
dfo(e,r) coefficientsA; andA, of Eq. (4). These coefficients signifi-
A - =0. (6) L ) ; ; :

ar r=0 cantly complicate the kinetic equatiofl) by making this
r=racde)esedy, equation nonlinear integrodifferential. However, some ap-

, " , proximations are possible, which can be useful for analytic
Here, the first condition takes account of the radial SYMMegeyelopments. It can be seen from E4) thatA,—1 and

try, and the second condition describes reflection of electronﬁz_ﬂ- (r) whenw—. More precisely, numerical results
e . '

with e<ed, at the r=r,.{e) boundary determined by ¢pqed that these coefficients can be approximated as
w(e,r)=0; ®,, is the (full) wall potential, ®,=dg,

+Ad,,, with ®4=>P(R) being the space-charge potential AW/To(r), W/Te(r)<B,

at the boundary sheath. As suah.{€)=R for e=edy,. A(w,r)=

For those electrons which can overcome the space-charge L W/Te(r)>B,

potential barrier é>e®,) the boundary condition at the As(W,r)=To(r)Ay(W,r), (12)

wall can be written as

where the constants andB are determined by the shape of
) the EDF; for a Maxwellian EDF withl,, A=~0.385, and
' B~2.6 (e.g., Ref[24]).
At this point, the kinetic equatiofand its boundary con-
where ditions) has been specified and can be solved numerically.
However, the direct solution of the fu(honlinear integro-
1—eAd. Jw differentia) time- and space-dependent kinetic equatiibn
w . ) . ; .
AQ(e)=27———— (8) is a computationally intensive task especially when a self-
1+(eAd,,/w)3? consistent problem is to be treated. Hence, it is highly desir-
able to simplify the problem of finding the EDF. At the low
is the effective loss cone withr=e—ed, (see Refs[23,1  pressures of interest, the key simplification is to use the non-
for details. local approact{10,11. The nonlocal approach can be ap-
It is straightforward to include inelastic processes involv-plied provided thahk .>A. The following estimate ok, can
ing ground-state atom@uch as direct excitation and ioniza- be obtained from the kinetic equatiéh):
tion) into the kinetic equation Eq.l) (e.g., Refs[11,15).

AQ ot
(vfo(f,f)ﬁ Z(—Dr(fyr)ﬁ)
R

r= r=R

However, an inelastic process can be importaniti@pped )\a/\/?s, for Maxwellian electrons,
I ithe<ed I i hat its threshole* i A~ . 13
electrons withe<e®,, only provided that its threshole* is No\pal(2vot vy, otherwise. (13

lower than the wall potential energg®d,,; (free) electrons

with 6>e.q)W are affected by melasﬂc processes fo a IesseHere, we take into account that for Maxwellian electrons, the
degree since they escape rapidly to the wall. Hence, wheg_e dynamic-friction term is(almos balanced by thee-e

ed, <€, We can ignore such processes, vyhile r_etaining Yiffusion term, i.e Vefo+Dedfy/de~0; this is an equiva-
good approximation. Inelastic processes involving metai LT '

. - . . nt condition for the zer ulomb frequen .
stables(such as stepwise excitation and ionizajjowhich entco ontforthe 0 Coulomb frequency,(=0)

typically have low thresholds, can be neglected in the kinetic

equation compared witte-e and e-a collision processes B. Nonlocal electron distribution function
(whennp/ne=20, see Ref[22]). _ The so-called nonlocal conditions are realized when
The EDF in Eq.(1) is normalized according to > A [11]. Under these conditions, the electrons transit radi-
ally without experiencing significant changes in total energy
| = €. The electrons can then be separated into two distinct
ne(r)—J'eq)(r) e=ed(n)fo(er)de. ©) groups, namelyfrapped (with e<e®,) and free (with €

>ed,), as described in the two following paragraphs.
It is conventional to define the electron temperafligeas The trapped electrons with a total energgan move only
£ of the mean kinetic energy: within a restrictedaccessiblgvolume in the plasm¥ ,.{ €),
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which is determined byg<e®(r). The explicit dependence Accordingly, we write the (quasistationary space-

of the trapped EDF on the spatial coordinats weak and averaged kinetic equation for the trapped electi(@es Refs.
hence the EDF can be expanded &g(e,r)=f"(e) [11,13 for details:

+£M(e,r), wherefiN<f{"). A kinetic equation in total en- d— 410 (e)

ergy € can be obtained for trapped electrons by using this —Jw V<50>f50>(5)+|3(50)°—6 =0, (14)
expansion and performing spatial averaging of the kinetic de de

equation(1) [11,15. The trapped electrons transport a neg- I — N

ligible current(spatial fluy, despite the fact that they com- Where V%(e)= VwV/\w and D©(e)=\wD/\w; the
prise the majority of electrons. Therefore, it should bebarred quantitieX(e) designate spatial averages performed
stressed that the electron curréspatial fluy cannotbe ex-  over the accessible volumé,.{€). This equation can be
pressed in terms of the trapped EDF parameters, namgly, solved subject to the boundary conditions:ate®,,, which
andT, (see discussion in Sec. llIMoreover, under nonlocal can be found in terms of the free EDF. In order to find the
conditions, different portions of the electron spectrum moveree EDF fofe,r) for e>ed,,, a quasistationary kinetic
radially almost independentlyetconst), and their radial €duation with the linear coefficiengs; andA; (ns<ne) can
(spatia) fluxes may even have opposite directiqsse Sec. Well be employed:

IV and also Ref[17]).

The free (also referred to as untrapped or unconfined Eﬂ\/\,—er ﬁJri\/w(V for+ D @ +\/Wq*=0
electrons are able to climb the space-charge potential barrier I Jr for e ¢ € de '
(e>ed,) and leave the plasma, thereby carrying the elec- (15

tron current. The free electrons cannot be described using a _
space-averaged kinetic equation, but their kinetic equatioWheréVe=w(2ve+ 6v,) and D =w(2veTet SvaTs). This
can also be simplified significantly. The reason is that the2duation, subject to the boundary conditi¢Gsand(7), can
free electrons can be treated, with high accuracy, using the €asily solved at any instaint to>0 during the afterglow,
linear coefficients of Eq(12), i.e., in terms ofng and T,.  9IVenne(r,to), Te(r,to), ®(r,tg), Py(to), andq™ (w,r,to).
Under nonlocal conditions, the free electrons escape quicklh/ The coupled nonlocal kinetic equations for the trapped
to the wall; consequently, their EDF is strongly depletie  [Ed. (14)] and free[Eq. (15)] electrons enable one to solve
free-electron density is lowy<n,) and is essentially non- the problem of finding the complete EDF. The solution of
Maxwellian. One can show that even in the situation wherfniS problem can be simplified by assuming that the free EDF
ve> v, at w~ed,,= 5T, (where 5 is the wall potential for eCIDVYs esed, + T, also depends only oa. T_h|s can be
energy in units ofT ), the free EDF is nonlocaland hence done since the wall loss cone at these energies is yet small
non-Maxwellian up to relatively high pressures. Indeed, the€nough(i.e., AQ<4m) for these electrons to be “almost

condition thath ;~\ ,\7,/(2v¢) > A is satisfied for Arwhen rapped.” Introducing a wall loss term into the space-
pR%n,<5.7x 10t T, (hereinafterp is expressed in TorR averaged kinetic equatiofi4) gives (see Refs[13,16 for

in cm, n, in cm™3, and T, in eV). For typical conditions in detaily

which ng=10"* ¢cm 3, »=3-4,R=1 cm, andT.=1 eV, S

the above condition for nonlocality of the free EDF is ful- d—=( 00 (o)dfgo) Jwfl®

filled for p<10 Torr. - &\/W Ve'fo +De | = P (16)
Having introduced the trapped and free electrons, we can

derive their simplified kinetic equations. Before doing so, itwhere r,,= 7,,(¢) is the characteristic time of escape to the

is necessary to refer to the temporal behavior of the correya|| for electrons withe=e®,,:

sponding EDFs. The situation is straightforward for the free

EDF since the relaxation time of a free electron with A2 R/AQ\1
>ed,, is very short, i.e., of the order of the free-diffusion T €)=~ D—+ —44—) (17)
time, 7q=A?/D,~10 '=10"° s, which is much faster than roo 20\ AT

the slow time of variation ofi,(t) andT(t). Hence, one can ) ) ) . )
assume that the free EDF is quasistationaryt fot (where It is straightforward to solve numerically the ordinary dif-
t=0 corresponds to the start of the afterglpwe., its time  ferential equatior(16) in order to find the EDR{*(¢), and
dependence is via the slow variationmf(t) andT(t) [and  thus the differential energy flu.(e,r) ate=ed,,. We can,
alsong(t), ®(t), etc]. Strictly speaking, the trapped EDF however, simplify the problem even further by using ap-
cannot be treated as being quasistationary. However, singgoximate analytic solutions for the trapped and free elec-
the time of the formation(shaping of the trapped EDF trons. Such a solution of E¢14) is

[~ (2ve+ 8v,) 1] is shorter than the slow time of variation

of n. andT,, as a first approximation it is possible to assume f9(e)=Cn{exd ¥ (e)]+Cy}, (18

that the shape of the trapped EDF is determined by the in-

stantaneous values of,(r) and T,(r). Since we are most whereC, is the normalization constanG, is an arbitrary
interested in the shape of the trapped EDF and calculate itsonstant, andV (e) = — [§de’/T(e’) with
energy-averaged parameters, @nd T.) from the particle-

and energy-balance equatioteee Secs. IIC and IID the D(EO)(G) T WA 20+ T W %60,

above assumption of “quasistationarity” of the trapped EDF T(e)= ~
is justified. V©(e) WA 21+ WS,

(19
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being the characteristic temperature of an electron with an

energye and'NI'e being the temperatur@ocal slope of the
Maxwellian part of the EDKhenceforward, we will use the

“tilde” over a quantity X, i.e., X, to denote that this quantity whereJ©(e,r) is the differential energy flux of Eq3) in
is related to the Maxwellian part of the ERFSince the terms of the nonlocal EDE{")(e):

trapped EDF of Eq(18) is a function only ofe, T, is spa- ©
tially uniform, i.e., T,=const. Given the nonlocal EDF I1O0(er)=V.(e,)fO(e)+D (e r)dfo (€)
f(e), itis possible to establish the link betwe€g(r) and < amo e de

T. when the EDF is close to Maxwellidhy(r)~T,.
It readily follows from Eq.(19) that, in the energy region

1(ro
=D v =2 Zmarar, 29
0

(25

The total electron flux consists of two fluxes, namely,

where e-e Coulomb collisions are dominant (/g>_ 5va)-, To(r)=TOr)+T"(r), (26)
T(e)~T, and, hence, the trapped EDF of Hd8) in this
region is Maxwell-Boltzmann whereI' V=T (e<ed,,) is the trapped-electron fluginte-
gral of JV) andT'{" =T (e=ed,,) is the free-electron flux.
~ 2 ng - The free-electron flux, in its turn, also consists of two fluxes
fo(f):\/—_,.T/zeXF(_é'/Te), (20)
mTe P00 =)+ 1), @

where the constan€, [being important only at energies WhereI‘ff)=(1/r)f{)Q*(r’)r’dr’ is the flux of superthermal
close toed,,, see Eq(23) below] is neglected andeo is the electrons withe>ed,, andI'(? is the electron flux out of the
electron density at the position of zero reference potentiahotential well <ed,)
(r=0 for a cylindrical geometry

In order to find the constai®, in Eq. (18), one can apply 1(r
a zero boundary conditioff”)=0 ate=ed,,, which yields L= Ffo WID(€r")]cmea,r'dr’, (28)
Co=—exgV¥(ed,)]. However, since in reality the EDF
does not vanish foe>ed,,, this approximation allows only \where we approximatedis(e,r)wJ(eo)(e,r).
very crude estimates of the EDF and the energy flux |n the nonlocal approach, the differential energy flux
[Jc(e.r), see Eq.(25 below] at e~ed,,. In order to im-  j (¢r) at e=ed,, has the physical meanind.(e,r) (and
prove the accuracy of the calculations, one can use a nonzegg, I'(9) determines the rate of the electron flow out of the
boundary condition ak=e®,,, in terms of the free EDF. trapped “reservoir’ <ed,) into the “sink” region (e
Since the free EDF foe>ed,, falls off sharply with in- >ed,) via the “orifice” in energy space at=ed,,. Pro-
creasing energy, the dynamic-friction tett{f(”’ in Ed.  yided that the fluxes of trapped and superthermal electrons
(16) is smaller than the diffusion ter@{*)d f(”/de and, as @ are small, all the electron current is due F¢?, i.e., T
first approximation, can be neglected. We can then write an. 19, To quantify the contribution of superthermal elec-
estimate of the free EDF as trons to the total electron flux, it is convenient to introduce
the ratioy=T"IT,, e.g.,y— 1 when almost all the electron

for(€)~Crexp(—e/Ty). @) fuxis transported by superthermal electrgsse Sec. Il E

Here, C; is the normalization constant arij=3A€ is the
free-electron “temperature,” wher&e is the energy change
experienced by an electron with=ed,, during the timer,,

C. Description of the ions and the space-charge
potential profile

[see Eq(17)] it escapes to the wall: In the present paper, the plasma is considered to contain
only positive ions. The ions can be satisfactorily described in
Ae~~aDO 29 the fluid approximation by employing the continuity equa-
¢ e Tw 22 tion

A total electron energy oé~ed,,+ Ae must be substituted an;
into the right-hand side of Eq22), thus yielding an alge- EJrV-l"i:Qi* , (29
braic equation foA e. We can now find the desired constant
C, in Eqg. (18) by matching the EDFs, and the energy fluxes

'where Q* represents the ion production rate in processes
for esed,, [Eq. (18)] and e=ed,, [Eq. (21)], which gives Qr rep b b

involving metastablege.g., Penning ionizatigrand the ion
(particle flux is

fO~C {exp:‘lf(e)]— exp(qf)( 1- T
0 n T

e@w]. (23) FiI—DiVni—ni,uiE. (30)
Here,E= —V® is the space-charge electric field, the ion
Given the nonlocal EDF{”(e), the small perturbation diffusion coefficient, and; the ion mobility: D, /u; =T, /e
term fiM(e,r), and thus the differential spatial flux with T, being the ion temperaturéere, T;=T,).
Jﬁl)(e,r), can be found from a quasistationary kinetic equa- The link between the plasma-density and space-charge
tion for the trapped electronsee Ref[11] for detaily potential profilesn(r)=n[®(r)], can be established by Eq.
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(9) via the nonlocal EDF{”)(¢). Only when the relationship (30)]. Using the complete definitions of these fluxes compli-
between these profiles has the Boltzmann form, ire., cates findingA®,,. In order to avoid a complicated solution,
xexp(—ed/T,), does the expressic80) for the ion flux re-  We can use the approximate expression for the ion [fito
duce to its familiar form (31)] and the nonlocal approach for finding the EDsee
Sec. |1 B to obtain the following equation fob,,:
Ii=—-D;(1+T/T)Vni=—D V0, (3D 1

whereD ., is the ambipolar-diffusion coefficient. Provided 1ﬂi""_(l— Yw) R
that Eq.(31) is satisfied, Eq(29) is a linear diffusion equa-
tion. In general, Egs(29) and (30) coupled with Eq.(9) Here, the differential energy flu%eo) is given by Eq.(25) in
result in a nonlinear equation for(r,t) [and ®(r,t)] (see  which the nonlocal EDF{”(¢) can be found by using the
Ref.[11] for details. Since we do not solve a self-consistent techniques derived in Sec. Il B. The simplest technique con-
problem, we assume that EQJ) is satisfied. sists in employing the analytic EDF”)(¢) of Eq. (23) in

The Bohm boundary condition can be used for E29):  gq (33), which thus gives a simple transcendental equation
Fiw=niwg, where vg=Te,/M is the Bohm velocity for d,,. In order to obtain an estimate df,,, one can apply
[hereinafter, the subscript w iX,, will denote thatX(r) is 3 zero boundary condition at=ed,, for the EDF of Eq.
e_valuated at _the wall, i.eX,= X(rzR)_]. This con_dmon 19 [i.e., fgo)(e=ed>w)=0], which yields[25]
yields the ratioy of the plasma density at the discharge
center fp) to that at the wall 4,) as x=ng/n, T,
~(2AIN) T4/ Tey, Where); is the ion mean free path. o~ gln

In order to calculate the space-charge potential profile
®d(r), a self-consistent problem must be solved. This can be
done by coupling the Boltzmann equation for the electronsyhere the right-hand side is to be evaluate¢=ated,,, v,
the continuity equation for the ions, and Poisson’s equati0n=<ye>+ 5yaTa/(27re), and 7,=A%D,y, is the
To avoid having to solve the space-dependent Boltzmanambipolar-diffusion time.
equation, e.g., in the fluid approach, the electron flLi¥) (is One can now see from E(B4) thatd,, (and henc d,,)
represented in terms af, and T,. However, since such a s a function of the plasma parameters, i.eb,,
representation cannot be employege Sec. ), the prob- =®,(Ne,Te,P, YursR, - ..). Since typically ve~{ve), the
lem cannot be simplified by this means. Moreover, the direc{, ;e of @, is determined essentially by the product
solution of Poisson’s equation is complicated by the fact that_ 4 ve) atw~ed,,; provided that this product is not large,
it involves a small difference between two large values (o values of the va)otential UMD, = B, — B, can be as
and n;), which requires high-precisiotend high-stability |5\ a5 —T_/e (for 7,=0), as has been predicted in Ref.
numerical scheme®.g., Ref[2]). It is thus far more conve- [26]. Conversely, wheny,=7(R)—1 [see Eq. (34)],

nient_ to divide the discharge volume spatially into a nomalously high potential jumps®,, can occursee Refs.
quasineutral plasma and a space-charge boundary sheath.'g 272 and Sec. IlE These results contradict those ob-

the quasineutral plasma, Po?sson’s equation is redundant, the,e 4 o the premise of a Maxwellian EDF, which yield no
space-charge potential profife(r) can be found from the dependence oA d,, on the major plasma parameters and

continuity quation fpr the ionEgs. (29) and(30)], and the predict thatAd,,>T./e [see Eq(49) and discussion in Sec.
plasma-density profile(r) can then be calculated from Eq. Il below].

(9) (see Refs[11,13 for detailg. The boundary sheatfin
which the potential jump@ @, occurg can be considered to
be infinitely thin and fully collisionless for the electrons, and
hence does not have to be resolved spatially. In order to find the electron temperatuer the mean

For the purposes of studying the electron kinetics, knowl-energy, an energy-balance equation can be derived. How-
edge of the exact, self-consistent space-charge potential prever, this equation can be obtained and used only when the
file ®(r) is not necessary. Moreover, the nonlocal trappecEDF (or its shapgis known via its parametric dependence
EDF (being a function only of) should not be sensitive to on T,; otherwise, when no such knowledge is available, an
the exact shape ab(r). This is also true for the free elec- energy-balance equation cannot be used and a full kinetic
trons with e>e®,,>e®(r). Hence, a moded(r) can be equation must be solved. Since we have derived techniques
used, for which an approximate expression can be obtainefdr obtaining the trapped EDF in terms ®f (andn,) (see
by assuming that the EDF is close to Maxwellian witg ~ Sec. Il B), we can indeed use an energy-balance equation.
and that the plasma-density profile is Bessel-like, which Since under nonlocal conditions the electron ensemble
gives consists of two distinct group@mamely, trapped-freevhich

exhibit different behaviors both in energy and in configura-
D(r)=(T/e)IN[x+(1—x)Jo(2.4r/R)], (32 tion spaces, an energy balance of all electrmarmotgive T,

(see also discussion in Sec.)llinstead, an energy balance
whereJ, is the zeroth-order Bessel function. As sudh,, of the trapped electrons must be considered, for which the
=(Te/€)In y. associated equation can be obtained by multiplying the ki-

The wall potential jumpA®,,, or the(full) wall potential  netic equatior(1) by w(e,r) and integrating over the energy
d,=d,,+Ad,, can be calculated by equating the electroninterval e<ed,,. Under nonlocal conditions\(>A), the
flux at the wall[ T, of Eq. (11)] to the ion flux[T";,, of Eq.  whole plasma volume contributes to the electron temperature

R
fo WIV(e,r")] c=eq,fdr’. (33

ed 3/2
(:I'__W> (Tamp¥e) (1— 7W)_l , (39

e
ed,,

D. Energy balance of the trapped electrons
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formation, and it is useful to perform spatial averaging of aelectrons and atoms; this term can be calculated using the
space-dependent energy-balance equation. Keeping only thepped EDngo)(e) of Eq. (23):
main terms, one then gets

dfyY

de

ed,, \/_
w

ed(r)

%(gmew) =(Hao +(Hea) +(H9), (35) Hea(r)=— (Vafé°>+Da )de- (40

where(- - -) denotes spatialvolume averaging andHsis  Only when the trapped EDF is close to Maxwellifite.,
the heating rate of the trapped electrons in Coulomb collifgo):"f‘o of Eq. (20)], does this expression fét,, reduce to
sions with superthermal electrotsee Sec. IIE The two s familiar form [see Eq.(46) below]; otherwise Eqs(40)
remaining terms in Eq(35), together with the two terms  and(46) may differ significantly. It is then possible to show
which were neglected, are described below. that for heavy gasefsuch as Ar, Kr, etg, in which the

In Eq. (35), Hoe=H{ is the diffusion-cooling term: thermal contact between electrons and atoms is “pdaitie
to the small values ob and v, at low energiek the rate of
cooling ine-a collisions becomes smaller than the diffusion-
cooling rate(i.e., Hea<Hyd, when T, is not high and the
Conceptually H 4. represents the rate of transport of energypressure is low. This fact was invoked in the literature to
to the wall by those electrons which can overcome the spacelescribe the situation in which, falls below T, in a low-
charge potential barrier. For the trapped electrons, diffusiopressure afterglow plasmaee Refs[5,26] for details.
cooling thus occurs due to the energy outflow dnergy In writing Eqg. (35 we also neglected cooling of the
space at=ed,,, and not due to spatial diffusion against the trapped electrons that arises from Coulomb collisions with
space-charge field in the plasma and in the boundary sheatliee electrons, for which the rate is
The latter mechanism is a result of the spatial inhomogeneity
of the trapped EDF «f{") and its rate is

(1) _ ed
Hdc (I‘)—

ed(

Hi (N =w¥0(e,1)] =0, (36)

= of
Hf(r)=f M( Vfort De—‘")de. (41)
ed,, Je

"WV - (VWD, VD) de. (37)
2 It is easy to calculate this rate in terms of the free EDF

It can be shown that this term is small compared with, for(e,r) from Eq.(15)._ However, due to fact that the density
free electronsns, is low [they escape to the wall very

and hence can be neglected. Indeed, as an upper estima?éh

(HE,P)w(eFQ)E), whereas(HE,?)~(eFeE> [see Eq.(38) quickly, ng=~ (754/ Tamp Ne<<Nel, Hs is small. Indeed, one can

below], hence(H{IYV/(HOY~T /T <1. It is interesting to
note that the diffusion cooling as a result of spatial motion

show thatH;~2v.(ed,)ed n{(1—T./T;), where T;<T,
and so H;<0. Since I'g,~(R/2)n;/7y, oOne obtains

,Hf/HdC% —2ve(e<1>W) de(l_Te/Tf)<1 since er(ed)w) Tid
<1 under nonlocal conditions. Hence, for the sake of sim-
plicity, we have neglected this term. Note that in a steady-
state negative-glow plasma in the presence of an ionization
ergy space is always cooling, i.¢1{)<0. Taking into ac-  source, there exists a substantial hot-electron population with
count thatHy((r)=—w(ed,,,r)V-I'{Y, one can obtain the T>T, (for w<e*), and trapped electrons can be heated
diffusion-cooling rate in a more explicit form: efficiently (H;>0), instead of being cooled, in Coulomb col-
lisions with these hot electrongs.g., Ref[18]).

Other mechanisms to be included into the energy-balance
equation(35) are inelastic processes involving ground-state
where the first and second terms can be identified with, reatoms(e.g., direct or stepwise excitation and ionizaji¢see
spectively, energy losses resulting from diffusion against thalso Sec. Il E However, only inelastic processes witbw)
space-charge field in the boundary sheath and in the plasmharesholdse* <e®,, are to be considered; those witdt
(E<0); in other words,Hq. represents the work that the =ed,, do not affect the energy balance of the trapped elec-
(trapped electrons do on this electric field. It can be seentrons withe<e®,,.
from Eq. (38) that the diffusion-cooling rate is sensitive to
the amount of electron flux carried by superthermal electrons
sinceHyx(1—y)I'e; €e.9., wheny=1, Hy.=0 (see discus-
sion in Sec. Il B. Only when the contribution of superther-
mal electrons td’, is small(i.e., y=0) doesH 4. reduce to
its familiar form

i.e, H{Y, may become the “diffusion heating” when the
trapped-electron flux is inwardly directed, i.é’.(et)<0. By

contrast, the diffusion cooling resulting from motion in en-

(Hgo=—(2/R)eAd,I'\Y) + (el E), (38)

E. Influence of the superthermal electrons

The processes involving metastables result in the produc-
tion of energetiqsuperthermalelectrons withw>T,. The
importance of superthermal electrons in electron-energy de-
cay has been pointed out already in early stu¢keg., Refs.
[27,24). More recently, it has been concluded that these
electrons can have a vital influence on the wall potential and
wherej=j.=j; with jo=el's (jj=e€l';) being the electron the diffusion-cooling ratd25,22. The heating rat¢Hg in
(ion) current density. Eq. (35)] of the trapped electrons by superthermal electrons

In Eg. (35), He, represents the rate of exchange of energycan be calculated asee Refs[24,25,22,18 for more de-
as a result of elastic-recoil collisions between the trappedails)

(Hao = = (2IR)ADjy,+(]E), (39
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o ever, a number of models which employs a volume-averaged
Hs(f)NJ VWVefode=Q* () exy(r), (42 kinetic treatment to obtain spatially uniformzero-

edy dimensional EDFs(e.g., Refs[8,9]). In order to account for
the removal of electrons to the wall, the spatial-diffusion
term in a volume-average@ero-dimensionalkinetic equa-
tion is often written in ther approximation(e.g., Refs[8,9]):
V-(D,Vfg)=~—fo/7charr SOme modelge.g., Ref.[9]) take
the ambipolar-diffusion timer,,,, as the characteristic re-
moval time 7¢pap, 1.€., Tehal W)=~ Tamp (S€€ also Ref[5]).
X~ W* (206710) [ wewe - (43 Thus, such models assume thadit glectrons diffuse to the

wall at thesamerate o . In reality, however, free elec-

Hence, On|y a fractiomdetermined by the productV%de at .tronS diffuse to the wall in a free-diffl.!Sion. tlm&fg) which

w=w*) of the superthermal energy* goes into heating of is shorter thanr,y, by orders of magnitudé.e., 7q< Tamp);

the trapped electrons. For example, the higheis (or v,), by contrast, the lifetime of a trapped electron can be substan-

the larger this fraction is; whereas the quicker the superthettially lower than 7,,,. Only on average does the diffusion

mal electrons escape to the wéhe shorterr;), the smaller ~time of an electron ensemble matefy,,. Attempts to intro-

this fraction is. Therefore, correct values fdg can be ob- duce more complicatetenergy-dependenexpressions for

tained only at the kinetic levesee Ref[18] and Sec. IIF.  Tcha(W) (€.9., Ref[8]) do not improve the accuracy of such
Let us now discuss briefly the influence of superthermamodels. The volume-averaged kinetic treatment under non-

electrons on the wall potentialdy,) and the diffusion- local conditions may lead to erroneous results, as illustrated

cooling rate Hyo (see Refs[25,27 for details. It can be N the two following examples. o

seen from the expressions fd,, [Eq. (34)] and(H4o) [EQ. The first example is that a volume-averaged kinetic model

(39)] that they both contain the factor €ly,): ®,« does not allow one to obtain correct values for the heating

of the fact that the ﬂu>1“fj) out of the potential well is less removal of superthermal electrons takes place in a slow time

* o

than the total electron fluk, (=T',) by an amount equal to ©f 7amo, @nd so thake~w* (2ve7amy [se€ Eq(43)]. Spe-

the flux of (free) superthermal electrorES) [see Eq.27)] cifically, a volume-averaged kinetic model is used in Ref.

(note thatl?=0 at the wall. When y, is increased, the ' SIuc (he plasma decay at rather low gas pressures, and, o

diffusion-cooling rate is reducediespite the increase in the g P * ©

wall potential®,,, see Eq(34)] and asyy—1, (Hg)—0. ue9, the energy of superthermal electrong _0 had to be

Physically this means that ag,—1, ed., increases to a reduced by a factor of 20, from 11 to 0.5 e\(in Ne). Most

value (~w?*) at which most of the bulk electrons are trappedl(”:celz ’) tglesin casri\ r?i(:icz)riﬁlag]\?edrezznfgfe denergy—transfer rate
inside the discharge volume. In this case tinee) superther- _fl_ek:r 9 dg Iy' that | ' d kineti
mal electrons ensure equality of the ion and electron fluxes at € second exampie 1S that a volume-averaged kinetic
the wall, as well as energy expenditures in maintaining th odel fails to describe correctly the dlfoSlon-coollng rate.
space-charge field in the plasma and the potential jump in th_de_l(?d/‘ the Tl.oiel. Of. Rf?f'[ggl ﬁredlcts that chm ith
boundary sheath. Since the superthermal electrons obtain en-e'e/ Tamp, WHICH IS Significantly lower compared wi
ergy from excited states, diffusion cooling of the trappedthat obtained using the nonlocal kinetic description, namely,

electrons “shuts off” under these conditions. During theHdC%._neeq)W/T:Slmb [_see Eq.. (38)]. Since the diffusion-
transition from v, <1 to y,=1, the diffusion cooling is cooling mecham;m IS very |mport'ant at I.OW gas pressures
W v see Sec. |1 D) this may also explain the discrepanciéso

gradually reduced, since the part of the work required t(. . S
maintain the space-charge field comes from potential energg'gh valugs ofT predicted betwegn the model predictions
nd experimental data observed in Ré&f.

stored in excited atoms.

Finally, it should be mentioned that, although it is pos-
sible to neglect the processes involving metastables in the !ll: THE FLUID APPROACH AND ITS COMPARISON
kinetic equation(see Sec. Il A these processes, such as WITH THE KINETIC DESCRIPTION
stepwise excitatiofiand de-excitationand ionization, can be
important in the energy balance of the trapped electrons The fluid approach is widely used to model discharge
(e.g., Refs[22,9)). Typically for rare gases, the lowest meta- plasmas in general, and the afterglow plasma in particular
stable state is the most populated, and stepwise excitatidig-g., Refs[4-6,2)). The details of the fluid approximation
from this state to the nearest metastable or resonance stae&n be found in a number of textbooks on plasma physics
may represent an efficient cooling mechanism. Note also thd€-9., Refs[20,28); here we give only a brief description.
heating produced by recombination, in which an energy re- In the fluid approach, the whole electron ensentle.,
lease of the order of, per electron occurs, can be ruled out from w=0 to w=°) is replaced by an “average” electron,
owing to the low gas pressures. to which unique and unidirectionéle., not energy-resolved
particle and energy fluxes are assigned, and the continuity
equations are used. Moreover, it is assumed that the EDF is

) Maxwellian. The electron spatial flux is resolved into the
The importance of the nonlocal nature of the electrongiffusion and drift components:

spectrum in describing low-pressure plasmas is now well un- R . .
derstood(e.g., Refs[11-14,17,19,1B. There exists, how- I'e=—D¢Vne+nguE, (44

where fo=fo{€,r) is the superthermal EDFcg* in Eq.
(1)] and e is the effective energyin units of eV) trans-
ferred to the trapped electrons in Coulomb collisions with
superthermal electrons; it can be estimated(\vaken w*
>ed,)

F. Comparison with the volume-averaged kinetic models
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where Do=To/(m(v,)) and Dg/fie=Tele, and(---) de- Proach predicts thall electrons diffuse in the same direc-
tion (towards the wajl Hence, the representation of E44)
cannot be justified from a physical point of view.

(i) By the same reasoning as for poiiy, the represen-

tation of the electron heat qu1§|e in terms of the electron
n}emperature and its gradiertsee Eq.(47)] is not justified.
As an example, due to the high thermal conductiVite.,

largeK,), the electron temperature is spatially unifofie.,
'T'e(r):consﬂ, as predicted by the fluid approach; whereas a
strong spatial inhomogeneity @f, can exist, as predicted by
whereH ¢ represents the cooling rate in inelastic collisions,the kinetic approacisee Sec. 1.

such as director stepwisg excitation and ionizationH , is (iii) Since the assumption of a Maxwellian EDF is made,

the rate of energy exchange between electrons and atoms the fluid approach fails to predict correct values for the wall
potential jumpA®,,, and thus ford,,. Indeed, the kinetic

o _ _ NI calculations show that the EDF can be strongly non-
Heo1)= ~Ne(1=Ta/Te)(Wova), (46 Maxwellian and that the expression fdx,, involves the de-
pendence on such important plasma parameters as electron
density, pressure, superthermal flux, ¢tee Eq(34)]. Not
only is A®,, of Eg. (49) independent of these parameters,
but also its value is, as a rule, excessively high., A®,,
. . 5. . >T./e). One of the direct impacts of this fact is that the
Ge(r) = —KeVTet+ ST eTe, (47)  fluid approach significantly overestimates the diffusion-
cooling rate ¢®,,). Since the diffusion-cooling mechanism
is dominant under low pressures, the latter can lead to erro-
neous predictions of the energy-decay rate, as will be shown
in Sec. IV.
(iv) Since the fluid energy-balance equati@b) applies
to all electronge.g., no distinction is made between trapped
and free electrons it involves the termH;,, describing
A losses of energy in inelastic processes with, in principle, any
yvherel;]ew IS :]he t()elect(rjon flux ?jt the wallz(SanB,&cc?rd- thresholde*. In the kinetic energy-balance equati¢sb),
Ing to't € B,o M boun ?ry condition, gee' ec. JiThe first only inelastic processes with thresholds<ed,, are to be
term (2T,) in Eq. (48) is the mean kinetic energy lost by jncjuded. Since typicallyat least for rare gasgshe condi-
Maxwellian electrons to the wall. The second terfif,) in tion thated,,< * is satisfied, inelastic processes do not af-
Eq. (48) is the mean kinetic energy lost due to the potentialfect the energy balance of the trapped electrons. By contrast,
difference between the plasma and the wall; the outward heahe contribution of inelastic processes into the fluid energy
flux related to this term represents the diffusion-coolingbalance can be very importatgspecially in the early after-
mechanism resulting from diffusion against the space-chargglow whenT, is high).
field in the boundary sheaflsee the first term in Eq39)]. (v) By the same reasoning as for poifit), in the fluid
In order to calculate the potential jump in the boundaryapproach, it is not possible to describe correctly the influence
sheathA®,,, anad hocassumption of a Maxwellian EDF is of superthermal electror(e.g., on the wall potential and the
usually employed, which leads to the familiar expression diffusion-cooling ratg as well as the heating rate by super-
~ . R thermal electrons, since the electron ensemble is not resolved
Ad,=(T/2e)IN[MT./(MT,)]. (490  into different groupgsee Sec. Il E

notes averaging over a Maxwellian EDF wﬁlg (hencefor-

ward, we will use the “hat” over a quantity, i.e., X, to
denote that this quantity is obtained in the fluid apprgach

The energy-balance equation takes the well-known for
(e.g., Refs[5,20,29)

ot

3 . . A . .
Ene(r)Te(r) =—V-getel'cE+Hey+Hine, (45

where a Maxwellian EDF witf ,, is assumed and E¢40) is

employed,g, is the electron heat flux which is expressed in
terms of the conduction and convection fluxes

where Ro=Ro(ne,Te)=5n.Te/(2m(v,) is the thermal
conductivity. The boundary condition at the wall for E45)
becomes

aew:(zrre"'A&)w)f‘eWy (48)

The wall potential is now®,=®4,+AdP,, where &g,
=(T./€)In x (see Sec. I ¢

The fluid and kinetic approaches differ in a number of In order to validate the present method, the full time- and
respects. Under nonlocal conditions, these differences are ngpace-dependent kinetic equatidn was solved numerically
only qualitative, but also quantitative. Here we give somein a 1D cylindrical geometry, subject to the boundary condi-
examples. R tions (6) and (7). The numerical scheme consisted in writing

(i) In the fluid approach, the electron flux, is repre- the kinetic equation in a discrete form and applying a
sented in terms oh, and T, (and their gradienjs[see Eq. central-difference operator on a 2[otal-energy—radiys
(44)] which are parameters for the trapped electrons ( grid. The numbers of energy and radial cells were 200—400
<n,). However, under nonlocal conditions, the trapped-and 30-50. The treatment of tleee collision integral was
electron flux is negligible compared with the total electronmade by using the discretization method proposed by Rock-
flux, and practically all the electron flux is due to free diffu- wood [29] (see also Ref.30]). [Note that the matrix coeffi-
sion of the unconfinedfree) electrons. Moreover, the spatial cients corresponding to thee collisional integral were ob-
fluxes of different portions of the EDF may be in different tained by Rockwood for thevf, formulation; it is
(opposite directions (see Sec. 1Y, whereas the fluid ap- straightforward(though lengthy to calculate these coeffi-

IV. NUMERICAL RESULTS AND DISCUSSION
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cients for thef, formulation used in the present woftkee
also Ref.[31]).] A similar technique has been used in Ref.
[32] for a steady-state positive-column plasma. It should be
mentioned that calculations of a steady-state EDF of the

trapped electrons have been carried out in REf] for a 1D

geometry and in Ref14] for a 2D geometry by employing a
space-averagethonloca) kinetic equation which also in-
cludes thee-e collisional integral. Basically, due to the
strong influence of the-e collision integral, very small time

stepsAt have to be employed to avoid numerical instabili-

ties, i.e.,At< ugl. As in Ref.[30], an implicitike scheme
(for the e-e collisional integral was used which igin prin-

ciple) unconditionally stable and allows reasonable time o 2 6 8

steps. Such a scheme enabl&t-~ vgl(emin) to be used,
where €, is the minimum energy of the grid (typically,
€min=Te/25 andAt~10"°-10"8 s). The time stepAt was

|

14

10

total energy, £ (eV)

FIG. 1. EDFs at different instantsduring the afterglow ob-
tained from the numerical solution of the full kinetic equatidn:

controlled by verifying at every step that the energy-balancene solid lines represent the EDFs rat0 and the dashed lines

equation is satisfied within a relative precision of £0 or

represent those at=R. The dash-dot lines indicate the Maxwellian

better. Test runs were performed with different time steps tgarts of the EDF. The vertical arrows show the values of the wall
ensure that the chosen precision is sufficient. In order t@otential energy=ed,,.

allow for the increase i, with time (vexT,*?), At was

decreased dynamically to follow this dependence. Howeveelectric field, a microwave power, or an external ionization
no special efforts were made to optimize the code and a fulbource. Together with the EDF, all other initial plasma pa-

kinetic simulation from Eq(1) of ~50 us into the after-

glow took about 3 days of CPU time on a medium-

rameters, such ab(r) and®,,, att=0 can be found and a
smooth transition from the “power-on” period to the

performance workstation. The long computational time cari‘power-off’ period can be achieved. Since we do not know
also be explained by the fact that a great number of timeuch a steady-state EDF, we first chose the initighnd T,

steps had to be performed.

We present here simulations for an afterglow in Arpat
=0.5 Torr and at room temperaturd (=300 K), for R
=1 cm. We tookv,=1.7X10p(w/e*)*? s from Ref.
[17] andD;=40/p cn? s 1. Under the studied conditions,
the inequalities\,<A and\ .> A are well satisfied at ener-
gies of interest(e.g., at w=5 eV, A,=0.06 cm and
\.//6=10 cm). Attention is focused primarily on the early
afterglow, whenT, is relatively high and the influence of

and then took the EDF from E¢l6) (corresponding to these
initial n, andT,) to be the initial EDF. We also tried other
types of EDF(with the samen, andT,), such as a single
Maxwellian, as well as a bi-Maxwellian far<e®,, and e
>ed,,. We then observed that the shape of the initial EDF
affects only the beginning of the afterglow fog 7;4~0.1-

1 us. The reason is that once the free electrons of the initial
EDF have escaped to the wdih a short time of~7;y), a
flow of electrons out of the potential welk&ed,,) into the

superthermal electrons is not as important as in the late afree region ¢>ed,) appears and the shape of the initial

terglow (e.g., Refs.[27,24,25,27). Hence, the numerical

EDF becomes more or less unimportant. Since our method

simulations were performed assuming that there are no metassumes a quasistationary free EDF, it cannot be applied at
stables present, i.eQ* =0. As discussed previously, in the the beginning of the afterglowsay whent<1 us) and

simulations of the EDF decay, we used E8R) to calculate
®(r) and Eq.(33) [in which the analytic EDF of Eq(23)
was employefito find ®,,. At every time steg+ At, ®(r)

some discrepancies can be observed during this period. How-
ever, since no significant changesnpandT, occur during
this period, such discrepancies are not important. By using

and®,, were calculated explicitly, i.e., using the plasma pa-the initial EDF from Eq/(16), runs with various initiah, and

rameters from the previous time steiince these formulas
involve only the energy-averaged parametsigh as, and

Te), which evolve slowly with time, such a procedure is

likely to be correct. The fact thab(r) (and hence the inte-

T. were carried out, and the case presented here is for typical
Neo(t=0)=0.3x 10" cm 3 andT,(t=0)=3.1 eV.

Figure 1 depicts the EDF§y(e,r,t) obtained from the
full kinetic calculations from Eq(1) at different instantg

gration domaii changes from one time step to another re-during the afterglow. One can see that the trapped EBF (
sults in a problem of a “moving grid.” However, since very <ed,,) depends essentially on total energy only, and so is

small time steps were used\{~10°-108 s), &(r)
hardly changed in one time step and performing sinlite

spatially homogeneous. On the contrary, the free EBF (
>ed,) exhibits significant spatial inhomogeneity and is

eal interpolation or extrapolation to update the EDF for eachstrongly depleted. The whole EDF is thus essentially non-

new ®(r) proved to be adequate.

Maxwellian and is close to Maxwellian only at thermal en-

In order to initiate a simulation of an afterglow plasma, ergies(see Fig. 1

one has to know the EDF at the start of the afterglow,

The values of the electron current density at the wiall X

=0. In general, it necessary to start with an EDF whichobtained from the computed EDFRg(e,r,t) are shown in

corresponds to the “power-on” period of the dischafgeg.,

Fig. 2. The values of the ion current densify,) at the wall

Ref.[9]) and which can be obtained from a steady-state ki-are also plotted for comparison. One can seejtyaandj;,,

netic equation with a source terfe.g., due to an applied

are in close agreement, which implies that the value® pf
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(33) using the nonlocal EDF qf Eq23) (nonlocal kinetic ap-
proach. The dashed line shows®,, calculated from Eq(49) (as- FIG. 3. (a) Time evolution of the electron temperature at the
sumption of a Maxwellian EDF discharge centerT(y,) and at the wall Tey): the solid lines show

the full kinetic results from Eq(1), the dash-dot lines represent the
calculations from the kinetic energy-balance equati&h), and the

i .= ] with good accuracy. Only at the beginning of the dashed line depicts the calculations from the fluid energy-balance
Jew=liw 9 Y- y 9 9 equation(45) (note that the “fluid” T, profiles feature negligible

gftergloyv (=1 us), there is a .notable d!screpancy bet\’veenradial dependengeThe dotted-line shows the central electron den-
jew @ndji,,, the reason for which was discussed above. Th"sity (no) obtained from Eq(1). (b) and (c) T, radial profiles at
facts that the dependence ®f, on j; is logarithmic[e.g.,  different instantd: line types are consistent.

see Eq.(34)] and that the difference betwegp, andj;,, is i ) )

small (<15%, see Fig. Psuggest that the error in predicting 2!SO carried out from the fluid energy-balance equatis),
®,, is even smaller €15%). Also shown in Fig. 2 are the N whichA®,, was calculated from Eq49).

values of the potential jump®,, calculated from Eq(33) Figure 3a) depicts the time evolution of the electron tem-
(the present kinetic methpdnd from Eq.(49) (assumption ~Perature at the discharge cent@) and at the wall Tew),

of a Maxwellian EDF using the samé&,. One can see that as predicted by the full I_(inetic calculations_ from E(q')'
the “kinetic” A®d,, varies little with time despite the fact About an order of magnitude decreaseTig is obtained,

that T, drops dramaticallysee below It is interesting to whereas the electron density is observed to decrease only by

te that this t | behavior Afb id | one third. One can see that the time evolutionTgftakes
note that this temporal behavior Afb,, may provide a plau- place in two stages. During the first, fast stage (

sible explanation for the experimgntal fact thgt, durir?g an_og us), T, drops by more than a factor of 5. A signifi-
ea_lrly _aftergIO\_/v, the plasma potgnhal features I|ttle_ V_a”at'oncant spatial inhomogeneity @, is supported throughout the
with time, which was observed in a low-pressieellision- ¢4 stage; the radial decreaseTqfcorresponds to the con-
lesg post-discharge plasni&3]. In contrast, the “Maxwell- ey EDF in Fig. 1 and of Eq23). The fast stage is followed
ian” A®,, decreases markedly with tinjé follows the T by a slow stagett>30 us), during which theéT, decay rate
evolution, see Eq(49)] and is much greater than that ob- is substantially lower, the spatial inhomogeneity is less pro-
tained in the kinetic approacfEq. (33)]. By using these nounced, ando(r)~T.=const. For comparison, the values
(excessivgAd,, to calculate the EDF, no reasonable valuesof T, andT,,, predicted by the kinetic energy-balance equa-
for jo could be obtainedthesej, were several orders of tion (35) are shown in Fig. @). One can see that they are in
magnitude lower thaf,). good agreement with the full kinetic results, both in their
The full kinetic simulations of the electron-energy decayabsolute values and spatial profileee also Figs. (®) and
were compared with computations from the energy-balancé(c)]. By contrast, the calculations from the fluid energy-
equation(35), in which the nonlocal EDE{”)(¢) was simul-  balance equatio45) predict a much faster decay af, as
taneously calculated from E(R3) to obtain theT, profiles. ~ compared with the kinetic results, which is mainly due to the
The advantage of using the energy-balance equation is théct that the potential jump®,, [see Eq(49)], and thus the
the calculations are simple and very fast, which require CPUifusion-cooling rate] «q., of Eq. (48)], are significantly
time of the order of minutes, instead of days, as is the case igyerestimated(see Fig. 2 and Sec. )l Moreover, the
full kinetic simulations. In order to simulate thE, decay «fyig” radial profiles of T, are very flat, as seen in Figs.
from Eq. (35, we took the values ofig(r,t) and j¢(r,t)  3(b) and 3c), due to the high thermal conductivity. Hence,
predicted by the full kinetic simulations, as well as the valuesne fluid approach fails to reproduce not only the spatial
of Te(r,t=0), @(r,t), and ®,(t) used for these simula- pehavior ofT,, but also its absolute values.
tions. For the purposes of direct comparison between the The radial profiles of the terms in the energy-balance
fluid and kinetic approaches, computationsTqfr,t) were  equation of the trapped electrofes discussed in Sec. I1)D

are predicted by the present methege Eq.(33), in which
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of j¢(r) from Eq.(28) using the analytic EDF{")(¢) of Eq.
(23). Close agreemen(especially at the wallis observed
betweenj (r) from Eq. (28) and that from the full kinetic
simulations. It is due to this close agreement between the full
kinetic results and those obtained using the nonlocal ap-
proach that it becomes possible to calculdtg from Eg.

(33) with good accuracy, and thus observe the close corre-
spondence between,, and j;,, in Fig. 2. This represents a
striking result of the nonlocal approach which allows the
total spatial flux(r) [or jo(r)] to be calculated in terms of
the differential energy flud (e,r) ate=ed,, [see Eq(28)]

via the space-independent ED(€). Such a relationship
betweenI'(r) and f")(¢) is possible becaust(e) con-
tains all required space-resolved informatiée.g., Refs.
[11,15). The transformatiorjdescribed by Eq(24)] from

. FIG. 4. Radial profilgs of the terms in the energy-balance equathe energy flux out of the potential well { at e=e®,,) into
tion (See Sec. |l DObtaJned from the Computed EDFs at two dif- the Spatlal flux re) occurs in the narrow energy reglon close

ferent instants. Here,H,=a(3n,T¢)/at. For clarity, theH(? val-
ues are multiplied by a factor of 10.

obtained from the computed EDFg(e,r,t) are presented in
Fig. 4 for two instantg during the afterglow. At early times
in the afterglow period, wheili, is high,H., is comparable
with Hy., whereas later, wheh, has droppedH., is lower
thanH .. Moreover, the cooling ratel; is small throughout
the afterglow period. The ratel{l) is also very small and
features complicated spatial behavidetermined byfgl)).

to ed,,, in which the differential spatial fluxJ,(e,r) is
peaked; see the right-hand side diagrams in Fig. 5, where
J;(e,r) is plotted as a function of total energyrat R/2 (its
energy dependence is similar at other rad8imple argu-
ments suggest that the main contribution to the electron cur-
rent is due to the free electrons widb ,<e<ed,+Ae.
Hence, the characteristic width of te peak is of the order
of Ae [see Eq(22)], as confirmed by the numerical results.
One can next see in Fig. 5 thatfor the trapped electrons
(esed,) is nonnegligible in magnitude and, which is very

Figure 5 shows the radial profiles of the electron currenipteresting, changes sign. It is clear that the total spatial elec-

densityj. at different instantd, as predicted by the full ki-

tron flux I'; (integral of J, over w from 0 to «) must be

netic calculations. Also plotted are the results of calculationgjirected outwardto the wal) as is the ion flux; , i.e., T'e
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FIG. 5. Radial profiles of the electron current dengityat dif-
ferent instant¢ (shown on the left-hand side diagramthe solid
lines represent the full kinetic results from Ed.), the dash-dot
lines correspond to the calculations from E&8) (nonlocal ap-
proach, in which the analytic EDF of Eq23) is used, the dashed
lines depict the trapped-electron current dens}@}/. The right-
hand- side diagrams display the differential spatial flfe,r) as a
function of total energy at=R/2 and the same instants The
dashed vertical arrows indicate the valuesesfed,,. The solid

>0. For the free electrons witt>e®,, (whose contribution
to I', is the largest indeed,J,(e,r)>0. For the trapped
electrons, howeved, is inwardly directed J,<0) for some
energies and is outwardly directed,t0) for other ener-
gies. It is due to thdpartia) compensation of these oppo-
sitely directed fluxes foe<ed,, thatj (=el'") is small
(see Fig. 5. The sign ofj " depends on whether the inwardly
directed flux fore<e®,, is greater or smaller than the out-
wardly directed flux. We observed thjag) was oppositely
directed toj, for t=<20 us, while later (=20 us), j. and
i had the same sigfsee Fig. 5 for data at=10 us and
t=30 us).

One can observe in Fig. 5 that there are actually two flux
(J,) reversalschanges of sign one ate="¢; close toed,,
and the other at lowetherma) energiese=¢,. In the non-
local approach, the small perturbation teféﬁ)(e,r) is re-
sponsible for a nonzero spatial flux of trapped electr@msl
its sign, and the main termi{®)(¢) (which is responsible for
their energy fluxesyields a zero spatial flux. By using Eq.
(24), which connects the spatial and energy fluxes, it is pos-
sible to explain the observed flux reversals, as discussed
briefly in the rest of this section.

The first flux reversal occurs at energies closeedy,,,

i.e., e=e;<ed,. By virtue of Eq. (24), the sign of
Ji(e,r) [=IN(er) for e<ed,] is determined(to some
exten) by that of 7.=d(\ywJ®)/se. Since the EDF falls
rapidly in the vicinity ofe~e®,, (see Fig. }, its local slope

vertical arrows show the energies at which the flux reversal takeglecreases, and it is possible to show thif)(e)| has a

place.
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maximum ate=~el~ed>w— T.. As such,J.(¢) [and thus The method consists _in solvi.ng simplifiédonloca) kinetic
: ~ ~ equations coupled with particle- and energy-balance equa-
Ji(€)] changes sign ae=e;; henceJ;(e) for e<e; be-  yions The applicability of the proposed method was vali-
comes inwardly d|reftedJ(<0). Physically, the position of  j5teq by the numerical solution of the full time- and space-
the first flux reversale,, corresponds to the energy at which dependent kinetic equation in a cylindrical geometry. Good
the trapped electrons start to feel the spatial gradients due tgreement is found between the full kinetic simulations and
the presence of the wall; at this energy the transformatiothe results obtained from the kinetic energy-balance equa-
from the energy fluxi, to the spatial fluxJ, starts to occur tion. Since the nonlocal approach reduces a multidimen-
and the magnitude af, begins to diminish with increasing sional kinetic equation to a 1D nonlocal kinetic equation in
energy. (genuine total energy, the proposed method can be easily
The second flux reversal occurs at thermal energies extended to geometries other than cylindrical. Moreover, the
="¢,=(3-4)T,. This flux reversal is due to a particular Proposed method being simple and semianalytic, its compu-
property of thee-e collision integral at thermal energies, tational efficiency can be extremely useful in solving com-
namely, due to the fact that the coefficieht (andA,) of ~ Plex self-consistent problems. =
Eq. (4) is an increasing function of energy fars (3—4)T,. Itis shown that under nonlocal conditions the EDF can be
Indeed, taking into account that> Sv, at thermal energies, Strongly non-Maxwellian and that tteal hocassumption of a
ve(w)ocw‘3’2, andA(w)=w whenwsz.ﬁ'e [see Eq(4)], Maxw'elllan EDF can lead to significant errors. The.res.ults of
) 0) = e the dlrect_ comparison be_tween the f_IU|d an_d kln_etlc ap-
one can obtain that/wJ)=w exp(—€/To). As such, it is  proaches imply that the fluid approach is physically inappro-
easy to see thaf(e) [and thusJ,(e)] changes sign; hence priate for describing a low-pressure afterglow plasma. In par-
J;(€) for e<e, becomes outwardly directed agaif, £0). ticular, the fluid approach fails to predict correctly both the
As a rough estimatés,~T,+(e®), which was observed to spatial and temporal evolution of the electron temperature.
be in reasonable agreement with the numerical results. ~ Moreover, it is demonstrated that the use of the volume-
To conclude, the above results show that a situation igveragedzero-dimensionalkinetic models may lead to er-
realized, in which the radial fluxes corresponding to threg’oneous results in simulating such a plasma.
different portions of the EDF alternate in sigef., the fluid The present results for a low-pressicellisiona) after-
approach in which the electron flux is unidirectional, see Secglow plasma can be somewhat extended to the high-density,
lIl). Large, directionally opposed radial fluxes of trappedlow-pressure(collisionless afterglow plasmas, which typi-
electrons exist, and two flux reversals occur. The flux revercally operate atne~10"-10 cm™3 and p<10-100
sal at thermal energies was predicted in terms of the generaTorr (e.g., Refs[7,1,2). At such high densitiess-e Cou-
properties of the-e collision integral. This phenomenon can lomb collisions may become more effective in driving the
hence be considered to be somewhat universal and likely t6DF to a Maxwellian distribution. On the other hand, at
take place in other plasma@inder nonlocal conditions such low pressures, the removal rate of electrons to the wall
wheree-e Coulomb collisions are effective in maintaining a is expected to be much higher. Hence, the high-density,
Maxwellian EDF at thermal energies. Note that we also oblow-pressure (collisionlesg plasmas are also likely to
served this phenomendwhich was even more pronounded feature, among other things, a strong departure from a Max-
in a steady-state negative-glow plasma, on which a Separavée”ian distribution. This subject will be explored in future
report is under preparation. work.
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